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Neutrophils are classically considered as cells pivotal for the first line of defense 
against invading pathogens. In recent years, evidence has accumulated that they are 
also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate 
in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) 
and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site 
of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and 
antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via 
mediators, such as proteases, cytokines, and radical oxygen species. In this review, we 
will discuss the current knowledge regarding locations and mechanisms of interaction 
between neutrophils and lymphocytes in the context of homeostasis and various patho-
logical conditions. In addition, we will highlight the complexity of the microenvironment 
that is involved in the generation of suppressive or stimulatory neutrophil phenotypes.

Keywords: inflammation, immune-regulation, neutrophil, myeloid-derived suppressor cells, immune-paralysis, 
neutrophil phenotypes, T-cells

introduction

Neutrophils are particularly known for their potent anti-microbial functions (1). This notion is 
enforced by various congenital neutrophil deficiencies, which show marked clinical phenotypes 
characterized by enhanced susceptibility to bacterial and fungal infections (2, 3). Infections, sterile 
inflammation, and other non-chronic challenges to the immune system are characterized by a rapid 
influx of neutrophils into the affected tissue (4). These neutrophils respond to chemo-attractants and 
adhesion molecules expressed on endothelial cells, and their main function is to clear infections and/
or debris. In addition, they influence inflammatory responses through interactions with various cells 
of the immune system, such as antigen-presenting cells (APCs) and lymphocytes (5, 6). This has been 
observed in both murine models and in ex vivo studies with isolated cells from humans. Although 
neutrophils have long been considered to be composed of a homogenous population, an increasing 
body of literature supports the presence of multiple neutrophil phenotypes in cancer and inflam-
mation (7–10). This heterogeneity can be induced by specific differentiation programs in the bone 
marrow or orchestrated by extracellular signals derived from inflammatory tissue (e.g., cytokines, 
bioactive lipids, or chemokines) (11, 12). The contribution of distinct neutrophil populations to 
immune suppression has not been resolved. In addition, in murine models and some human studies, 
clear distinctions were suggested between neutrophils and granulocytic myeloid-derived suppressor 
cells (G-MDSCs). These issues have been reviewed in detail (13, 14). This review will focus on the 
location and relevant diseases in which both (suppressive) neutrophils and G-MDSCs modulate 
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adaptive immune responses and the mechanisms behind this 
process.

Location of the interaction Between 
neutrophils and Lymphocytes

Site of inflammation – Bystander Response
The early phase of infection is characterized by an influx of 
neutrophils and monocytes, which precedes the development 
of an antigen-specific response. Simultaneously, small numbers 
of T-cells are recruited into the infected tissue. Some of these 
T-cells can be activated and proliferate ‘‘in situ’’ in response to 
antigen presentation by myeloid cells (15). In addition, inflamma-
tory cytokines cause proliferation and activation of non-specific 
T-cells in the profoundly pro-inflammatory microenvironment. 
This process has been coined the ‘‘bystander response’’ and was 
first seen in viral infections (16). It has recently been suggested 
that this bystander response contributes to early pathogen con-
trol in mice by enabling bystander memory T-cells to recognize 
and eliminate micro-organisms, such as Listeria monocytogenes 
infected cells in a NKG2D-dependent manner (17).

It is conceivable that a large and uncontrolled bystander 
response might predispose for auto-immunity and self-reactivity 
through the proliferation of self-reactive T-cells (18). It is tempt-
ing to speculate that neutrophils are involved to limit and control 
this bystander T-cell response as the timing of massive neutrophil 
tissue infiltration and the bystander response coincide.

Lymph nodes and Primary Lymphatic Tissue
Neutrophils are found both in LNs and spleen particularly under 
inflammatory conditions (19–24). Dynamic imaging studies 
have shown that neutrophils are recruited to and form swarms 
in infected LNs in mice (25, 26). In addition, neutrophil migra-
tion to afferent LNs in response to tissue inflammation has been 
shown in various murine models (19–24).

There are two possible routes for neutrophils to enter LNs, 
via blood vessels or via afferent lymphatics (Figure 1). The first 
route requires exiting the circulation via high endothelial venules 
(HEVs). This mechanism is controversial, as human neutrophils 
seem to lack the expression of CCR7, a receptor for CCL21 and 
required for lymphocyte exiting through HEVs (27). Nonetheless, 
it has been shown in a murine model of ovalbumin-induced 
inflammation that neutrophil homing to LNs via the HEV takes 
place and requires integrins αMβ2 (MAC-1), αLβ2 (LFA-1), and 
l- and P-selectin (19). In LN-draining inflammatory tissue, addi-
tional chemokines and cytokines could orchestrate the attraction 
of neutrophils via HEVs. This has also been shown in tumor-
draining LNs, when the tumor was subjected to photodynamic 
therapy. This treatment induces additional sterile inflammation. 
In this model, neutrophils are recruited to tumor-draining LNs 
via the HEV in an IL-17-dependent manner (20).

Neutrophil migration to LNs via afferent lymphatics has been 
observed in various murine models of infections, vaccinations, 
and cancer and seems to depend on MAC-1 and CXCR4 expres-
sion on neutrophils (19, 22) (see Figure 1). The area in the LN 
that is occupied by neutrophils will determine which cells they 
encounter, and how they can influence subsequent immune 

responses. Neutrophils have been reported to occupy the med-
ullary region and interfollicular zone (23). Neutrophils migrate 
to these areas in the LN during infection with Staphylococcus 
aureus. There they exhibit short- and long-term interactions 
with B-cells, thereby inhibiting production of antibodies, and 
thus humoral responses (23). Furthermore, neutrophil B-cell 
interactions have also been observed in primary lymphoid 
organs in various mouse models. In the marginal zone of the 
spleen, neutrophils were observed to contribute to antibody 
production and class switching by activating B-cells by produc-
ing BAFF, APRIL, and IL-21 (24). In this study, evidence was 
provided for the existence of a similar population of neutrophils 
that modulate B-cell responses in humans. However, this remains 
controversial as in a subsequent study, no splenic neutrophil–B 
cell interactions could be observed in humans (28). It seems 
firmly established, at least in various murine models that neu-
trophils enter primary and secondary lymphatic sites during 
the immune response evoked by various inflammatory stimuli. 
Apart from regulating immunity in inflamed tissue, they may 
play a role in regulating immune responses at these privileged 
immune sites (see below).

The Role of neutrophils in Controlling 
immune Responses evoked by Bacterial 
and viral infections, Sterile inflammation 
and Cancer

viral infections
Acute viral infections, such as influenza, are ideal models to study 
cellular kinetics during the immune responses and the putative 
modulating effects of neutrophils hereon. Influenza and RSV 
infections are characterized by an early large influx of neutrophils 
in the lung tissue followed several days later by a virus specific 
CD8+ T-cell response (29–31). Neutrophils might facilitate the 
development of this antigen-specific response as they are able 
to serve as APCs in influenza infection in mice (31, 32). Such 
antigen presentation by influenza-infected neutrophils has been 
demonstrated and was found to be mediated by MHC-I and co-
stimulatory molecules CD80 and CD86, which leads to induction 
and activation of anti-viral responses of CD8+ T-cells (32). On 
the other hand, it is tempting to speculate that neutrophils may 
also inhibit T-cell responses in viral infections by inhibiting T-cell 
proliferation and inducing T-cell apoptosis. The mechanisms of 
this suppression will be discussed below and involve reactive 
oxygen species (ROS), arginase-I (ARG), and PD-L1. This has 
also been found in other inflammatory scenarios (33–35). The 
role of immune suppression by neutrophils in  vivo in murine 
models of viral infections has not been adequately experimen-
tally verified, but may be deduced from the fact that pathology 
in mice is T-cell dependent and that depleting neutrophils often 
results in an exaggerated response and pathology (31, 36). In 
chronic viral infections, such as human hepatitis B virus (HBV), 
it has recently been shown that recruitment of neutrophils to 
the liver limits immune pathology through inhibiting bystander 
and HBV specific T-cells in an arginase-dependent way, thus 
protecting the host from immune-mediated damage (37). These 
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neutrophils were isolated from the PBMC fraction and were 
termed G-MDSC (13).

Bacterial infections
As in viral infections, bacterial infections are associated 
with a large recruitment of neutrophils. The pivotal differ-
ence with viral infections is that phagocytosis and killing of 
bacterial targets by phagocytes is the principle mechanism of 
pathogen eradication (1). Ineffective killing of phagocytosed 

FiGURe 1 | Localization of interaction between neutrophils and lymphocytes at sites of inflammation and in lymphoid tissue. Invasion of pathogens or 
inflammation due to necrosis and cancer leads to extravasation of neutrophils. (1) Interaction of neutrophils with T-cells in the peripheral tissue. (2) MAC-1 and 
CXCR4-dependent migration of neutrophils to LNs via afferent lymphatics during inflammation (22). (3) IL17 and CCL21-mediated migration of neutrophils via HEVs 
to the LN that requires MAC-1, LFA-1, and l-selectin (19, 20). (4) Inhibition of humoral responses by neutrophils in the IFZ and medullar region (23). HEV, high 
endothelial venule; FZ, follicular zone; IFZ, interfollicular zone.

bacteria results in intracellular (phagosomal) survival and 
can lead to pathogen shuttling to distant sites and LNs (38, 
39). Recently, it has been shown that neutrophils from mice 
infected with S. aureus migrated to the draining LNs and 
limited humoral responses through direct cellular interactions 
with B-cells. These direct cellular interactions were also found 
for neutrophil–T-cell interactions in humans (40). Kamenyeva 
et  al. suggested that suppression of antibody production by 
neutrophils ex vivo was dependent on TGF-β (23). However, the 
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contribution of the reduced humoral response to pathogen load 
was not assessed.

As mentioned above, in the early course of infection, large 
numbers of neutrophils are recruited to the affected tissue 
where modulation of T-cell responses most likely occurs with 
early recruited T-cells. These early lymphocytes mainly belong 
to the family of γδ-T-cells (41). These γδ-T-cells are thought 
to play a role in early pathogen clearance through production 
of cytokines and their crosstalk with innate immune cells (41). 
Neutrophils play an important role in the initiation of these γδ-
T-cell responses. Phagocytosis of bacteria enables neutrophils 
to activate γδ-T-cells and induce their proliferation (42). This 
is dependent on (1) the microbial metabolite (E)-4-hydroxy-3-
methyl-but-2-enyl pyrophosphate (HMB-PP), which neutrophils 
release after phagocytosis of bacteria and (2) the presence of 
monocytes for cellular contact-induced activation (42). However, 
other human studies have revealed the ability of neutrophils to 
suppress γδ-T-cells activation, possibly providing a negative-
feedback mechanism (43, 44).

The early instruction of γδ-T-cells in humans by neutrophils 
parallels the role of these innate immune cells in the early 
instruction of T-cell responses in mice. In a murine model of 
Legionella pneumophila, neutrophils from pulmonary tissue are 
pivotal for the development of a TH1 response. In this model 
which resembles human disease, neutrophils were depleted by 
neutrophil-specific antibody Ly-6G, and this led to more TH2 
skewing and more disease (45).

T-cell instruction, activation, and proliferation mostly require 
antigen-presenting cells, such as dendritic cells, B-cells, and mac-
rophages. Neutrophils have been shown to both negatively and 
positively affect antigen presentation by these APCs under different 
conditions. This has extensively been reviewed previously (46, 47). 
Neutrophils may simply affect the amount of available antigen by 
phagocytosis, and thus limit antigen presentation by professional 
APCs (48). Alternatively, neutrophils might function as APCs 
themselves (49, 50). This possibility is supported by several studies 
showing the expression of MHCII and co-stimulatory molecules 
on neutrophils under different clinical conditions (51–53).

Disseminated Bacterial infections (Sepsis)
Severe bacterial infections can result in systemic dissemination of 
bacteria that can lead to severe clinical conditions, such as sepsis 
and septic shock. These conditions are characterized by severe 
systemic inflammation, which can result in severe inflamma-
tory damage to the host when not properly controlled. Immune 
inhibitory mechanisms have evolved in order to prevent this 
exaggerated inflammatory response (54). The specific role of 
neutrophils in this immune suppression has not been adequately 
studied. This is a challenging research question as depletion or 
inhibition of neutrophil functions with the purpose of studying 
their anti-inflammatory role has profound impact on bacterial 
clearance. Identification of suppressive mechanisms that do not 
influence pathogen clearance and neutrophil-specific murine 
knockout models may aid in answering this question.

In humans, evidence has accumulated that neutrophils might 
contribute to the immune suppression seen in sepsis. Neutrophils 
in septic-shock patients express ARG and suppress T-cell 

functions, probably through depletion of l-arginine as detailed 
below (55). Immune suppression in sepsis can be at least in part 
attributed to the PD-1/PD-L1 axis that is involved in control of 
apoptosis in T-cells (56). Interestingly, expression of PD-L1 on tis-
sue neutrophils has also been shown during chronic inflammation 
(57). The expression of PD-L1 on human neutrophils was found to 
be induced by the TH1 cytokine, interferon-γ, in vitro (35).

Sterile inflammation/vaccination
Neutrophils also play a role in the fine tuning of inflammation 
under sterile conditions. Many studies have been performed in 
ovalbumine (OVA)-induced immune responses in murine mod-
els. The OVA models are used as vaccination and allergy models 
and are useful to study the development of adaptive immune 
responses. The role of neutrophils in the OVA model follows the 
above-described findings in microbial models. The cells seem 
to effectively cross-prime CD8+ T-cells in an MHCI-dependent 
manner (58). They function as APCs or influence the capacity 
to present antigens by professional APCs (59, 60). For instance, 
dendritic cells have been shown to take up antigens acquired from 
phagocytosed apoptotic neutrophils (61).

These examples show that neutrophils can increase antigen 
presentation as APC or by delivering antigen to APCs. On the 
other hand, there are reports that neutrophils decrease the level of 
antigen presentation by APCs through an unknown mechanism 
during brief cellular interactions (48). These findings show that it 
is difficult to predict in which circumstances neutrophils stimu-
late or suppress antigen presentation even when very similar and 
well-controlled models are used.

Cancer
There is a large body of literature, which shows a heterogene-
ous population of myeloid cells characterized by their potential 
to inhibit adaptive immunity, and thus anti-tumor immune 
responses (14). These myeloid-derived suppressor cells consist 
of mononuclear cells and neutrophils in different stages of 
maturation. G-MDSCs facilitate tumor growth in various murine 
models through suppression of CD8+ responses and production 
of cytokines (62–64). In addition, in human cancer patients, 
G-MDSCs and suppressive neutrophils are isolated from the 
peripheral blood (65, 66). Although the distinction between neu-
trophils and G-MDSCs is not clear, the modulating role of these 
cells in the immune responses induced by tumors has become 
an accepted paradigm, and is extensively reviewed elsewhere (13, 
67). Neutrophils are involved in both pro- or anti-tumor immune 
responses. Importantly, they have recently been shown to promote 
metastasis (7, 68). Their anti-tumor effects are mediated by their 
direct antibody-dependent cytotoxicity and their production 
of pro-inflammatory cytokines near and inside the tumor (69). 
These properties will not be discussed in this short review.

The pro-tumor effects of neutrophils are mediated by dif-
ferent mechanisms. First, neutrophils play an essential role in 
angiogenesis through expression of matrix metallo-proteases, 
such as MMP9 (70, 71). Second, in multiple murine models they 
inhibit anti-tumor CD8+ T-cell responses through mechanisms  
described below. The suppression of anti-tumor T-cell responses 
by neutrophils was recently shown to be pivotal in tumor 
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metastasis in a murine model of breast cancer (7). In this study, 
γδ-T-cells facilitated neutrophil recruitment to the tumor via an 
IL-17 and G-CSF mediated pathway. The microenvironmental 
cues for the switch in neutrophil phenotype from pro- to 
 anti-tumor are slowly being unraveled. In a model of lung 
cancer, TGF-β induces or recruits neutrophils with a pro-tumor 
phenotype (termed N1), whereas blocking TGF-β induces an 
anti-tumor neutrophil phenotype (termed N2) (11).

Mechanisms of T-Cell Suppression by 
neutrophils and G-MDSCs

Despite the evidence that neutrophils can stimulate T-cell 
responses, most studies point toward a direct suppressive role of 

these cells on different T-cell responses in various disease models 
as described above. The mechanisms of suppression have been 
reviewed in detail elsewhere and are summarized in Figure  2 
(13). Most of the mechanisms that neutrophils employ to sup-
press T-cell functions are closely related to their anti-microbial 
functions, i.e., the same or similar mediators are used. Two of 
the most frequently reported mechanisms are via ARG and ROS.

ARG is found in the gelatinase containing granules of neutro-
phils and is thought to contribute to antifungal immunity trough 
depletion of l-arginine (79, 80). Depletion of l-arginine also results 
in a cell cycle arrest in activated T-cells in the G0-G1 phase, which 
limits T-cell proliferation (74). This is thought to occur through 
downregulation of TCRζ (75, 76). It seems that the expression of 
TCRζ requires l-arginine for adequate expression and functionality 

FiGURe 2 | Mechanisms involved in T-cell inhibition (left panel) and activation (right panel) by neutrophils. Neutrophils can establish T-cell inhibition by (1) 
degranulation of granular constituents. The serine proteases elastase and cathepsin G inactivate T-cell stimulating cytokines, IL-2 and IL-6, and catalyze shedding of 
cytokine receptors for IL-2 and IL-6 on T-cells (72, 73). (2) Production of ROS and release of arginase. Both agents can result in downregulation of TCRζ on T-cells, 
thereby arresting the cell in the G0-G1 phase (40, 74–78). (3) Expression of PD-L1. Upregulation of this ligand is associated with interferon-dependent PD1-
mediated T-cell apoptosis (35, 56). T-cell activation by neutrophils is attained by (4) indirect antigen presentation. Dendritic cells take up antigens from apoptotic 
neutrophils and serve as APC for T-cells (61). (5) Direct antigen presentation. Neutrophils posses the capacity to cross-prime CD8+ T-cells directly in a MHCI-
dependent manner (32). (6) Release of microbial metabolites (HMB-PP). Neutrophils release bacterial products after ingestion to activate γδ-T-cells (42).
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(81). In addition, l-arginine is required for dephosphorylation of 
cofilin. Cofilin is pivotal for the stability of the immunological 
synapse. Therefore, depletion of l-arginine by ARG impairs the 
formation and stability of an immunological synapse, which is 
required for T-cell activation and proliferation (82, 83).

ROS are an intricate part of neutrophil anti-microbial defense 
and the lack of ability to produce ROS as, seen in chronic 
granulomatous disease, is characterized by severe infections 
(84–86). One of the products of NADPH oxidase activation is 
hydrogenperoxide (H2O2). H2O2 can suppress T-cell proliferation 
and activation through various mechanisms. It induces apoptosis, 
decreases Nf-κB activation, and downregulates TCRζ (77, 78). In 
addition, T-cell suppression by ROS is also accompanied by the 
oxidation of cofilin (77, 87). Cofilin can, therefore, be influenced 
by both ARG and ROS: both mechanisms being employed by 
neutrophils. Therefore, the T-cell suppression by disruption of 
cofilin might prove to be a useful therapeutic target.

Interestingly, regulatory T-cells are resistant to oxidative stress 
(88). This suggests that regulatory T-cells are less sensitive to 
suppression than other T-cells, thus enhancing the overall sup-
pressive effect of H2O2.

Suppression of T-cell activation and proliferation requires 
high concentrations of H2O2 (33, 87). This amount of ROS might 
only be reached in inflammatory tissue with massive neutrophil 
influx. A more elegant way of suppression via H2O2 is through 
cell-cell contact between neutrophils and T-cells. Such a direct 
mechanism for delivery of ROS in an immunological synapse 
has been identified (29). Here, neutrophil-T-cell contacts were 
mediated by MAC-1.

Another important suppressive pathway requires similar 
cell-cell contacts: inhibition via T-cell PD-1 by PD-L1, a potent 
inducer of apoptosis in T-cells 1, expressed on neutrophils during 
sepsis (25). The underlying mechanism of PD-L1 expression is 
an interferon dependent process (35). The PD-1/PD-L1 axis is 
thought to be an important mechanism in the immune suppres-
sion found in sepsis patients by inducing lymphocyte apoptosis 
and monocyte dysfunction (56). Blocking this axis after the 
induction of sepsis by administering a PD-1 blocking antibody 
improves survival in mice by increasing pathogen clearance (89). 

This suppressive mechanism might be protective in tissues 
with severe inflammatory infiltrates, but may be detrimental as 
immune suppression aggravates sepsis. At this moment, one can 
only speculate regarding the role of PD-L1 on neutrophils in this 
immune suppressed state.

Finally, neutrophils can modulate T-cells by degranulat-
ing granular constituents, such as neutrophil elastase. These 
proteases are able to cleave and inactivate essential cytokines, 
such as IL-2 and receptors, such as the IL-2 and IL-6 receptor on 
T-cells (72, 73).

Conclusion

The studies mentioned in this review have led to the consensus 
that neutrophils are capable of modulating adaptive immune 
responses through interactions with T- and B-cells and possibly 
APCs. The mechanistic studies in mice have been corroborated 
with human ex vivo data. These studies show that neutrophils are 
capable of directly interacting with lymphocytes and modulat-
ing their responses at local sites of inflammation as well as in 
draining LNs. One of the key remaining issues is the question 
whether human neutrophils show functional plasticity as has 
been suggested by us and others (13, 90). This plasticity can 
occur at different levels: (1) the existence of functional subsets, 
which are intrinsically different or (2) the transdifferentiation 
into suppressive neutrophils or even into an APC type of hybrid 
cell (90–92). The microenvironmental cues mediating the switch 
from classical neutrophils to suppressive neutrophils have barely 
been studied although TGF-β seems to play an important role in 
microbial and tumor models (11, 23).

In conclusion, murine and human studies to date show that 
neutrophils are potent modulators of immunity. The first step of 
establishing a strategy to target immune modulatory neutrophils 
without influencing their essential anti-microbial functions is 
finding relevant human diseases in which this modulation plays 
a pivotal role (93). The unraveling of microenvironmental cues 
mediating the recruitment of and/or “switching” into suppressive 
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