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Mechanisms of kidney injury
in lupus nephritis - the role of
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Susan Yung* and Tak Mao Chan™

Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a
breakdown of self-tolerance, production of auto-antibodies and immune-mediated injury,
resulting in damage accrual in multiple organs. Kidney involvement, termed lupus
nephritis, is a major cause of morbidity and mortality that affects over half of the
SLE population during the course of disease. The etiology of lupus nephritis is mul-
tifactorial and remains to be fully elucidated. Accumulating evidence suggests that in
addition to forming immune complexes and triggering complement activation, anti-
dsDNA antibodies contribute to the pathogenesis of lupus nephritis through binding,
either directly or indirectly, to cross-reactive antigens or chromatin materials, respec-
tively, to resident renal cells and/or extracellular matrix components, thereby triggering
downstream cellular activation and proliferation as well as inflammatory and fibrotic
processes. Several cross-reactive antigens that mediate anti-dsDNA antibody binding
have been identified, such as annexin Il and alpha-actinin. This review discusses the
mechanisms through which anti-dsDNA antibodies contribute to immunopathogenesis
in lupus nephritis. Corticosteroids combined with either mycophenolic acid (MPA) or
cyclophosphamide is the current standard of care immunosuppressive therapy for severe
lupus nephritis. This review also discusses recent data showing distinct effects of
MPA and cyclophosphamide on inflammatory and fibrotic processes in resident renal
cells.

Keywords: lupus nephritis, anti-dsDNA antibodies, mesangial cells, proximal renal tubular epithelial cells,
inflammation, fibrosis, mycophenolic acid, cyclophosphamide

Abbreviations: AID, activation-induced deaminase; Cl1q, complement 1q; CLIFT, Crithidia luciliae indirect immunofluo-
rescence test; CXCL1, (C-X-C motif) ligand 1; dsDNA, double-stranded DNA; ELISA, enzyme-link immunosorbent assay;
EMT, epithelial-to-mesenchymal transition; ERK, extracellular signal-regulated kinase; HMGB1; high-mobility group box
1; IgG, immunoglobulin G; IL-1B, interleukin-1f; IL-6, interleukin-6; IL-8, interleukin-8; iNOS, inducible nitric oxide
synthase; JNK, jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein-
1; MME, mycophenolate mofetil; MPA, mycophenolic acid; MW, molecular weight; NZBWF1, New Zealand Black and
White F1 generation; PKC, protein kinase C; RAGE, receptor for advanced glycation end-products; SLE, systemic lupus
erythematosus; TLR, toll-like receptor, TGF-B1, transforming growth factor-B1; TNF-0., tumor necrosis factor-o; TRAPI,
TNF receptor-associated protein-1.

Frontiers in Immunology | www.frontiersin.org 1

September 2015 | Volume 6 | Article 475


http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00475
https://creativecommons.org/licenses/by/4.0/
mailto:ssyyung@hku.hk
http://dx.doi.org/10.3389/fimmu.2015.00475
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2015.00475&domain=pdf&date_stamp=2015-09-15
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00475/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00475/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00475/abstract
http://loop.frontiersin.org/people/258755/overview
http://loop.frontiersin.org/people/195987/overview
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
mailto:dtmchan@hku.hk

Yung and Chan

Anti-dsDNA antibodies, inflammation, and fibrosis

Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune
disease that affects multiple organ systems. It follows a relaps-
ing-remitting disease course, and the risk of flare varies between
individual patients. Clinical presentation can range from mild
to severe depending on the affected organ. Involvement of the
kidney, termed lupus nephritis, affects up to 60% of the SLE
population and is more prevalent in Asians, Hispanics, Native
Americans, and Blacks, especially in females of child-bearing age.
Lupus nephritis is characterized by a loss of self-tolerance, produc-
tion of auto-antibodies, such as those against nuclear antigens, and
immune-mediated injury to the kidney. If left untreated, destruc-
tion of the normal kidney parenchyma and their replacement with
fibrosis tissue will ensue. Clinical manifestations of active lupus
nephritis include proteinuria, active urinary sediment, and acute
renal injury.

Anti-dsDNA antibodies are specific to SLE and can be detected
in patients at least 2 years before diagnosis of clinical disease (1).
Serum anti-dsDNA antibody levels often reflect disease activ-
ity in lupus nephritis patients (2-5). Evidence that anti-dsDNA
antibodies play an important role in disease pathogenesis orig-
inates mainly from animal studies. Intra-peritoneal adminis-
tration of either human or murine anti-dsDNA antibodies to
non-autoimmune mice, or their inoculation with the transgene
that encodes the secreted form of an IgG anti-dsDNA antibody
can induce many features of lupus nephritis (6, 7). Anti-dsDNA
antibody production, their presence in immune complexes and
deposition in the kidney precedes immune cell infiltration and
development of proteinuria in NZBWF1 mice (8). Anti-dsDNA
antibodies have also been isolated from glomeruli of lupus nephri-
tis patients with active disease, and diverse histopathological pat-
terns observed in lupus patients is a result of their deposition in
distinct locations in the glomerulus (9).

Nephritogenic anti-dsDNA antibodies have been shown to reg-
ulate gene and protein expression of inflammatory and fibrotic
mediators in resident renal cells, thereby exerting a direct effect
on kidney inflammation and fibrosis (10). The precise mech-
anism through which anti-dsDNA antibodies are deposited in
the kidney parenchyma to exert their detrimental effect remains
to be fully defined, but the data to date suggest that they can
either bind directly to cross-reactive antigens on the surface of
resident renal cells or to components of the extracellular matrix,
or indirectly through nucleosomes that are bound to constituents
of the glomerular basement membrane.

This review discusses the pathogenic role of anti-dsDNA anti-
bodies in the development of lupus nephritis, with particular focus
on how they impact on inflammatory and fibrotic processes in res-
ident kidney cells. Mechanisms through which anti-dsDNA anti-
bodies are deposited in the kidney have been discussed elsewhere
(5, 11-14).

Detection of Anti-dsDNA Antibodies in SLE
Patients

Anti-dsDNA antibodies can be detected by a variety of tests,
such as the Farr radioimmunoassay (RIA), Crithidia luciliae

indirect immunofluorescence test (CLIFT), and enzyme-linked
immunosorbent assays (ELISAs). The Farr RIA and CLIFT are
well-established assays that provide both diagnostic and prognos-
tic values for SLE, whereas ELISAs are becoming more common
for the measurement of anti-dsDNA antibody levels in routine
clinical laboratories (15, 16).

The Farr RIA is a quantitative assay that measures the precipi-
tation of radiolabeled dsDNA/anti-dsDNA antibody complexes.
Since high salt conditions are used for precipitation, this assay
preferentially detects anti-dsDNA antibodies with high avidity to
dsDNA. The source of dsDNA must be carefully selected to ensure
it is double-stranded, monodisperse in size with a MW >10° but
smaller than 107 kDa to ensure reliable precipitation (17, 18).
Circular double-stranded bacteriophage DNA or plasmid DNA,
which can be easily iodinated after isolation are preferred (17).
This assay does not distinguish between anti-dsDNA antibody
Ig subclass. Disadvantages of this assay include the use of radi-
olabeled dsDNA, a labor-intensive methodology that cannot be
automated, and detection of other proteins or compounds capable
of precipitating dsDNA, thereby giving false positive results (16).

The CLIFT is a sensitive and relatively specific assay that detects
anti-dsDNA antibodies with moderate to high avidity to dsDNA.
It relies on indirect immunofluorescence to detect anti-dsDNA
antibody binding to circular dsDNA present in the kinetoplast
of Crithidia luciliae (19). It is noteworthy that occasional false
positive results have been reported, possible due to the puta-
tive presence of histones in the kinetoplast, or lipoprotein/IgG
complexes in the sample (15).

Enzyme-linked immunosorbent assays, whether “in-house” or
commercial, are easy to perform, relatively inexpensive, can be
automated and does not involve the use of radioisotopes. They
provide quantitative results that can be readily standardized using
dsDNA preparations from the World Health Organization (15).
When compared to the Farr RIA and CLIFT, ELISAs have high
sensitivity but less specificity as they do not distinguish between
antibodies with high and low avidity to dsDNA. Discrepancies of
results in independent studies have been reported and this may
be due to the source and heterogeneity of the coated dsDNA,
and MW and conformation of dsDNA used, the latter possibly
limiting anti-dsDNA antibody interaction. False positive results
may be observed if dsDNA is contaminated with single-stranded
DNA or proteins, or if dSDNA coating linkers are used since they
may permit binding of Ig that are not directed to dsDNA. The
use of biotinylated dsDNA and coating through streptavidin to
microtiter plates can reduce such errors. New ELISAs that have
been optimized for the detection of anti-dsDNA antibodies of
the IgG subclass with high avidity to dsDNA have been reported,
and give comparable results to those obtained with the Farr
RIA (20).

Anti-dsDNA antibodies can be detected in up to 80% of lupus
patients suggesting that the sensitivity of current assays may not
be optimal to detect low levels of anti-dsDNA antibodies, or that
anti-dsDNA antibodies may be present as immune complexes in
sera that prevent them from binding to dsDNA. When interpret-
ing anti-dsDNA antibody results, clinicians should be mindful
of the technique used, determine whether the assay can distin-
guish between high and low avidity anti-dsDNA antibodies, and
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note values observed in healthy controls and SLE patients with
each assay.

Origin of Pathogenic Anti-dsDNA
Antibodies

Anti single-stranded DNA antibodies and anti-dsDNA antibodies
constitute part of the normal repertoire of natural antibodies in
healthy subjects, and are predominantly of relatively low-affinity,
belong to the IgM subclass and react weakly with self-antigens
(5). In SLE patients, these naturally occurring antibodies may
undergo an IgM to IgG class switch or somatic mutations of the
Ig-V regions to generate pathogenic anti-dsDNA antibodies. Both
molecular processes are catalyzed by activation-induced deami-
nase (AID) in B cells within germinal centers. The importance of
AID in the generation of high affinity IgG anti-dsDNA antibodies
and subsequent development of lupus nephritis has been substan-
tiated by Jiang et al. who demonstrated that lupus-prone mice
deficient in AID lacked auto-reactive IgG anti-dsDNA antibodies,
but produced high levels of IgM anti-dsDNA antibodies that was
associated with a significant improvement in glomerulonephritis
and survival compared to wild-type mice (21, 22). Class switch and
somatic mutations is antigen driven and alters the specificity of B
cell receptors and antibodies that they secrete, which when cou-
pled with positive clonal selection for high antigen binding, results
in the generation of high affinity antibodies (5, 23, 24). Somatic
mutations where positive charged amino acids, such as arginine,
asparagine, and lysine residues, are inserted within the CDRs
of anti-dsDNA antibodies are critical for high affinity dsDNA
binding (23, 25). Anti-dsDNA antibodies of the IgE subclass have
also been implicated in the pathogenesis of lupus nephritis and are
associated with active disease and increased basophil activation
(26,27).

Clearance of apoptotic bodies is defective in SLE patients and
chromatin material, such as dsDNA, released from apoptotic cells
would be the most likely auto-antigen to drives B cell clonal
expansion. However, independent researchers have suggested that
molecular mimicry may be the basis for immunological cross-
reactivity (28).

Anti-dsDNA Antibodies and Disease
Pathogenicity

Lupus nephritis is initiated by the deposition of anti-dsDNA
antibody-containing immune complexes in the kidney
parenchyma. Notably, immune complex deposition alone is
not sufficient to induce renal injury but must be accompanied
by classical complement activation, infiltration of immune cells,
release of chemokines, cytokines, and proteolytic enzymes, and
oxidative damage, which together induce kidney inflammation
and subsequent organ damage. Activation of the classical
complement pathway is initiated by Clq following its binding
to Ig in immune complexes. This results in a conformational
change in its structure that renders it immunological. Defective
clearance mechanisms results in the accumulation of Clq and
predisposes SLE patients to anti-Clq antibody production (29).
Genetic deficiency of Clq is rare and is associated with SLE

susceptibility (30). Recent studies have shown that anti-dsDNA
antibodies can cross-react with Clq (31).

Although anti-dsDNA antibody levels often correlate with dis-
ease activity, some patients can have positive or even high levels
of anti-dsDNA antibodies during apparent clinical quiescence,
which could indicate that not all anti-dsDNA antibodies that are
detected by current assay methods are pathogenic. Factors that
endow anti-dsDNA antibodies with their pathogenic potential
include immunoglobulin subclasses of IgGl and IgG3, ability
to activate complement and engage Fc receptors, their charge,
antigen avidity, and poly-reactivity (2, 5, 9, 32-34). For example,
site-mutagenesis studies showed that substitution of aspartic acid
with glycine within the heavy chain complementarity determining
region of R4A, a pathogenic murine monoclonal anti-dsDNA
antibody that binds to glomeruli, resulted in a loss of dsDNA
binding (35). By contrast, substitution of three amino acids in R4A
resulted in their deposition in renal tubules instead of glomeruli,
and when this antibody was administered to SCID mice it resulted
in severe proteinuria (35). It was also reported that the degree
of pathogenicity of anti-dsDNA antibodies did not necessarily
correlate with their affinity for dSDNA (35). These observations,
together with the finding that immunization of non-autoimmune
mice with mammalian DNA failed to induce nephritogenic anti-
dsDNA antibody production or clinical disease manifestations
would suggest that auto-reactivity to native DNA per se may not
be an important property of pathogenic anti-dsDNA antibodies.
In this context, there are data to suggest that their pathogenic
nature is associated with their poly-reactivity and ability to bind
directly to non-DNA cross-reactive kidney antigens (36, 37). It has
been reported that antibodies directed against dsDNA and related
nuclear components accounted for <10% of the total IgG eluted
from kidneys from lupus nephritis patients (38).

Binding of Anti-dsDNA Antibodies to
Non-DNA Cross-Reactive Antigens in
Renal Cells

Binding of anti-dsDNA antibodies to cross-reactive antigens in
isolated rat kidneys was first reported by Raz et al. (39), who
demonstrated that infusion of either murine monoclonal or
human polyclonal anti-dsDNA antibodies alone, but not calf-
thymus DNA/anti-dsDNA antibody complexes, bound to com-
ponents in the glomerulus and renal interstitial blood vessels,
and was accompanied by increased albumin excretion. However,
the conclusion that anti-dsDNA antibodies could bind directly to
cross-reactive antigens present in the kidney was subject to debate
since the amount of DNA or chromatin material if any, in the anti-
dsDNA antibody preparations or within the isolated kidney was
not determined (39).

Many studies have focused on the interaction of anti-dsDNA
antibodies with resident glomerular cells, namely mesangial and
endothelial cells, and to a lesser extent on podocytes (3, 40-43). All
three cell types show tri-directional communication, and thus it is
not surprising that injury to one cell type will have an impact on
the other cell types. The amount and location of immune deposits
in the glomerulus correlate with the histopathology and severity
of nephritis (9, 32). Proliferative lupus nephritis is associated
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with immune deposition in the mesangium and subendothelial
space, whereas deposition in the subepithelial space results in
membranous lesions.

In order for anti-dsDNA antibodies to mediate their detrimen-
tal effect on the kidney parenchyma, anti-dsDNA antibodies must
first bind to the cell surface of resident renal cells. We and oth-
ers have shown that anti-dsDNA antibodies can bind directly to
annexin II, o-actinin, and ribosomal P protein in mesangial cells
and trigger downstream inflammatory, apoptotic, and fibrogenic
processes (28, 37,44, 45). While anti-dsDNA antibodies have been
reported to bind directly to myosin 1 and calreticulin in hepatoma
cells, lymphocytes, and Chinese hamster ovary cells (46, 47),
similar interactions have not been shown in resident renal cells.
The mechanisms through which anti-dsDNA antibodies bind to
glomerular endothelial cells and podocytes have yet to be fully
characterized.

Annexin Il
Annexin II is a calcium dependent, phospholipid binding protein
than can exit as a monomer, dimer, or heterotetramer in many
organs, including the kidney. It is present within the cytosol of
cells and translocates to the plasma membrane when the cell
is activated by cytokines or growth factors. Annexin II on the
surface of endothelial cells has been shown to interact with 32-
glycoprotein I and toll-like receptor 4 to mediate cell activation,
tissue inflammation, and thrombosis (48-51). Annexin IT is also a
ligand for C1lq, a member of the classical complement pathway
that can opsonize apoptotic cells to facilitate their phagocytic
clearance (52). Defective clearance of apoptotic bodies in lupus
patients is well-established, and auto-antibodies targeting annexin
1T have been identified in patients with proliferative lupus nephri-
tis (37, 53) as well as in patients with rheumatoid arthritis (54).
Anti-dsDNA antibodies isolated from biopsy-proven patients
with diffuse proliferative lupus nephritis can bind to annexin II on
the surface of mesangial cells (37). Following their binding, anti-
dsDNA antibodies are rapidly internalized and translocate to the
cytosol and/or cell nucleus in a time- and temperature-dependent
manner. The pathogenic nature of this interaction is highlighted
by the induction of PKC activation, secretion of pro-inflammatory
cytokines and hyaluronan, and matrix protein deposition (37, 55,
56). Anti-dsDNA antibodies have been reported to be able to pen-
etrate other living cells, such as human mononuclear cells and rat
H35 hepatoma cells, and the active energy-requiring internaliza-
tion process was dependent on the F(ab) region (46, 57). However,
Fc-receptor-mediated internalization of anti-dsDNA antibodies
cannot be ruled out (58). Yanase et al. demonstrated that a pro-
portion of anti-dsDNA antibodies can be recycled back to the cell
surface of rat H35 hepatoma cells, and postulated that should anti-
dsDNA antibodies be altered during the recycling process, they
may also become immunogenic which could further exacerbate
disease progression (59). Whether a similar mechanism occurs
in mesangial cells has not been investigated. It is noteworthy
that the process of antibody internalization by cells is not spe-
cific to anti-dsDNA antibodies since this process has also been
observed with ribonucleoprotein, ribosomal P protein, La and Ro
antibodies in non-lymphoid cells (60-62). The observation that
intra-glomerular annexin II expression is increased in patients
and mice with active nephritis and co-localizes with IgG and C3

deposition suggests that it may be involved in disease pathogenesis
(37). Our data showed that human anti-dsDNA antibodies could
induce annexin II synthesis in mesangial cells, indicating a poten-
tial amplification mechanism of immune-mediated inflammation
and fibrogenesis (37). A recent report by Seret et al. showed that
auto-antibodies from lupus nephritis patients targeted o-actinin
and to a lesser extent laminin on the surface of kidney cells (63).
That these investigators did not identify annexin II could be
related to different experimental methodology and the fact that
human embryonic kidney cells used in these studies have low
constitutive annexin II expression (64).

Alpha-Actinin

Alpha-actinin (o-actinin) is an ubiquitous F-actin binding pro-
tein that is present in cell-cell and cell-matrix contact sites, areas
of dense stress fibers and lamellipodia, which plays important
roles in determining cell shape and migration (65). Nephritogenic
anti-dsDNA antibodies derived from lupus-prone mice have been
reported to cross-react with ot-actinin, and high titers of anti-o-
actinin antibodies have been detected in the serum and kidney
eluates of lupus-prone mice (44). Mesangial cells of lupus-prone
mice synthesize more ot-actinin that cells from BALB/c mice (66).
Immunization of non-autoimmune mice with o-actinin-induced
anti-chromatin antibody production, glomerular Ig deposition,
and proteinuria (67). These experimental data strongly suggest
that ot-actinin is involved in disease pathogenesis. In the clini-
cal setting, anti-dsDNA antibodies isolated from lupus nephritis
patients with active disease, but not patients with non-renal lupus,
has been shown to cross-react with o-actinin (68). The association
between serum immunoglobulin binding to ot-actinin and disease
activity in lupus nephritis patients remains controversial (36, 63,
69, 70). Adding further confusion were the findings that anti-
dsDNA antibodies could bind to glomerular structures that con-
tained extracellular nucleosomes instead of ot-actinin in kidneys
of NZBWF1 mice (71), and that ot-actinin could not be detected
in kidney eluates from nephritic lupus-prone mice (72). These
discrepancies may be related to the stage and type of disease when
the investigations were performed.

Although not the focus of this review, anti-dsDNA antibodies
have also been shown to bind to components of the glomerular
basement membrane through nucleosomes released from apop-
totic cells. This interaction has been reviewed elsewhere (73, 74).

Downstream Pathogenic Effects of
Anti-dsDNA Antibodies Following their
Binding to Resident Glomerular Cells

How anti-dsDNA antibodies contribute to kidney injury remains
to be fully elucidated. Early studies showed that nephritogenic
murine anti-dsDNA antibodies could interact directly with dis-
tinct glomerular and vascular cell surface antigens to induce
mesangial expansion and proteinuria (75). Although there is
evidence to show direct binding of anti-dsDNA antibodies to
cross-reactive antigens in the glomerulus, it is important to note
that anti-dsDNA antibody-secreting hybridomas may contain
DNA and/or nucleosomes that are released into the supernatant
during culture, and without prior DNase treatment these may
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not be removed from antibody preparations used in experiments
(76). More recently, it was reported that anti-dsDNA antibod-
ies that bound directly to basement membrane antigens showed
glomerular and mesangial deposition that was not dependent on
chromatin material and could activate complement and induce
proteinuria in non-autoimmune mice (77).

Cell Proliferation, Apoptosis, and DNase
I Synthesis
Interaction of nephritogenic human polyclonal anti-dsDNA anti-
bodies with cultured human or rat mesangial cells induced cell
proliferation, apoptosis, PKC activation, secretion of IL-6, IL-1j,
TNF-o, TGF-B1, and hyaluronan, and fibronectin synthesis (37,
55, 56, 78, 79), suggesting that anti-dsDNA antibodies may con-
tribute to mesangial expansion, hypercellularity, increased apop-
tosis, inflammation, and fibrogenesis observed in lupus nephritis.
By contrast, using murine anti-dsDNA antibodies Zhang et al.
observed no effect on murine mesangial cell proliferation (80).
Lupus is associated with defective clearance of apoptotic cells
(81, 82). Also, anti-dsDNA antibodies have been shown to induce
apoptosis in rat mesangial cells independent of changes to p53 Fas
or c-myc gene expression (79). Several lines of evidence suggest
that defective DNase I function may be involved in disease patho-
genesis. Madaio et al. reported that murine anti-dsDNA antibod-
ies could bind DNase I and inhibit its enzymatic activity in HL60
promyelocytic cells (83). Reports from Rekvig’s group showed that
renal DNase I synthesis was suppressed by the increased intra-
glomerular expression of TNF receptor-associated protein-1 in
lupus-prone mice, which in turn inhibited chromatin degradation
and the retention of chromatin material was associated with acti-
vation of TLR-9 and the adaptive immune system (84-86). DNase
I null mice showed features present in human lupus nephritis, such
as the production of auto-antibodies to chromatin, glomerular
immune complex deposition, and glomerulonephritis (87). Serum
DNase L activity has been reported to be decreased in patients with
SLE compared to healthy individuals (87, 88).

Glomerular Inflammation

Renal inflammation and fibrosis is associated with the activation
of NFkP, MAPK, and PKC signaling pathways and induction
of chemokine, cytokine, and growth factor secretion by both
infiltrating and resident renal cells. Chemokine production in the
glomerulus is an early event during experimental lupus nephritis
and precedes cellular infiltration, proteinuria, and kidney damage
(89). MCP-1 is one of the most studied chemokines in human and
experimental lupus nephritis (90, 91). Anti-dsDNA antibodies
can induce MCP-1 secretion in cultured mesangial cells through
PKC activation and increased IL-1PB secretion (92, 93). Recent
studies also showed that stimulation of mesangial cells with nucle-
osomes could also induce MCP-1 secretion (94). Also, intra-renal
expression of MCP-1 increased with disease progression in lupus
mice, while MCP-1-deficient mice showed reduced inflammatory
cell infiltration and proteinuria, improved kidney histology, and
prolonged survival (91). Although the chemotactic properties of
MCP-1 are well-established, cDNA microarray analysis of micro-
dissected glomeruli from lupus nephritis patients showed that
MCP-1 transcript was highly expressed in fibrosis-related gene

clusters, suggesting that MCP-1 may also play an important role
in the development of glomerulosclerosis (95).

Anti-dsDNA antibodies can induce IL-1f, IL-6, and TNF-o
secretion in cultured mesangial and endothelial cells (37, 43, 55).
IL-1B can initiate and propagate both immune and inflammatory
responses in SLE through induction of itself and downstream pro-
inflammatory cytokines, chemokines, hyaluronan, and adhesion
molecules (55, 96-98). Although IL-1J is predominantly secreted
by infiltrating macrophages, it is also locally synthesized in the
kidney of lupus-prone mice and its level correlates with the sever-
ity of nephritis (97). Data from IL-1f deficient BALB/c mice
demonstrated the importance of IL-1B in anti-dsDNA antibody-
induced pro-inflammatory response, and IL-1B deficiency was
associated with less immune complex deposition in the kidney
and less proteinuria compared to wild-type mice (99). Corre-
lation between serum IL-1f level and disease activity in SLE
patients (100) further highlights the importance of IL-1f in the
pathogenesis of lupus nephritis.

IL-6 is a pleotropic cytokine secreted by lymphoid and non-
lymphoid cells, including resident renal cells (37, 101-106). It is
a multi-functional cytokine that possesses both pro- and anti-
inflammatory properties. IL-6 is critical for the differentiation
and maturation of B cells and mesangial cell proliferation. In
lupus nephritis, IL-6 deposition is localized to mesangial cells
and podocytes and is also present alongside immune deposits in
the glomerulus. Although the mechanisms through which IL-6
secretion is induced in resident renal cells has yet to be fully elu-
cidated, we have demonstrated that binding of anti-dsDNA anti-
bodies to annexin II in mesangial cells can induce IL-6 secretion
(37). Furthermore, bidirectional communication exists between
mesangial cells and human proximal renal tubular epithelial cells
(PTEC) and inflammatory responses occurring in either kidney
compartment induced by anti-dsDNA antibodies can provoke a
response in the other compartment (104).

Similar to IL-6, TNF-o. possesses both pro- and anti-
inflammatory properties. In its capacity as a pro-inflammatory
cytokine, TNF-o plays an important role in inflammatory pro-
cesses that potentially lead to tissue damage (107). Failure to
regulate TNF-ou synthesis at sites of immunological injury leads
to chronic activation of innate immune cells and chronic inflam-
matory responses (108). Serum TNF-c. level and bioactivity are
increased in SLE patients during flare. In the kidney, TNF-o
is synthesized locally by resident renal cells and by infiltrating
immune cells, and it acts synergistically with IL-1f to exacerbate
intra-renal inflammatory processes. In lupus-prone mice, TNF-o.
is detected in glomeruli, vascular smooth muscle cells, perivascu-
lar infiltrating cells and tubular epithelial cells, and the circulating
level and intra-renal expression of TNF-ou correlate with pro-
teinuria and disease activity in animal and clinical studies (109-
111). Fe-receptor cross-linking on human peripheral blood mono-
cytes induces TNF-ou synthesis (112), suggesting a link between
immune complex deposition and TNF-o synthesis. In addition
to its role in tissue inflammation, there is evidence that TNF-
o can down-regulate the adaptive immune response (108). In
NZBWFI mice, TNF-o plays a potentially protective role during
the early stage of lupus nephritis since treatment with recombinant
TNF-a. appeared to delay the development of nephritis (113).
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Consistent with these findings, depletion of TNF-o. accelerated
the development of lupus nephritis, thus highlighting a potentially
important role of TNF-o in suppressing systemic autoimmunity
(114). However, in NZBWF1 mice with established nephritis,
TNEF-o replacement showed no beneficial effect and could even
accelerate disease progression. The data suggest a biphasic role of
TNEF-o at different stages of disease. Possible roles of TNF-ot in the
pathogenesis of lupus nephritis have been reviewed (107, 115).

Using complementary DNA microarray gene profiling, Qing
et al. demonstrated that incubation of mesangial cells derived
from MRL/Ipr mice with anti-dsDNA antibodies induced the pro-
inflammatory genes CXCL1/KC, CX3CL1 (fractalkine), inducible
nitric oxide synthase, and lipocalin 2, which are involved in
neutrophil trafficking, production of nitric oxide, and transport
of small lipophilic molecules (10). The induction of these pro-
inflammatory mediators was facilitated in part through the bind-
ing of high-mobility group box 1 protein and engagement of TLR2
and RAGE (116).

Mesangial Fibrogenesis

If not adequately controlled, persistent inflammation induces
fibrosis, a process that begins as normal wound healing response
aiming to maintain or restore the normal structural and functional
integrity of the kidney. Unabated inflammation causes dysregula-
tion of the reparative processes resulting in activation of mesangial
cells, endothelial-to-mesenchymal transition, infiltration of cellu-
lar mediators and increased secretion of fibrogenic chemokines,
cytokines and growth factors, resulting in the over-expression and
deposition of matrix proteins (117). The control of inflammation
is essential to inhibit or retard progressive kidney fibrosis. In
immune-mediated kidney diseases, accumulation of extracellular
matrix proteins in the glomerulus results in the development
of glomerulosclerosis. Although tubulointerstitial changes better
predict long-term renal prognosis (118), Vleming et al. reported
that the extent of intra-glomerular fibronectin staining correlated
with structural abnormalities in the glomerulus and severity of
renal insufficiency (119).

Fibronectin is a large glycoprotein that is essential for renal
homeostasis and resident renal cell proliferation, adhesion,
migration, differentiation, and survival. In the normal kidney,
fibronectin expression is limited to the Bowman’s capsule, mesan-
gial matrix, and glomerular basement membrane where it inter-
acts with other matrix proteins to maintain the structural integrity
of the glomerular capillary. We and others have demonstrated
that intra-glomerular fibronectin expression is increased in
patients and mice with active lupus nephritis (56, 120, 121), and
its co-localization with IgG deposition suggests an association
between auto-antibody deposition and matrix protein accumu-
lation (56). The underlying mechanism that initiates increased
intra-glomerular fibronectin synthesis in lupus nephritis remains
to be fully elucidated. We have shown that anti-dsDNA antibodies
induced rapid and sustained phosphorylation of PKC-o., PKC-
BI, and PKC-BII in cultured mesangial cells, which resulted in
increased TGF-P1 bio-activation and subsequent fibronectin syn-
thesis and deposition in the extracellular milieu (56). In line with
our findings, Zhang et al. also reported that anti-dsDNA antibod-
ies could induce mediators of fibrosis in mesangial cells (80). The
role of TGF-B1 in kidney fibrosis is well-established (122, 123).

The importance of PKC- in the development of lupus nephritis
has been highlighted by Oleksyn et al., who demonstrated that
PKC-B deficiency abrogated auto-antibody production, protein-
uria, and histological features of kidney disease in lupus-prone
mice (124).

Binding of Anti-dsDNA Antibodies to
Proximal Renal Tubular Epithelial Cells and
their Induction of Inflammatory and
Fibrotic Processes

Although lupus nephritis is likely to be initiated in the glomeru-
lus, injury is rarely contained in this compartment and often
extends into the tubulo-interstitium. The degree of tubular injury
and interstitial fibrosis rather than glomerulosclerosis correlates
with progression of renal insufficiency (118). We and others have
reported that immune deposits along the tubular basement mem-
brane occurred in up to 70% of patients with diffuse proliferative
lupus nephritis. The amount of immune complexes deposited
in the tubulointerstitium correlates with circulating anti-dsDNA
antibodies, tubulointerstitial inflammatory cell infiltration, IL-6
expression, tubular atrophy, and interstitial fibrosis (104). While
tubulointerstitial injury heralds poor long-term kidney prognosis
in lupus nephritis patients, the mechanisms leading to tubuloin-
terstitial damage is poorly understood. Anti-dsDNA antibodies
can induce epithelial-to-mesenchymal transition (EMT) in cul-
tured PTEC, a process that precedes kidney fibrosis and is char-
acterized by a loss of epithelial markers and replacement of their
cobblestone, epithelial morphology by an elongated, fibroblastic
appearance, with concomitant de novo synthesis of mesenchy-
mal markers, such as o.-smooth muscle actin, 3-catenin, SNAIL,
fibronectin, and collagen I. EMT markers are increased in renal
biopsies from lupus nephritis patients and their expression is asso-
ciated with renal impairment, interstitial leukocyte infiltration,
and tubulointerstitial fibrosis (125, 126).

Anti-dsDNA antibodies can also induce cell-associated and
soluble fibronectin synthesis in PTEC through activation of ERK,
JNK, p38, PKC-a, and PKC-BII, and subsequent induction of
TGF-B1, IL-6, IL-8, MCP-1, and TNF-o secretion (127). It is
noteworthy that human anti-dsDNA antibodies can induce secre-
tion of pro-inflammatory cytokines in PTEC, suggesting that
even during apparent clinical quiescence, ongoing subclinical
inflammation may occur in the kidney. Consistent with our
findings, Ronda et al. demonstrated that serum IgG from SLE
patients-induced IL-6 secretion in PTEC through ERK activation
(128). The ability of anti-dsDNA antibodies to increase both
cell-associated and soluble fibronectin suggests that these auto-
antibodies can induce tubulointerstitial fibrosis through two dis-
tinct mechanisms. While cell-associated fibronectin will deposit
in the extracellular matrix and contribute to matrix protein
accumulation, soluble fibronectin may amplify fibrotic processes
through increased TGF-P1 secretion and induction of collagen
I synthesis (127). The observation that the aforementioned pro-
inflammatory cytokines can also induce fibronectin synthesis
(127) suggests that these peptides not only contribute to kidney
inflammation but also to tubulointerstitial fibrosis (127). It is thus
possible that these chemokines and cytokines act synergistically
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with each other or with fibrotic growth factors to facilitate the
recruitment of myofibroblasts and other effector cells to sites of
injury with mutual signaling pathways involved in both kidney
inflammation and fibrosis during lupus nephritis.

How anti-dsDNA antibodies bind to PTEC is currently
unknown although our preliminary studies suggest that it is pos-
sibly through cross-reactive antigens. Monoclonal murine anti-
dsDNA antibodies have been shown to bind PK15 cells, a porcine
proximal tubular epithelial cell line, through A and D SnRNP
proteins, which mediate their internalization and compartmental-
ization either in the cytosol or nucleus resulting in modest cell lysis
(129). Another sub-set of murine anti-dsDNA antibodies bind
PK15 cells, are not internalized and induce significant cell lysis,
especially in the presence of complement (129). Whether these
observations are relevant to human PTEC remains to be studied,
but with regard to cytotoxicity, human polyclonal anti-dsDNA
antibodies can induce cell detachment and decrease human PTEC
viability, thereby confirming their pathogenic nature (104).

Effects of Mycophenolic Acid and
Cyclophosphamide on Inflammatory and
Fibrotic Processes Induced by Anti-dsDNA
Antibodies

Prevention of fibrosis and preservation of normal kidney histology
are essential to ensure long-term renal and patient survival (130).

Standard treatment for active lupus nephritis entails the use of cor-
ticosteroids combined with an immunosuppressive agent, such as
mycophenolate mofetil (MMF) or cyclophosphamide. Although
MMF and cyclophosphamide show comparable treatment effi-
cacy, MMF is associated with less side effects (131). Mycophenolic
acid (MPA), the active metabolite of MME, exerts its therapeutic
effect through inhibition of lymphocyte proliferation, especially
those that are activated (132). We and others have demonstrated
that MPA can exert anti-proliferative, anti-inflammatory, and
anti-fibrotic effects on non-immune cells that are independent of
its immunosuppressive actions (56, 103, 121, 127, 133-135). At
clinically relevant doses, MPA significantly reduced anti-dsDNA
antibody-induced cell proliferation and fibrogenic processes
through the inhibition of PKC activation in human mesangial cells
(56). Similarly, MPA inhibited anti-dsDNA antibody-mediated
activation of the MAPK and PKC signaling pathways in PTEC,
with a concomitant decrease in synthesis of cell-associated and
soluble fibronectin, and secretion of TGF-B1, IL-6, IL-8, and TNF-
o (127). When compared to cyclophosphamide, MPA was more
effective in suppressing anti-dsDNA antibody-induced PKC-o
activation, TGF-B1 secretion and fibronectin production (121).
Furthermore, MPA and cyclophosphamide could both decrease
TGF-B1 and TNF-o-induced fibronectin synthesis in human
mesangial cells, whereas IL-6-induced fibronectin was suppressed
only by MPA (121). In experimental studies, MMF together with
methylprednisolone was more effective than cyclophosphamide
and methylprednisolone in suppressing glomerulosclerosis in

I Nephritogenic anti-dsDNA antibodies I

Binding to resident renal cells

| l

l l

Cell proliferation and
viability

T Cell proliferation

T Cell detachment

Apoptosis

T TRAP1 expression
1 TLR-9 activation

| DNase | activity

Inflammation

1 MAPK phosphorylation

1 Chemokines (MCP-1,
CXCL1/KC and CX3CL1)

I Cell viability 1 Apoptosis T Cytokines (IL-18, IL-6, IL-8, activation
{ Clearance of apoptotic and TNF-a) T TGF-p1, IL-6, IL-8, TNF-o. and
bodies 1 iNOS MCP-1 secretion
T 2 Neo-antigens 1 TLR-2 and TLR-4 activation T Cell-associated and soluble
T HMGB1 fibronectin synthesis

1 Adhesion molecules

Fibrogenesis

T MAPK and PKC phosphorylation

T Epithelial-to-mesenchymal
transition and myofibroblast

T Collagen | synthesis

y

v

* GLOMERULAR AND TUBULO-INTERSTITIAL
INFLAMMATION (infiltration of immune cells)

* GLOMERULOSCLEROSIS
» TUBULO-INTERSTITIAL FIBROSIS

}

PROGRESSIVE RENAL DAMAGE

FIGURE 1 | Pathogenic changes in the kidney following anti-dsDNA antibody binding to resident renal cells. Binding of pathogenic anti-dsDNA antibodies
to resident glomerular and tubulointerstitial renal cells contributes to cell proliferation, and inflammatory, apoptotic and fibrogenic processes. If not adequately
controlled, destruction of the normal kidney parenchyma and their replacement with fibrosis tissue will follow leading to end-stage renal disease.
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lupus-prone mice (121). The overall results suggest that anti-
dsDNA antibodies contribute to matrix deposition and glomeru-
losclerosis, and that MPA treatment is associated with more
anti-fibrotic effect when compared with cyclophosphamide,
thereby may be more beneficial in preventing progression to
chronic kidney failure.

Conclusion

Lupus nephritis is characterized by glomerular and tubulointer-
stitial inflammation, which could lead to progressive glomeru-
losclerosis and tubulointerstitial fibrosis if not interrupted. How
anti-dsDNA antibodies bind to resident renal cells and compo-
nents of the glomerular basement membrane to trigger down-
stream kidney inflammation and fibrosis is a topic of much
interest and debate, and it is likely that we have only uncovered
the tip of the iceberg. Many chemokines, cytokines, and growth
factors have multi-faceted roles during lupus nephritis, which
could complicate how we perceive the role of each molecule.
Inflammatory and fibrotic processes are often intercalated and
bidirectional signaling between different compartments of the
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