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One of the major goals in immunology research is to understand the regulatory mechanisms 
that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) 
T-cell responses. Understanding the molecular mechanisms underlying the regulation of such 
responses is critical for the development of effective therapies. T-cell activation involves the 
engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of 
serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) 
is instrumental for the formation of signaling complexes, which ultimately lead to a transcrip-
tional network in T cells. Recent studies demonstrated that major differences between Teffs 
and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. 
These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ 
inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and 
Tregs has been shown to be central in several diseases, it was not surprising that some 
studies revealed that PKC-θ plays a major role in the regulation of this balance. This review 
will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and 
how this protein can impact on the function of both Tregs and Teffs.
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iNTRODUCTiON

Current global health challenges demand not only more effective and safer therapies to dampen 
undesired immune responses as in autoimmune diseases, inflammation, and transplant rejection, 
but also aim at boosting desired responses such as in cancer and infections. Hence, a major goal of 
immunology research has been to understand the regulatory mechanisms that underpin the rapid 
switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Thus, 
understanding the molecular mechanisms underlying the regulation of such responses is critical for 
the development of effective therapies.

Strong T-cell activation involves the engagement of T-cell receptor (TCR) and co-stimulatory 
signals. Subsequent recruitment of the serine/threonine-specific protein Kinase C-theta (PKC-θ) to 
the immunological synapse (IS) is instrumental for the formation of CARMA/BCL10/MALT (CBM) 
signaling complex in the cytoplasm (1–4). PKC-θ is the first PKC family member described to be 
recruited to the IS (5) and it plays an integral role in activating a range of signaling cascades that 
ultimately results in a transcriptional network in T cells. More recently, PKC-η was also described in 
immune synapse (6, 7) as well as PKC-ϵ (8).

Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS 
where its formation induces altered signaling pathways in Tregs, which are characterized by reduced 
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recruitment of PKC-θ (9), suggesting that PKC-θ inhibits Tregs 
suppressive function in a negative feedback loop.

Expression level and stability of the transcription factor Foxp3 
(forkhead box P3) are known to be critical for the development and 
function of bona fide Tregs. However, recent comprehensive analy-
ses such as genome-wide and proteomics analysis revealed possible 
involvement of other molecular mechanisms in the development 
of Tregs. Fu and colleagues reported that combinations of Foxp3 
with other transcription factors are able to induce a common Treg-
type gene expression pattern, which cannot be achieved solely by 
Foxp3 (10). Molecules such as Smad3, NFAT, and AP-1 have been 
identified to initiate and/or enhance Foxp3 transcription. While 
some gene expression in Tregs is directly modulated by the binding 
of Foxp3 to their promoters or enhancers, other gene expression 
requires interaction of Foxp3 with other transcription factors. It 
remains to determine whether PKC-θ can directly modulate Foxp3 
transcription to then inhibit Tregs suppressive activity or requires 
implication of other transcription factors.

Signaling kinases have emerged as a new class of chromatin-
associated enzymes that act as an intermediary between 
cytoplasmic and chromatin modifications. This is exemplified 
by Hog1 in yeast or the human homolog, p38α, which activates 
target gene expression during mitotic stress by interacting with 
ATP-dependent chromatin remodelers and other kinases, e.g., 
MSK1/2 to phosphorylate H3 Ser10 and 28 (11). Due to their 
nuclear-localizing signal (NLS) (12), PKC family members rep-
resent a novel class of chromatin-associated kinases that alternate 
between the cytoplasm and nucleus (13–16). Their role in T-cell 
transcriptional responses needs to be unequivocally proven. 
Therefore, further investigations are needed.

PKC-θ AND T-CeLL ReSPONSeS

PKC-θ Structure and Function
PKC includes a large family of homologous serine/threonine pro-
tein kinases that is widely conserved in eukaryotes. In mammals, 
there are 12 isoforms that are identified and subdivided into three 
groups based on their divergent regulatory domains and their 
second messenger requirements for activation: the conventional 
PKCs (cPKCs: α, βI, βII, and γ); novel PKCs (nPKCs: δ, ϵ, η, and 
θ); and atypical PKCs (aPKCs: ι/λ) and ζ) (17).

Similar to other PKC isoforms, the basic structure of PKC-θ is 
composed of an N-terminal regulatory domain and a highly homol-
ogous conserved C-terminal kinase domain, which is tethered by 
unique V3 hinge region. Recently, the polyproline motif in the V3 
hinge region has shown an essential role for PKC-θ translocation 
into the IS (18). The regulatory region of PKC-θ contains N-terminal 
C2-like domain which is Ca2+ irresponsive, followed by two tan-
dem cysteine-rich zinc finger C1 domains (C1a and C1b) that are 
responsible for the binding to the second messenger diacylglycerol 
(DAG) or phorbol ester (such as phorbol-12-myristate-13-acetate, 
PMA) (Figure 1). Due to the structural difference of C2 domain, 
PKC-θ is activated by DAG/PMA but in Ca2+ independent manner, 
compared to cPKCs that require both DAG/PMA and Ca2+ (19).

The intrinsic PKC-θ kinase activity is regulated through 
an allosteric mechanism, which leads to the change in PKC-θ 

conformation between “closed/inactive” and “open/active” state 
(20, 21). Upon the initial receptor stimulation, PKC-θ is recruited 
to plasma membrane via membrane-resident DAG binding to its 
C1 domain. This triggers the conformational change of PKC-θ 
from “close” to “open” state, which allows its activation loop in the 
kinase domain to be accessible for the phosphorylation by ger-
minal center kinase-like kinase (GLK, also known as MAP4K3) 
(22). There are several phosphorylation sites that have been iden-
tified in PKC-θ. These sites play distinct roles in its kinase activity 
and membrane translocation. Amongst them, Thr-538 in the 
activation loop, which is critical for kinase activation (23). Other 
phosphorylation sites include Ser-676 (in turn motif of kinase 
domain), Ser-695 (in hydrophobic motif of kinase domain), and 
PKC-θ unique sites (Tyr-90 in C2-like domain and Thr-219 in C1 
domain) (24) (Figure 1). Upon phosphorylation, pseudosubstrate 
is unlocked from kinase domain, allowing subsequent catalytic 
activation of PKC-θ and its downstream signaling functions 
required for T-cell survival, proliferation, and homeostasis (25). 
However, the direct kinases and/or specific regulator for these 
phosphorylation sites on PKC-θ are still poorly understood.

PKC-θ and T-Cell Responses: importance 
of immune Synapse Formation
Despite the fact that different PKC isoforms, including PKC-α, 
δ, ϵ, η, θ, and ζ are expressed at various levels in T cells (26, 27), 
PKC-θ is the most studied protein kinase. Its presence in the IS 
following antigen stimulation of T cells is well determined (28). 
However, besides PKC-θ, PKC-η, and PKC-ϵ are both present in 
IS (6–8). The role of PKC-η is getting more attention in the recent 
years as reviewed recently elsewhere (29).

A digital three-dimensional imaging analysis during T cell 
and antigen-presenting cells (APCs) interactions revealed a bull’s 
eye structure of the IS. Three distinct subregions were identified: 
central supramolecular activation cluster (cSMAC), peripheral 
SMAC (pSMAC), and distal SMAC (dSMAC) (30, 31). An 
intermediate ring of pSMAC surrounds the central core cSMAC, 
which is enriched with cognate integrin lymphocyte function-
associated antigen 1 (LFA-1, also known as α4β7 integrin) and 
intercellular adhesion molecule 1 (ICAM-1) (32).

The initial signaling from TCR/CD28 stimulation was found 
to induce the DAG accumulation on plasma membrane, which 
recruits PKC-θ to the IS by binding to its C1 domains (24). However, 
DAG–C1 domain interaction itself does not seem sufficient for the 
selective translocation of PKC-θ to the cSMAC. Other coeffector 
engagement is required for the selective PKC-θ recruitment to 
cSMAC (Figure  2). Particularly, Lck tyrosine kinase plays an 
essential dual role in regulating CD28–PKC-θ complex formation 
and PKC-θ conformational change in this IS translocation. First, 
Lck serves as a linker/adaptor in CD28–PKC-θ complex. Also, 
Src-homology (SH)2 or SH3 domains in Lck is associated with a 
phosphotyrosine (pTyr)-containing C-terminal proline (Pro)-
rich motif (Pro–pTyr188–Ala–Pro) in mature CD28 (1, 33). More 
recently, Kong et al. have also shown that Pro-rich motif within the 
V3 domain binds to the SH3 domain of Lck (18). Therefore, the 
most likely binding model was suggested as a PKC-θ/Lck/CD28 
trimolecular signaling complex, in which the SH2 domain of Lck 
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interacts with phosphorylated Tyr-188 of the CD28 cytoplasmic 
tail and the SH3 domain of Lck binds to Pro-rich motif in the V3 
domain of PKC-θ (32). Moreover, when PKC-θ V3 pro-rich motif 
is mutated, it disrupts the CD28–PKC-θ complex formation and 
impairs PKC-θ-mediated downstream T-cell activation and differ-
entiation in Th2 and Th17 cells (18). In addition, Lck has also shown 
the ability of directly phosphorylating PKC-θ at Tyr-90 in its C2-like 
domain both in vitro and in vivo (1). However, there is no direct 
evidence to show that Tyr-90 phosphorylation participates in PKC-
θ membrane translocation, and it still remains unclear how Tyr-90 
phosphorylation regulates the PKC-θ conformational alteration and 
kinase activation. Along with DAG binding and Tyr-90 phospho-
rylation initiated active conformation of PKC-θ, Thr-538 is directly 
phosphorylated by GLK in the activation loop that is responsible 
for the stability of PKC-θ active conformation. Although Thr-538 
may not directly regulate the IS recruitment of PKC-θ, it enables the 
accessible kinase domains to undergo autophosphorylation at other 
phosphorylation site, such as Thr-219, which is required for proper 
translocation of PKC-θ to the cSMAC (24, 34).

In contrast to the long-lived symmetric IS formation that 
is required for productive T-cell activation and differentiation, 
transient asymmetric synapse is able to induce T-cell anergy 
in response to weak signal input, such as in the absence of 
CD28 co-stimulatory signal (35). The conversion between IS 
and kinapses was found to be regulated by PKC-θ and Wiscott 
Aldrich Syndrome protein (WASp). PKC-θ negatively controls 
the stability of IS, while WASp restores the IS in the absence of 
PKC-θ activity (36).

FiGURe 1 | PKC-θ/PKC family structure important to its catalytic modulation and cellular translocation.

It is well documented that PKC-θ plays a critical role in T-cell 
activation, proliferation, and differentiation. Ex vivo studies 
have shown that PKC-θ is involved in the activation of NF-κB, 
activation protein-1 (AP1), and nuclear factor of T cells (NFAT) 
(37–41). In resting T cells, NF-κB is sequestered in the cytoplasm 
by IkB that binds to its NLS. Upon the TCR/CD28 activation, 
PKC-θ phosphorylates membrane-associated guanylate kinase 
(MAGUK) domain-containing protein 1 (CARMA1) on its 
serine residues, resulting in the recruitment of B-cell lymphoma/
leukemia 10 (BCL10) and mucosa-associated lymphoid tissue 1 
(MALT1) to form an active CARMA1–BCL10–MALT1 signaling 
complex. Then it promotes the activation of IKK complex to phos-
phorylate the inhibitory IkB for its degradation, leading to NF-κB 
nuclear translocation for transcriptional programs required for 
T-cell activation (38). Recently, PKC-θ has been identified as an 
essential component in OX40 signalosome, containing molecules 
such as OX40, TRAF2, RIP2, IKKα/β/γ, as well as the CBM 
complex. This process has been shown to be independent of TCR 
engagement (42).

Although the importance of PKC-θ catalytic activity is 
extensively addressed in T cells, the chromatin-associated role 
of this signal transduction kinase is still poorly understood. 
Upon T-cell activation, PKC-θ is translocated to the nucleus 
via NLS (12), forming an active chromatin-anchored complex 
that includes RNA polymerase II, the histone kinase MSK-1, 
lysine specific demethylase 1 (LSD1), and the adaptor molecule, 
14-3-3ζ. This complex then localizes to the proximal promoter 
and coding regions of inducible immune responsive genes in 
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human T cells (16). Moreover, the formation of this nuclear 
PKC-θ-containing transcriptional complex at regulatory 
regions of gene targets is persistent, which contrasts to its rapid 
association with signaling molecules at the IS. In addition, 
a chromatin immunoprecipitation (ChIP)-on-ChIP assay 
showed that PKC-θ also negatively regulates a distinct cluster of 
microRNA transcription by tethering at their promoter regions 
(16). More recent studies indicated that chromatin-associated 
NF-κB is required for the assembly of PKC-θ-containing active 
transcription complex. Moreover, NF-κB negatively regulates 
miR-200 transcription by forming a repressive complex on 
target gene impeding the formation of PKC-θ active transcrip-
tion complex (43). However, further studies are required to 
determine the functional differences between cytoplasmic and 
nuclear-targeted PKC-θ regulation and their contribution to 
transcriptional regulations in T cells.

The role of PKC-θ is evidently more diverse since in vivo studies 
on Prkcq−/− mice in different disease models showed differential 
requirements by distinct T-cell subsets. The studies have shown 
that PKC-θ is dispensable for the differentiation and effector func-
tion of Th1 cells (44, 45). PKC-θ-deficient mice showed intact CTL 
responses against intracellular bacterium Leishmania major (44), 
LCMV (46), and murine gamma-herpesvirus 68 infection (47). 
However, Th2 cell proliferation and differentiation is significantly 
defective in Prkcq−/− mice, which may reflect its important role in 
upregulating the GATA-3 expression (48). PKC-θ was also found 
to be essential for the induction of effective Th2 response against 

allergens or helminth infection (44). More recent studies showed 
that PKC-θ was required in the induction of graft-versus-host dis-
ease (GvHD) and alloreactive T-cell mediated immune response. 
However, it was dispensable for inducing graft-versus-leukemia 
(GvL) response in bone marrow transplantation (BMT) mice model 
(49). In sharp contrast to the positive role of PKC-θ in the promo-
tion of Th2 effective immune response, recent studies indicated that 
PKC-θ negatively regulates the Tregs cells suppressive function.

PKC-θ AND Tregs

Regulatory T cells play a pivotal role in immune homeostasis. This 
CD4+ T-cell subset is important in autoimmunity prevention but 
also for avoiding any exaggerated immune responses that would 
be harmful to the host (50). Tregs could also be deleterious as is 
the case in cancer where the suppression of effector T cells (Teffs) 
responses might lead to tumor growth (51). In case of HIV infec-
tion, their role is ambiguous. In this context, the suppression of 
immune activation is considered beneficial while the suppression 
of HIV-specific responses, deleterious (52). Tregs develop in the 
thymus but some are induced in the periphery following differen-
tiation of naïve CD4+ T cells after acquiring appropriate signals. 
The expression of transcription factor FoxP3 as well as several 
other molecules such as CTLA-4, CD39, and CD25 (IL-2Rα) are 
associated with Tregs function (53). Interleukin 2 (IL-2) is crucial 
for their expansion, survival as well as function (54). As is the case 
for Teffs, Tregs also need TCR stimulation to exert their function 
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through contact-depending mechanisms (55). However, the sign-
aling pathways in Tregs are slightly different from Teffs. A recent 
study which analyzed kinase-based signaling networks in Tregs 
and Teffs reported that only 11 out of 185 kinases are differently 
expressed between these two subsets (56). Although it is thought 
that PKC-θ plays an important role in Tregs, its function has not 
been extensively studied. By far, the most comprehensive analysis 
of its role comes from Zanin-Zhorov et al. (9). To study signaling 
in ISs of Tregs, these authors developed a system where Tregs 
and Teffs were added to a planar bilayers containing ICAM-1 
and aCD3 antibodies. Tregs formed stronger and more stable 
synapses than Teffs (9). They then studied PKC-θ as it mediates 
the breaking of ISs (36) and found significantly lower levels of 
PKC-θ recruited in the synapses of Tregs, in comparison with 
Teffs (9). Moreover, PKC-θ was found sequestered at the distal 
pole in Tregs, away from TCR suggesting that different localiza-
tion of PKC-θ drives different functions. These authors also found 
that pretreatment with PKC-θ inhibitor enhanced Tregs function 
as they became more suppressive in comparison with non-treated 
Tregs (9). This finding is in discrepancy with earlier observations 
from Gupta et  al. (57) who used a knock-out mice model to 
study the role of PKC-θ in Tregs function. This study revealed 
that Tregs from PKC-θ-deficient mice were equally suppressive 
to Tregs from wt mice (57). However, they showed that PKC-θ 
is important in Tregs development as they were significantly 
reduced in PKC-θ-deficient mice. This deficiency is probably due 
to the enhancing effect PKC-θ has on FoxP3 expression, through 
calcineurin/NFAT pathway (57). The other possibility is the 
reduced IL-2 production by Teffs in PKC-θ-deficient mice that 
impacts Tregs survival, proliferation, and function (54). These 
discrepancies between the two studies are most probably due 
to major differences in the model/system used. Also, targeted 
inhibition, either by PKC inhibitor or siRNA, which was used 
by Zanin-Zhorov and colleagues, might have not been specific 
only for PKC-θ but influenced other pathways that could have 
impacted Tregs’ function (58).

As mentioned before, Tregs can be of thymic origin but 
can also be induced in the periphery (iTregs). Ma et  al. (59) 
studied the role of PKC-θ in the development of iTregs and 
found that PKC-θ-mediated signals through Akt-Foxo1/3A 
pathway inhibit the differentiation of iTregs from naïve CD4+ 
T cells in the presence of TGF-β. Blocking PKC-θ either by 
an inhibitor or by gene knockdown reversed the inhibition 
of iTregs differentiation. Altogether these studies suggest an 
important role for PKC-θ in fine-tuning the balance between 
Teffs and Tregs responses (Figure 3). This makes this protein 
kinase an attractive drug target, a feature that will be further 
discussed in another chapter below. In addition, the association 
between kinase PKC-η with CTLA-4 and its recruitment to the 
Tregs’ IS has recently been described (60). Defective activation 
of this complex in PKC-η-deficient Tregs cells was associated 
with reduced depletion of CD86 from APCs by Tregs. These 
results reveal a CTLA-4-PKC-η signaling axis required for 
contact-dependent suppression and implicate this pathway in 
the regulation of the balance between regulatory and effector 
mechanisms in different diseases.

ROLe OF PKC-θ iN HUMAN DiSeASeS

As discussed above, PKC-θ impacts on the function of both Tregs 
and Teffs. As the balance of these subsets has been shown to be 
central in several diseases, it was not surprising to find that PKC-θ 
plays a major role in these processes.

Autoimmunity
Autoimmunity often results from an aberrant immune response 
following the activation of self-reactive T cells. Very valuable 
information about the implication of PKC-θ in autoimmune 
diseases came from PKC-θ-deficient mice. It was shown in several 
studies that PKC-θ-deficient mice were resistant to experimental 
autoimmune encephalomyelitis after injection of myelin oligo-
dendrocyte glycoprotein (MOG) (61–63). These mice presented 
less T-cell infiltration as well as diminished production of 
proinflammatory cytokines IFN-γ, TNF, and IL-17 following the 
immunization. Similar role was observed in other autoimmune 
syndromes such as collagen-induced arthritis (64), colitis (9, 62), 
and myosin-induced autoimmune myocarditis (65). Despite the 
discrepancies reported from the studies on the role of PKC-θ in 
Tregs suppressive function (9, 57), it has been reported that in the 
colitis model, the blockage of Tregs’ PKC-θ is highly protective 
(9). Interestingly, when Teffs were treated with the same inhibitor 
before transfer, mice were not protected from colitis indicating 
the preferential role for Tregs-mediated suppression of the disease 
through PKC-θ pathway. These findings generated large interest 
to study PKC-θ in human autoimmune diseases. Genome-wide 
association studies (GWAS) identified specific single nucleotide 
polymorphisms (SNP) within Prkcq locus associated with type 
1 diabetes (T1D), rheumatoid arthritis (RA), and celiac disease 
(66–69). Recent findings showed an important impairment of 
Tregs in RA patients (70). Zhanin-Zhorov et  al. used samples 
from patients with various diseases’ severity and isolated Tregs. 
They showed that inhibition of PKC-θ increased the suppressive 
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activity of these cells (9). Moreover, they found that PKC-θ 
inhibition renders Tregs resistant to inhibition by TNF-α that is 
known to inhibit Tregs activity by down-regulating FoxP3 (70).

Cancer
On the other side of the spectrum from the autoimmune dis-
eases, at least from immune standpoint, is cancer. Whereas in 
autoimmune settings Tregs play a major beneficial role, in cancer 
settings, they are considered to be deleterious as they are shown 
to suppress anti-tumor responses (71). Can fine-tuning of PKC-θ 
expression and its positioning in immune synapse be a potential 
target in cancer drug trials is still under question.

Several studies describe the role of PKC-θ in cancer settings. 
In gastrointestinal stromal tumors (GISTs) and Ewing’s sarcoma 
PKC-θ could be used as a specific marker of the disease (72–75). 
These studies suggest that PKC-θ overexpression facilitates the 
diagnostics of tumors even in the case where traditional markers 
are absent. However, the role in the pathogenesis is still unclear.

The implication of many other PKCs in cancer is also identi-
fied and several clinical trials are already ongoing (76). Whether 
there is a role for PKC-θ pathway in antitumoral T-cell response 
and what are the implications for drug development is still to be 
answered. The fact that PKC-θ seems to be expressed also by the 
tumor cells invites caution.

Hiv
T-cell activation is a crucial step in HIV infection and replica-
tion. Synthesis of dNTPs, increased ATP levels, and activation 
of transcription factors such as NF-κB, NF-AT, and AP-1 are all 
shown to be necessary for HIV replication (77). Therefore, being 
essential for several T-cell activation pathways, PKC-θ could play 
a major role in HIV infection.

Very early studies showed that Nef interacts preferentially with 
PKC-θ. This interaction is independent of calcium and enhanced 
by phospholipid activators of PKC. More importantly, the authors 
found a net loss of PKC-θ in Nef-expressing cells following stimu-
lation. The conclusion was that this phenomenon may contribute 
to the various impairments of T-cell function associated with 
HIV infection (78).

More recent studies have shown that HIV infection employs 
PKC-θ to enhance HIV-1 replication. In turn, it also upregulates 
PKC-θ phosphorylation in its activation loop as a positive feed-
back in CD4+ T cell. Moreover, HIV-1 replication was reduced 
in CD4+ T cells in the absence of PKC-θ activity, either by using 
pharmacological inhibitor, rottlerin, or employing RNA interfer-
ence (RNAi) strategy (79).

However, how PKC-θ affects T-cell responses against the virus 
itself was not studied. Some suggest that PKC-θ is an interesting target 
for decreasing immune activation in HIV-infected patients and that 
this goal could be achieved without major immunosuppression (80).

PKC-θ AND TARGeTiNG FOR iMMUNe 
iNTeRveNTiONS

Impairing the PKC-θ activity is believed to be a promising thera-
peutic strategy against the undesired immune response, such as 
Th2-mediated allergies, Th17-associated autoimmune diseases 

(63), and GvHD (49), meanwhile preserving the beneficial 
Th1 and CTL anti-pathogen immunity (47, 81) as well as GvL 
response in BMT (49). Therefore, pharmaceutical companies 
have dedicated considerable efforts to develop PKC-θ inhibitors.

The main PKC-θ inhibitors were designed as ATP competitors 
to block PKC-θ kinase activity. So far, the most successful is sotras-
taurin (AEB071) (see Table  1), which has reached substantial 
progress in phase I clinical trials in psoriasis and phase II clinical 
trial in renal transplantation (82–84). AEB071 is a “multikinase” 
inhibitor with strong specificity for PKC-θ, PKC-α, and PKC-β 
at low picomolar concentration and less preference for other 
nPKCs of PKC-δ, PKC-ϵ, and PKC-η at nanomolar concentra-
tion (84). Consistent with previous findings of selective regula-
tion of T-cell development in PKC-θ−/− animal model, AEB071 
inhibited TCR/CD28-mediated T-cell proliferation, GvHD and 
allograft rejection (85–87), but retained T-cell antiviral response 
(83). Although both PKC-θ and PKC-α are inhibited following 
AEB071 treatment, NFAT activation seems not impaired (88).

Several other attractive PKC-θ inhibitors can be valuable in 
the treatment of autoimmune diseases. PKC-θ specific inhibitory 
compound C20 has been reported to increase the suppressive 
function of Tregs cells from RA patients (9). In another study, 
PKC inhibitor R524 was designed to inhibit both PKC-θ and 
PKC-α catalytic activity at the nanomolar concentration. 
Haarberg and colleagues (89) showed that R524 impaired CD4+ 
T-cell proliferation and cytokine production, and significantly 
attenuated GvHD symptoms in myeloablative preclinical mouse 
models of allogeneic hematopoietic cell transplantation (HCT). 
Another potential PKC inhibitor is enzastaurin (Ly317615), 
which is orally bioavailable ATP inhibitor originally identified 
as PKC-β inhibitor (90). This study has shown that Ly317615 
has long-term activity on anti-proliferation and pro-apoptosis 
in both solid and hematologic cancer. Currently, Ly317615 has 
been evaluated in different clinical trials, including phase II tri-
als in multiple myeloma (91) and diffuse large B-cell lymphoma 
(92). However, in vitro Upstate kinase profiler data showed that 
Ly317615 inhibits PKC-θ fivefold more potently than PKC-β at 
1  μmol/L concentration (90). Therefore, Ly317615 may act as 
PKC-θ inhibitor to prevent GvHD while retaining GvL response 
(93). It is suggested that highly specific inhibition of PKC-θ will 
promote a better efficacy and safety in the treatment of autoim-
mune diseases without causing overt immunosuppression (94). 
However, since PKC-θ and PKC-δ share highly conserved 
ATP-active region with only a single residue difference (Tyr108 
in PKC-θ and Phe108 in PKCδ), it has been a challenging task 
to develop a small molecule compound with a high degree of 
specificity toward PKC-θ. In 2013, Jimenez et  al. designed a 
novel compound 27 (C27), with an excellent selectivity toward 
PKC-θ comparing to other PKC isoforms and non-kinase targets. 
Moreover, it did not show cross-reactivity against other proximal 
TCR kinases. C27 inhibitor showed encouraging success at the 
preclinical level to effectively inhibit IL-2 production in a mouse 
model of staphylococcal enterotoxin B-induced IL-2 release (SEB 
IL-2 model) (95), which makes it a potent and specific PKC-θ 
inhibitor candidate for therapy in autoimmune diseases.

In addition to the PKC-θ inhibitors that act as ATP 
competitors, other inhibitors that negatively regulate PKC-θ 
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TABLe 1 | PKC-θ inhibitor in human diseases and clinical trials.

Mechanism of 
inhibition

Potential drug Target Disease treatment Clinical 
trial

ATP competitor Sotrastaurin (AEB071) cPKCs: PKC-α and PKC-β and nPKCs:  
PKC-θ, PKC-δ, PKC-ϵ, PKC-η

Psoriasis, renal transplantation, uveal melanoma,  
and large B-cell lymphoma.

phase I and 
phase II

R524 PKC-θ and PKC-α GvHD N/A
Enzastaurin (Ly317615) PKC-θ and PKC-β Multiple myeloma, large B-cell lymphoma, maybe 

GvHD
phase II

Compound C20 (C20) PKC-θ Rheumatoid arthritis (RA) N/A
Compound C27 (C27) PKC-θ N/A N/A

Phosphorylation 
inhibitor

4-hydroxy-3-
methoxycinnamaldehyde 
(4H3MC)

PKC-α, PKC-θ, and PKCs/λ Maybe in T cell-mediated immune diseases N/A

CGX1079 and CGX0471 PKC-θ’s T538 phosphorylation HIV infection N/A

Nuclear translocation 
inhibitor

N/A PKC-θ N/A N/A
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phosphorylation have been developed and studied in several dis-
ease models. 4-hydroxy-3-methoxycinnamaldehyde (4H3MC) 
was identified as a potential PKC isotypes inhibitor, preferen-
tially inhibiting PKC-α, PKC-θ, and PKCsι. 4H3MC ablates 
PKC-θ phosphorylation and impairs its translocation to the IS, 
subsequently inhibiting IL-2 production in Jurkat T cells and 
human leukocytes. In addition, it also blocks the phosphoryla-
tion of ERK and p38, which results in impairing the activation 
of AP-1, NFAT, and NF-κB (96). This suggests that it may be an 
attractive PKC inhibitor candidate against T-cell-mediated auto-
immune diseases. Two PKC-θ-specific inhibitors – CGX1079 and 
CGX0471 – were investigated as potential therapeutic adjuvants 
for the antiretroviral therapy (ART) in HIV infection (80). These 
two inhibitors impair PKC-θ kinase activity by blocking PKC-θ 
phosphorylation at T538 and prevent its translocation to the IS, 
which subsequently impairs the activation of NF-κB, AP-1, and 
NFAT and decreases viral transcription. Moreover, CGX1079 
and CGX0471 reduce HIV-1 retrotranscription by inhibiting 
SAMHD1 phosphorylation at T592 that associates with attenu-
ated proviral integration in PBMCs isolated from HIV-infected 
patients with ART treatment (Table 1). Despite CGX1079 and 
CGX0471 retardation of T-cell proliferation, these compounds 
did not completely compromised T-cell function, particularly 
CD8 anti-viral activity, avoiding general immunosuppression. 
Altogether, CGX1079 and CGX0471 are promising PKC-θ 
inhibitors that can reduce reservoir size and preserve CTL func-
tion against HIV-1 infection (80).

However, there are still some challenges that need to be taken 
into consideration for developing the full therapeutic potential 
of PKC-θ specific inhibitors in clinical applications. First, the 
double-edged sword feature of PKC-θ regulation in Teffs and 
Tregs. Tregs cell function enhancement may be favored in auto-
immune diseases, while impaired Teffs cell function is not desired 
in tumor-specific T-cell responses. Second, as the kinase domain 
is well conserved among all PKC isoforms, even crossover other 
protein kinase members, using ATP competitors to specifically 
target PKC-θ would be difficult. Therefore, allosteric kinase 
inhibitors emerge as more specific and less toxic therapeutic 

candidates in the context of human diseases. As allosteric kinase 
inhibitors target more divergent regulatory regions and regulate 
the conformational changes required for kinase activation, rather 
than highly conserved catalytic regions of PKC-θ, their use would 
be more suitable.

Moreover, the pro-rich motif in the V3 hinge domain of 
PKC-θ that was recently identified by Kong et al. may serve as an 
attractive target for allosteric inhibition. This study indicated that 
the V3 hinge region is sufficient to trigger PKC-θ translocation 
into the IS or cSMAC. Importantly, this pro-rich motif in the V3 
hinge domain is unique to PKC-θ and promises a high specific-
ity in kinase activity inhibition (18). Taken together, those less 
conserved and much more flexible hinge regions may become 
potential targets for optimal PKC inhibitor design.

Perspectives
The chromatin-tethered role of PKC-θ has been recently identified 
to be essential in the regulation of inducible gene transcription in 
human T cells by forming an active chromatin-anchored complex 
that associates with RNA polymerase II, the histone kinase MSK-
1, LSD1, and the adaptor molecule, 14-3-3ζ (16). In addition, 
blocking PKC-θ nuclear translocation impairs T-cell activation 
and inducible gene expression by targeting its C-terminal NLS 
motif, which suggests the importance of its nuclear role in T-cell 
activation (Li et al., unpublished data). Therefore, it may provide 
an alternative approach to inhibit PKC-dependent T-cell func-
tion by inhibiting its nuclear role besides the catalytic activity. 
However, further studies are required because very little is known 
about the molecular mechanism of nuclear-tethered PKC-θ in 
regulation of T-cell immune responses.
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