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Macrophages are innate immune cells of dynamic phenotype that rapidly respond to 
external stimuli in the microenvironment by altering their phenotype to respond to and 
to direct the immune response. The ability to dynamically change phenotype must be 
carefully regulated to prevent uncontrolled inflammatory responses and subsequently to 
promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) pro-
teins play a key role in regulating macrophage phenotype. In this review, we summarize 
research to date from mouse and human studies on the role of the SOCS proteins in 
determining the phenotype and function of macrophages. We will also touch on the 
influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. 
The molecular mechanisms of SOCS function in macrophages and DCs are discussed, 
along with how dysregulation of SOCS expression or function can lead to alterations in 
macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS 
expression by microRNA is discussed. Novel therapies and unanswered questions 
with regard to SOCS regulation of monocyte–macrophage phenotype and function are 
highlighted.

Keywords: macrophage, suppressor of cytokine signaling proteins, iL-4 and iL-13, dendritic cells, macrophages, 
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iNTRODUCTiON: THe SUPPReSSORS OF CYTOKiNe SiGNALiNG 
AS ReGULATORS OF SiGNALiNG ReSPONSeS

The suppressor of cytokine signaling (SOCS) proteins are a family of eight intracellular cytokine-
inducible proteins [SOCS1–SOCS7 and cytokine-inducible SH2-containing protein (CIS)] (1, 2). 
SOCS are expressed basally in every cell and are rapidly induced by a variety of stimuli, including 
cytokines, toll-like receptor (TLR) ligands, immune complexes, hormones, and in response to glu-
cose (Figure 1) (3). All SOCS family proteins contain an Src homology 2 (SH2) domain that binds 
phosphorylated tyrosine residues on target proteins, a variable length amino-terminal domain and 
a conserved carboxy-terminal SOCS box motif that interacts with ubiquitin–ligase machinery (4).

All eight SOCS family members negatively regulate Janus kinase (JAK)/signal transducer and 
activator of transcription (STAT) signaling through association with key phosphorylated tyrosine 
residues on JAK proteins and/or cytokine receptors (Figure 2) (3, 5). In addition, SOCS1 and SOCS3 
contain a kinase inhibitory region (KIR) that is able to directly suppress JAK tyrosine kinase activity by 
acting as a pseudosubstrate, binding in or near the activation loop (5–7). SOCS1, SOCS2, and SOCS3 
have been shown to negatively regulate signaling through the degradation of signaling molecules via 
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the E3 ubiquitin ligase activity of the SOCS box and ubiquitin–
proteasome pathway (8–10). There are many good reviews that 
discuss the SOCS structure–function relationship in depth (1).

In macrophages, SOCS expression is very low, however, both 
are rapidly induced upon activation. SOCS1 and SOCS3 have been 
shown to regulate M1 and M2 macrophage polarization (12–15). 
M1 and M2 macrophage polarization refers to the phenotype 
and function of macrophages exposed to either Th1- or Th2-type 
cytokines. This description was largely established as a result of 
in vitro exposure to different cytokines, bacteria, viruses, or other 
factors. However, these definitions of polarization state have been 
revised in recent years with the realization that macrophages 
in  vivo can exist along a spectrum between these particular 
extremes, depending on the external milieu at different stages 
of disease processes (16). Nonetheless, M1 macrophages can be 
considered distinct in that they mediate defense against bacterial 
pathogens, viruses, and tumors, whereas M2 macrophages fight 
helminth worm parasites and promote wound healing. There are 
also characteristic transcription factors associated with differen-
tiation into each phenotype. STAT1 and interferon regulatory 
factor (IRF)5 are associated with M1 macrophages and STAT6 and 
IRF4 with M2 macrophages. The categorization of M1 and M2 
macrophages in vitro and in vivo has lead to efforts to character-
ize typical “marker genes,” reviewed extensively elsewhere (17). 
Herein, we aim to highlight the current understanding of the role 

FiGURe 1 | Structures of suppressor of cytokine signaling (SOCS) family members and known inducers in monocytes/macrophages and DCs. 
The SH2 domain is highly conserved across all SOCS members and binds phosphorylated tyrosine (pY) resides on target proteins. The kinase inhibitory region (KIR) 
of SOCS1 and SOCS3 acts as a pseudosubstrate to block JAK activation. The KIR inhibits the catalytic activity of JAKs by binding to the activation loop of the 
catalytic domain through both its KIR and SH2 domains. The SOCS box interacts with a complex containing elongin B, elongin C, cullin-5, RING-box-2 (RBX2), 
and E2 ligase. SOCS box-containing molecules function as E3 ubiquitin ligases and mediate the degradation of proteins that they associate with through their 
amino-terminal regions. SOCS proteins target the entire cytokine-receptor complex, including Janus kinase (JAK) proteins and SOCS protein themselves, for 
proteasomal degradation. GH, growth hormone.

of the SOCS in macrophage polarization, with particular emphasis 
on SOCS1 and SOCS3. We will also touch on SOCS regulation 
of dendritic cell (DC) polarization and function and their role in 
polarization of microglia, the resident macrophages of the brain, 
since these cells are important in neuroinflammation and often 
overlooked. The role of microRNAs (miRNAs) in regulating SOCS 
expression and therapeutic potential of the SOCS proteins to 
direct macrophage and DC function in disease will be discussed.

SOCS3 ReGULATeS M1 MACROPHAGe 
POLARiZATiON

Researchers have studied how SOCS proteins contribute to the 
regulation of macrophage polarization in  vitro by using mac-
rophages from total and conditional knockout (KO) animals and 
siRNA knockdown approaches.

The loss of SOCS3 in every cell of the body results in death 
during embryonic development. It causes defects in erythropoie-
sis in the fetal liver resulting in increased erythrocytosis (18). 
Additionally, the placenta does not develop properly, owing to 
lack of regulation of leukemia inhibitory factor signaling in the 
trophoblast giant cells (19). Fortunately, cell-type-specific KO of 
SOCS3 in macrophages is not lethal. When SOCS3 was deleted 
with LysM-cre-driven excision of the Socs3 allele in mouse 
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FiGURe 2 | SOCS1 and SOCS3 are potent regulators of cytokine signaling and macrophage polarization through multiple mechanisms [adapted 
from Ref. (11)]. Macrophages are M1 polarized in response to a number of TLR ligands and cytokines. Both SOCS1 and SOCS3 regulate TLR-4 responsiveness 
through the inhibition of JAK2, MAL, and NF-κB in the case of SOCS1 and through the inhibition of TRAF6 in the case of SOCS3. SOCS1 also regulates IFN- and 
IL-6-driven M1 polarization by inhibiting JAK activity through the KIR pseudosubstrate domain. SOCS3 regulates IL-6-driven M1 polarization by binding of pY759 
the IL-6 receptor gp130 subunit and termination of signaling. SOCS3 also binds activated STAT3 to terminate signaling. Paradoxically, SOCS3 does not inhibit 
IL-10 signaling because it cannot bind the IL-10 receptor, nor does it effectively bind IL-10-activated STAT3, suggesting SOCS3 binding to STAT substrate is a 
highly specific and the determinants of this interaction are not fully understood. SOCS3 promotes M1 polarization and regulates TGF-β-driven M2 polarization by 
binding and preventing nuclear translocation of SMAD3. IL-4 and IL-13 trigger two distinct M2-polarizing pathways, the STAT6 and IRS-2 pathways. SOCS3 
regulates IL-4/-13-driven STAT6 activation and nuclear translocation while both SOCS1 and SOCS3 can dampen PI3K and AKT activation by targeting IRS 
signaling proteins for proteasomal degradation. SOCS2 regulates SOCS1 and SOCS3 expression levels through proteasomal degradation. IRS, insulin receptor 
substrate; JAK, Janus kinase; MAL, MyD88-adaptor-like protein; STAT, signal transducers and activators of transcription; TGF-β, transforming growth factor-β; 
TRAF6, TNF-receptor-associated factor 6.
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macrophages, lipopolysaccharide (LPS) exposure resulted in 
enhanced M1 polarization, as measured by induction of mes-
senger RNA (mRNA) expression for interleukin (IL)-1β, IL-6, 
IL-12p40, IL-23p19, and inducible nitric oxide synthase [iNOS 
(12)]. M1 gene expression was not determined in response to 
LPS plus interferon (IFN)-γ. Similar findings of enhanced M1 
gene expression in response to LPS were observed in alveolar 
macrophages from LysM-cre-Socs3fl/fl mice (20). Interestingly, 
LPS reduced IL-10 secretion in the Socs3-KO macrophages. Both 
STAT1 and STAT3 activation were increased in response to IFN-γ 
and LPS. Although the Western blot results appear to show that 
SOCS1 protein expression increased in the LysM-cre-Socs3fl/fl 
macrophages after either IFN-γ or LPS stimulation, the authors 
maintain that there was no compensatory increase in SOCS1 
expression in these cells. Responsiveness to IL-4, as determined 
by phosphorylation of STAT6, was not altered, pointing to a mini-
mal role for SOCS3 in regulating IL-4 signaling and M2 polariza-
tion. Functionally, the LysM-cre-Socs3fl/fl macrophages exhibited 
higher phagocytic capacity, a typical M1 macrophage function, 
than did the control Socs3fl/fl cells. When the Socs3-deficient mac-
rophages were polarized with IFN-γ and LPS and were incubated 
with naïve T cells, they induced Th1- and Th17-polarization more 
efficiently than did the wild-type macrophages. The data from 
this study point to SOCS3 behaving as a negative regulator of the 
M1 polarization program in mouse macrophages.

Studies in rat bone marrow-derived macrophages (BMM) 
transfected with siRNA to Socs3 led to opposite conclusions 
SOCS3 is required for polarization of macrophages to the M1 
phenotype (14). After stimulation with IFN-γ/LPS, expression 
levels of typical M1 markers, CD86 and IL-6, were reduced and 
nitric oxide (NO) production was diminished, despite mRNA 
for iNOS being unchanged. IFN-γ  +  LPS-induced signaling 
responses, as determined by nuclear STAT3 phosphorylation, 
were augmented in the SOCS3-knocked down cells, with no 
impact on the activation of STAT1. This finding contrasts with 
mouse macrophages from the SOCS3 conditional KO described 
above (12). Both STAT1 and STAT3 signalings were enhanced 
and prolonged in the mouse SOCS3−/− macrophages in response 
to IFN-γ and to LPS, although these stimuli were given separately 
and not combined in the mouse study. In SOCS3-knocked down 
rat macrophages, there was an increase in SOCS1 expression that 
the authors hypothesized was most likely due to increased STAT3 
binding to STAT3 sites in the Socs1 promoter (21). Activated STAT3 
in the SOCS3-knocked down cells resulted in increased M2a gene 
(mannose receptor and arginase) expression in response to IFN-
γ/LPS. Furthermore, IL-10 secretion in response to IFN-γ + LPS 
was maintained in the SOCS3-knocked down rat cells. This 
observation contrasts with the mouse SOCS3−/− macrophages, 
which demonstrated reduced IL-10 secretion in response to 
LPS stimulation alone (12). The responsiveness of M1-polarized 
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(IFN-γ/LPS-treated) rat macrophages lacking SOCS3 to a subse-
quent IL-4 stimulus was restored. Taken together, this study in rat 
macrophages indicated that SOCS3 is required for or is a positive 
regulator of M1 polarization in rat macrophages.

These studies suggest that there may be species-specific dif-
ferences in how SOCS3 regulates M1 polarization between the 
mouse and rat macrophages. Alternatively, complete deletion 
of SOCS3 in the LysM-cre-Socs3fl/fl macrophages may result in 
compensatory alterations in other signaling pathways or proteins 
that are not observed when the function of SOCS3 is transiently 
knocked down by siRNA. As the studies described here had 
opposing results, drawing conclusions about the role of SOCS3 
in macrophage polarization will require more investigation with 
attention to the species from which the macrophages are derived 
and the stimuli used to elicit M1 polarization.

SOCS1 FiNe-TUNeS M1 AND M2 
MACROPHAGe DiFFeReNTiATiON

SOCS1 regulates IFN-γ, LPS and IL-4 signaling and thus 
participates in regulation of both M1 and M2 macrophage 
polarization. SOCS1 deficiency in mice leads to death at 
approximately 3  weeks due to severe inflammation in multiple 
organs (22, 23), making studying macrophages from these 
animals challenging. Therefore, to examine the role of SOCS1 
in macrophage polarization, macrophages from SOCS1-KO 
animals crossed with IFN-γ-deficient mice have been used (24).

SOCS1 is necessary to limit the M1 phenotype in response 
to IFN-γ/LPS stimulation. Macrophages from mice deficient 
in SOCS1 (and IFN-γ) were hypersensitive to LPS signaling, as 
shown by enhanced I-κB and p38 phosphorylation (25), dem-
onstrating the role of SOCS1 as a negative regulator of TLR-4 
signaling. SOCS1 deficiency in these macrophages resulted in 
enhanced M1 gene expression (TNF-α, IL-1β, and IL-6) after 
LPS stimulation. A simultaneously published paper also dem-
onstrated elevated M1 gene expression (TNF-α, IL-12p40) in 
SOCS1-deficient macrophages stimulated with LPS (26). SOCS1 
is also a critical regulator of signaling activated by IFN-β. STAT1 
activation in SOCS1-deficient mice was prolonged, and the loss 
of SOCS1 inhibition of TYK2 was implicated (27).

Consistent with the SOCS1-KO mouse macrophages, SOCS1 
knockdown in rat macrophages lead to increased expression of 
typical M1 genes [major histocompatibility complex (MHC) 
II, CD86, IL-6, and IL-12p40] in response to IFN-γ/LPS owing 
to the lack of this important negative regulator (13). Although 
no signaling intermediates were examined in this study, these 
results are logical, as SOCS1 is known to inhibit both the MyD88-
dependent and -independent pathways downstream of TLR4. 
SOCS1 has been shown to bind interleukin-1 receptor-associated 
kinase (IRAK) 1 in an overexpression system, so it is possible 
that IRAK1 is degraded to suppress LPS-induced signaling 
(26). SOCS1 directly binds NF-κB p65, leading to its proteolysis 
and suppression of NF-κB activation (28). The adapter protein, 
TIRAP/Mal, links receptor engagement of TLR2 and 4 to the 
MyD88-dependent signaling pathway and is required for full M1 
cytokine production in response to LPS (29, 30). Overexpressed 
SOCS1 interacted with Mal and mediated its degradation (31). 

Mice deficient in SOCS1 have unrestrained Mal-induced NF-κB 
signaling and proinflammatory cytokine production after LPS 
stimulation (31). Although the absence of SOCS1 led to increased 
expression of many typical M1 genes, expression of iNOS was 
diminished after IFN-γ/LPS stimulation of SOCS1 siRNA-
transfected rat macrophages (13). Interestingly, expression of 
typical M2 genes (arginase I and IL-10) was enhanced in the 
Socs1-knockdown cells in response to IFN-γ/LPS stimulation.

SOCS1 plays a negative regulatory role in IL-4 signaling and 
M2 macrophage polarization. This was demonstrated by studies 
in BMM from Socs1-KO mice that expressed more arginase I after 
IL-4 stimulation (32). However, using rat BMM transfected with 
siRNA to Socs1, Whyte et  al. (13) demonstrated that exposure 
to IL-4 caused decreased expression of arginase I, a hallmark 
M2 gene, and increased expression of iNOS, characteristic of 
M1 macrophages. In the rat SOCS1-knocked down cells, three 
other characteristic M2 macrophage genes that they tested, mac-
rophage mannose receptor (Cd206), Chi3l3 (YM1), and Retnla 
(FIZZ1), were unaffected by SOCS1 knockdown. To attempt 
to determine the molecular mechanism, the authors described 
SOCS1 knockdown resulting in diminished phosphorylation 
of serine 473 of AKT after 30 and 60 min of IL-4 stimulation. 
Phosphorylation of AKT at serine 473 was used as a surrogate 
measure for PI3K activity. SOCS3 expression increased in the 
SOCS1-knocked down cells, suggesting that counter-regulation 
of SOCS1 and SOCS3 expression dictates macrophage polariza-
tion. Inhibition of PI3K activity (decreased phosphorylation of 
AKT Ser473) was attributed to this increase in SOCS3 expression. 
However, none of the signaling analysis presented was reported 
as statistically significant, and the analyses were carried out only 
to 60 min; thus any effect on the downregulation of signaling in 
the SOCS1-knocked down cells may have been missed. Similar 
to the findings from Socs3 siRNA knockdown in rat macrophages, 
the SOCS1-knocked down rat macrophages lost IL-4-mediated 
attenuation of subsequent IFN-γ/LPS responses. These data show 
that IL-4-induced SOCS1 participates in the refractory state of 
macrophages to IFN-γ/LPS after the cells have been previously 
exposed to IL-4.

Taken together, the data described above suggest that, unlike 
SOCS3, SOCS1 regulates both M1 and M2 polarization in rat 
macrophages in  vitro. Furthermore, there appear to be some 
species-specific differences in how SOCS1 and SOCS3 control 
macrophage differentiation in response to IL-4 and IFN-γ/LPS, 
as the rat and mouse macrophage studies drew opposite conclu-
sions. This species-specific difference is presented in Table 1.

ReGULATiON OF HUMAN MACROPHAGe 
POLARiZATiON BY THe SOCS PROTeiNS

Regulation of human macrophage polarization by the SOCS 
proteins has not been well studied. Dickensheets et  al. (32) 
described induction of mRNA for SOCS1 in response to IL-4, 
IL-13, IFN-β, and IFN-γ in human peripheral blood mono-
cytes. SOCS3 knockdown with siRNA in human macrophages 
resulted in decreased expression of M1 cytokines (IL-1β, IL-6, 
IL-12p70, and IL-23) in response to IFN-γ/LPS stimulation 
(15). This observation is consistent with the SOCS3 knockdown  
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TABLe 1 | Summary of SOCS1 and SOCS3 KO, conditional KO, and siRNA knockdown studies to determine their role in polarization of mouse, rat, and human macrophages.

Mouse BMM Rat BMM Human macrophages

Stimulus Readout Conclusion Reference Stimulus Readout Conclusion Reference Stimulus Readout Conclusion Reference

SOCS1

Total KOa LPS ↑TNF-α, NO, 
IL-6/IL-1β, 
pI-kB, p-p38, 
pJNK

Negative 
regulator 
of M1 (TLR 
signaling)

Kinjyo et al. (25)

IL-4 ↑ArgI Negative 
regulator 
of M2 (IL-4 
signaling)

Dickensheets 
et al. (32)

IFN-α ↑pSTAT1 Negative 
regulator

Fenner et al. (33)

IFN-β ↑pSTAT1 Negative 
regulator

Gingras et al. (27)

Conditional 
KO

LPS, palmitate ↑M1 genes Negative 
regulator 
of M1 (TLR 
signaling)

Sachithanandan 
et al. (34)

siRNA 
knockdown

IFN-γ + LPS ↑M1 genes, exc. 
iNOS

Negative 
regulator of M1

Whyte et al. 
(13)

Not determined

IL-4 ↓ArgI, but not 
other M2 genes

Positive regulator 
of M2

SOCS3

Total KO Not 
determined

Conditional 
KO

IL-6 + LPS ↑pSTAT3
↓TNF-α, IL-12

Negative 
regulator of 
IL-6 signaling

Yasukawa et al. 
(35)b

IL-10 
either ± LPS

No Δ in 
pSTAT3 or 
TNF-α, IL-12 
production

Not a 
negative 
regulator 
of IL-10 
signaling

IL-6 ↑pSTAT1/3
↑M1 genes

Negative 
regulator of 
M1

Qin et al. (12)

(Continued)
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Mouse BMM Rat BMM Human macrophages

Stimulus Readout Conclusion Reference Stimulus Readout Conclusion Reference Stimulus Readout Conclusion Reference

LPS ↑pSTAT1/3 Negative 
regulator of 
M1

↑M1 genes

↑Phagocytosis

IFN-γ ↑pSTAT1/3 Qin et al. (12)

IL-4 No Δ in 
pSTAT6

Not a 
negative 
regulator of 
IL-4 signaling/
M2

LPS ↑M1 genes Negative 
regulator of 
M1

Yan et al. (20)c

siRNA 
knockdown

IFN-γ + LPS ↓M1 genes, exc. 
iNOS

Positive regulator 
of M1

Liu et al. (14) IFN-γ + LPS ↓M1 genes Positive 
regulator of 
M1 

Arnold 
et al. (15)

↑pSTAT3

↑SOCS1

The experimental approach is listed in the left-hand column. aThe SOCS1 knockout studies utilized the SOCS1−/− IFN-γ−/− animals due to the early mortality of the SOCS1−/− animals. The majority of these studies used bone marrow-
derived macrophages, except when bthioglycollate-elicited and calveolar macrophages were employed. There were no studies in macrophages from SOCS3−/− mice, as this deletion is embryonic lethal. The conditional knockout studies 
all used macrophages from LysM-cre animals crossed to the SOCS1fl/fl or SOCS3fl/fl animals. p = phospho.
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effect on M1 genes in rat macrophages. Similarly, SOCS1 
expression and the amount of activated STAT3 increased in the 
LPS-stimulated SOCS3-knocked down human macrophages. 
The consequence of knocking down SOCS1 on the polarization 
of human macrophages is unknown. Furthermore, the major-
ity of studies examining SOCS1 and SOCS3 rely on expression 
of mRNA for SOCS1 and SOCS3 to draw conclusions about 
SOCS protein expression and function. The expression of the 
SOCS proteins, however, is tightly regulated by translation 
mechanisms (36), as well as post-translational modifications 
(37). The amount of protein expression is rarely validated in 
many studies. Future endeavors should focus on a more care-
ful characterization of SOCS protein expression and how these 
proteins regulate human macrophage polarization in health 
and disease.

iMPACT OF SOCS DeFiCieNCY iN 
MACROPHAGeS iN MiCe

In terms of the functional effects of SOCS1 loss in  vivo, mice 
deficient in SOCS1 (and IFN-γ) have heightened sensitivity to 
LPS-induced shock and increased production of inflammatory 
cytokines (25, 26). These observations are consistent with the 
role of SOCS1 in restraining proinflammatory signaling. Similar 
results validate SOCS1 as a negative regulator of proinflammatory 
signaling in the methylated bovine serine albumin (mBSA)/IL-1-
dependent model of arthritis in SOCS1−/− IFN-γ−/− mice (38). 
The data from SOCS1-deficient mice in the ovalbumin model of 
asthma, a Th2-/M2-type disease, support the role of SOCS1 as a 
negative regulator of M2 polarization (39). Serum IgE, eosino-
philia, Th2-cytokine expression, and arginase I were increased in 
the lungs of the KO mice compared to the control animals.

Mice with a macrophage-specific deletion of SOCS1 displayed 
hypersensitivity to administered LPS and palmitic acid with an 
elevation of proinflammatory cytokines and systemic inflamma-
tion (34). Macrophage accumulation in the liver and liver inflam-
mation resulted in hepatic insulin resistance in these animals, 
highlighting the role of SOCS1 in restraining M1 inflammatory 
responses, while promoting M2 macrophage polarization. Mice 
with a SOCS1 deficiency in their macrophages had a lower bacte-
rial load in the lung a week after infection with Mycobacterium 
tuberculosis than did mice with normal SOCS1 expression. This 
effect was attributed to enhanced IFN-γ production and expres-
sion of iNOS (expression of mRNA was measured) and suggests 
that SOCS1 restrains M1 polarization in macrophages (40). The 
LysM-cre-Socs1fl/fl mice also exhibited less infection-induced 
lung inflammation than did the SOCS1-KO animals after the 
initial acute phase of infection. This observation led the authors 
to conclude that non-macrophage SOCS1 expression was critical 
to control inflammation resulting from infection 3 weeks later. 
Consistent with an enhanced M1 phenotype, deficiency of SOCS1 
in macrophages rendered LysM-cre-Socs1fl/fl mice resistant to B16 
melanoma cell implantation and protection from dextran sulfate 
sodium (DSS)-induced tumor formation in the colon (41).

Studies to define SOCS3 as a positive or negative regulator 
of M1 polarization using mice with a macrophage-specific 

deletion of SOCS3 have yielded differing results in  vivo. For 
example, when the LysM-cre-Socs3fl/fl animals were challenged 
with LPS, two different outcomes were observed: protection 
from or exacerbation of LPS-induced septic shock (12, 35, 42). 
The different outcomes may have been due to differences in 
the concentration of LPS used for challenge. Another example 
of unexpected in  vivo phenotypes in mice with a deletion of 
SOCS3 in macrophages was the increased mortality and 
pathogen burden after Toxoplasma gondii infection in LysM-
cre-Socs3fl/fl mice (43). The authors found that SOCS3-deleted 
macrophages demonstrated uncontrolled IL-6 signaling that 
suppressed IL-12 production, a protective cytokine against 
toxoplasmosis. From the in  vitro studies in SOCS3-deficient 
macrophages described previously, the opposite outcome would 
have been predicted – that deletion of SOCS3 would increase 
M1 gene expression and protect from the infection. However, 
the complexity of the inflammatory response in  vivo shows 
that predictions based on macrophage behavior in  vitro do 
not necessarily perfectly translate to whole animal models of 
disease. The caveat is that each disease model must be dissected 
individually to determine the critical cytokines and the relative 
importance of the macrophage to pathology.

Other mouse models of disease support SOCS3 as a negative 
regulator of M1 responses. For example, in the mBSA model of 
rheumatoid arthritis (RA), proinflammatory responses were 
elevated in the absence of SOCS3 in the hematopoietic and 
endothelial cell compartment (44). BMM from these SOCS3−/Δvav 
mice could not regulate IL-6 production induced by IL-1. LysM-
cre-Socs3fl/fl mice were also vulnerable to neuroinflammation 
characterized by infiltration of immune cells into the central 
nervous system (CNS) in a myelin oligodendrocyte glycoprotein-
induced experimental autoimmune encephalomyelitis (EAE) 
model (45). Another example of enhanced M1 responses in the 
absence of SOCS3 in macrophages in  vivo is protection from 
tumor transplantation and metastasis (46), similar to macrophage-
specific SOCS1 deficiency. Tumor protective responses in 
macrophages are usually associated with an M1 macrophage 
phenotype. Surprisingly, a deeper analysis of the tumor-associated 
macrophages (TAMs) isolated from the B16 tumors in these 
animals revealed a mixed M1/M2 phenotype. Expression of M1 
markers (TNF-α, IL-6, IL-12p35), with the exception of iNOS, was 
decreased in the SOCS3-deficient cells, relative to that of wild-
type macrophages. Despite upregulation of typical M2 markers 
(arginase I and IL-10), usually associated with tumor progression, 
SOCS3-deficient macrophages provided tumor protection because 
of enhanced MCP-2/CCL8 production. The mechanism by which 
MCP-2 brought about tumor protection was not determined in 
any molecular or cellular detail however. The results of this in vivo 
study underscore that ascribing M1 macrophages as tumoricidal 
may be over simplistic, as the SOCS3-deficient macrophages 
had lower expression of M1 markers and increased M2 markers 
yet afforded tumor protection. Furthermore, the existence of a 
mixed M1 and M2 phenotype in macrophages in vivo highlights 
the difficulty of assigning “typical markers” and unequivocal 
phenotyping in  vivo. An additional complexity arises from 
changing macrophage phenotypes over the course of the disease 
in vivo. Depending on when the pathological tissue is sampled, the 
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macrophages will have different phenotypes at initiation, during, 
and in the resolution phase of the disease.

THe ROLe OF MACROPHAGe SOCS 
eXPReSSiON iN HUMAN DiSeASe

Because the balance between SOCS1 and SOCS3 expression can 
regulate the polarization of macrophages, enhanced or suppressed 
expression of these two regulators under conditions of infection or 
disease could affect the differentiation of macrophages and either 
contribute to or diminish disease pathology. An altered balance 
of SOCS1/3 expression in monocytes and/or macrophages has 
been described in several human infections and disease states. 
For example, expression of SOCS1 mRNA and protein was higher 
in monocyte–macrophages isolated from the blood of patients 
with chronic hepatitis C infection than in those from healthy 
controls in response to LPS/R848 stimulation (47). In this setting, 
hepatitis C virus core protein induced SOCS1 expression, which 
in turn induced PD-1 to suppress IL-12 production by primary 
human monocyte–macrophages. Knocking down SOCS1 in the 
human monocytic cell line THP-1 diminished PD-1 expression 
and restored IL-12 secretion. Bacterial infections also subvert 
SOCS expression in macrophages to prevent efficient M1 polari-
zation and clearance by the host immune system. Patients with 
active and severe pulmonary tuberculosis displayed higher IL-4 
and CCL4 expression in the bronchoalveolar lavage (BAL) fluid 
and greater SOCS3 expression in cells from BAL than did patients 
with mild forms of tuberculosis (48).

In  situations of disease, altered expression of SOCS mRNA 
and protein in macrophages may be a response to a particular 
inflammatory environment, rather than a distinct dysregulation 
of SOCS expression in macrophages. For example, the mac-
rophages in synovial fluid of inflamed knee joints from patients 
with RA expressed more mRNA for SOCS1, SOCS3, and CIS 
than did peripheral blood monocytes from the same patients or 
healthy controls (49). This comparison led the authors to con-
clude that it was the inflammatory environment of the RA joint 
to which the macrophages were responding that caused changes 
in SOCS expression. Similarly, White et  al. (50) undertook an 
immunohistochemical analysis of SOCS3 expression in CD68+ 
macrophages/DCs in tissue from patients with seven inflamma-
tory conditions. They found a statistically significant increase in 
SOCS3 expression in the CD68+ cells from patients with lymph 
node sarcoidosis, Crohn’s disease, ulcerative colitis [also noted by 
Miyanaka et al. (51)], acute appendicitis, and temporal arteritis, 
compared to that in adjacent normal tissue. Polymorphisms in 
the SOCS genes that correlate with disease or disease severity have 
been described in a number of different diseases (52–56). Because 
SOCS expression affects macrophage polarization and function 
so critically, it can be appreciated that polymorphisms that affect 
SOCS expression or function might positively or negatively 
influence diseases in which polarized macrophages play either a 
pathogenic or protective role. For example, the SOCS1 promoter 
SNP, SOCS1-820T SNP, decreased the ability of yin yang-1 (YY1) 
to suppress transcription of SOCS1 (53). Whether SOCS genetic 
polymorphisms such as this one affect the polarization or function 

of macrophages in particular has not been explored. Similar to the 
in vitro work on human macrophages, future studies on the role 
of the SOCS in human disease should focus on determination of 
differential expression of SOCS protein, rather than mRNA. The 
temporal changes in macrophage phenotype and SOCS protein 
expression during the course of disease are important and must 
be evaluated before drawing conclusions about the function of 
these regulators in human pathological disease processes.

SOCS, DeNDRiTiC CeLLS, AND T CeLL 
PRiMiNG

Dendritic cells play an important role in the initiation and 
coordination of immune responses through antigen presentation 
and interaction with effector innate and adaptive lymphocytes. 
DCs are highly motile and uniquely able to prime naïve T cells. 
Inappropriate DC function has been implicated in autoimmune 
diseases such as systemic lupus erythematosus (SLE) (57), mul-
tiple sclerosis (MS) (58), type 1 diabetes (T1D) (58), and allergy 
(59). Upon activation, DCs upregulate co-stimulatory molecules 
CD80, CD86, CD40, MHC I, and MHC II for antigen presentation, 
inflammatory cytokines, and chemokine receptors. In addition, 
like macrophages, DCs upregulate SOCS in response to stimuli 
(60). Ex vivo, DCs deficient in SOCS1 are more sensitive to TLR 
ligand stimulation, secrete more proinflammatory cytokines, 
have enhanced antigen presentation capacity, and induce greater 
T cell proliferation than DCs expressing functional SOCS1 (34, 
61–64). In vivo, selective deletion of SOCS1 from DCs results in 
priming of lethal autoimmune CD8 T cell responses (65). The 
enhanced CD8 T cell priming was not attributed to increased 
antigen presentation but rather increased and prolonged 
IL-12p35 production by DCs. This process was at least partially 
attributed to autocrine IL-12 signaling in DCs and was reversed 
in IL-12-deficient DCs. The increased IL-12 production similarly 
enhanced Th1-polarized, but not Th17-polarized CD4 T cell 
responses and inhibited Th2 development. These findings, taken 
together with in vivo observations in KO mice, indicate that in 
DCs, SOCS1 limits T cell activation and the development of lethal 
T cell-driven autoimmune diseases by regulating the amount and 
duration of type 1 T cell polarizing cytokine signaling. In humans, 
decreased SOCS expression in circulating PBMCs correlates well 
with autoimmune disease severity. Polymorphisms in SOCS1 that 
cause non-functioning or low functioning SOCS1 are a risk factor 
for MS (56, 66, 67), SLE (68, 69), and asthma (54).

The role of SOCS3 in DCs remains less well defined. Certainly 
SOCS3 is a critical negative regulator of IL-6 and IFN-γ signaling; 
however, its effect on co-stimulatory molecule expression, antigen 
presentation, and T cell priming is minimal. Instead, SOCS3 
expression by DCs plays a critical role in controlling the balance 
between T cell activation and tolerance through the regulation of 
indoleamine 2,3-dioxygenase (IDO) (70, 71). Orabona et al. inves-
tigated the role of SOCS3 in regulating IDO in DCs. They reported 
that in response to immunogenic DC stimulation, SOCS3 has the 
ability to bind IDO and is responsible for its ubiquitin-mediated 
proteasomal degradation (70). These findings implicate a dual 
role of SOCS3 in regulating T cell responses through negative 
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regulation of IDO in DCs. In humans, SOCS3 expression is lower 
in circulating monocytes from patients with active-relapsing MS 
than in monocytes from healthy individuals or those with MS 
in remission (72), supporting the role for SOCS3 in immune 
suppression. Because SOCS3 does not appear to regulate T cell 
priming, the observation that SOCS3 regulates IDO expression 
may provide clues as to the role of SOCS3 in maintaining immune 
suppression during ongoing autoinflammatory disorders.

SOCS2 AND CiS iN MACROPHAGe AND 
DeNDRiTiC CeLL POLARiZATiON AND 
FUNCTiON

Less is known about the function of SOCS2 and CIS. Both SOCS2 
and CIS are closely related, and lack the N-terminal KIR domain, 
meaning the inhibitory function is dependent on competitive 
binding via its SH2 domain and the ubiquitination/proteasomal 
degradation. Both SOCS2 and CIS are expressed in monocytes/
macrophages as well as DCs; however, there is a distinct lack 
of mechanistic studies available to adequately describe their 
relative importance in controlling macrophage polarization. 
Like SOCS1 and SOCS3, SOCS2 has E3 ubiquitin ligase activity 
(73) and uniquely has the ability to target SOCS1 and SOCS3 
(74, 75), as well as growth hormone (GH) receptor (76–78) for 
degradation. Furthermore, SOCS2 regulates epidermal growth 
factor and insulin like growth factor (IGF)-1 signaling through 
the regulation of STAT5B. It was recently identified that SOCS2 
expression is induced by estradiol to limit GH-driven JAK1 
phosphorylation (79). In line with these findings, SOCS2 mRNA 
expression reportedly increased immediately prior to ovulation 
in bovine, suggesting that SOCS2 can be induced by estrogen. It 
is important to note that the increase in SOCS2 mRNA also mir-
rored IGF-1 levels. Since SOCS2 is known to regulate IGF-1, this 
three-way interaction may merit further investigation to better 
understand the effects of sex hormones on the regulation of the 
SOCS family members. This may have important implications in 
macrophage biology as SOCS2 may regulate macrophage polari-
zation through the IGF-1 signaling axis although this remains to 
be investigated. In LPS-matured human DCs, SOCS2 induction 
is delayed compared to SOCS1/SOCS3 (80, 81) and is actually 
indirectly induced by TLR-4 stimulation through the induction of 
type I IFNs (82). Transient siRNA knockdown of SOCS2 damp-
ened TLR-4 driven MAPK signaling, proinflammatory cytokine 
release and DC maturation, suggesting that SOCS2 may actually 
be a positive regulator of monocyte maturation (80). Alternatively, 
knockdown of SOCS2 allowed SOCS1 and/or SOCS3 to accumu-
late leading to increased regulation of TLR signaling. By contrast, 
murine DC maturation was not affected by loss of SOCS2 (83). 
However, whole body SOCS2−/− mice are more susceptible to 
inflammation-induced lethal pathology triggered by some [T. 
gondii (84)] but not all [Mycobacterium bovis (85)] macrophage-
targeting intracellular infections. These discrepancies may reflect 
the ability of the pathogen to trigger TLR-ligand-driven type I 
IFN responses (82) as well as the availability of SOCS1/SOCS3 
to balance inflammatory responses. Taken together, it is clear 
that SOCS2 acts as a growth regulator both by directly inhibiting 

signaling and by inhibiting the negative regulators, SOCS1 and 
SOCS3. However, the role of SOCS2 in regulating macrophage/
DC inflammation appears to be species specific, with human cells 
showing altered maturation and effector function (86, 87) while 
murine cells are not always affected. The biological role of SOCS2 
is subtle, with KO mice developing mild abnormalities and very 
few human polymorphisms described to date. To date, much of 
our understanding of SOCS2 comes from in vitro analyses and 
the reported effects of SOCS2 are dependent on the specific cell/
organ being examined as well as the dose. This would suggest 
that either SOCS2 is partially redundant or SOCS2 regulation of 
SOCS1/3 plays a bigger role than currently appreciated.

Cytokine-inducible SH2-containing protein (CIS) is the oldest  
of the SOCS family members. Like SOCS2, CIS is induced by GH, 
IGF-1, growth factors M-CSF, GM-CSF, and by multiple cytokines 
(88–90). In DCs, CIS regulates growth and proliferation through 
the inhibition of STAT5 (88, 90) in order to allow for complete 
differentiation. Knockdown of CIS impaired antigen presentation 
and OTI/OTII proliferation through the downregulation of MHC 
and co-stimulatory molecules as well as reduced Th1 polarizing 
cytokines IL-12, TNF-α, and IL-6 (91). Interestingly, knockdown 
of CIS also had no appreciable effect on Th2 polarization 
(91). In line with these findings, knockdown in CIS impaired 
vaccine-induced responses, CTL development, and anti-tumor 
immunity (91). Human polymorphisms in the CIS promoter 
have been linked with increased susceptibility to (92) pediatric 
M. tuberculosis infection (93). Given the critical role of CIS in 
antigen presentation, cytokine production, and DC-mediated T 
cell priming, it is easy to appreciate how decreased CIS expression 
could interfere with vaccination efforts as well as predispose 
children to unchecked bacterial dissemination once contracting 
tuberculosis. The mechanistic role of CIS in promoting type 
1-polarized DC/macrophages has not been investigated. In T cells, 
CIS promotes CTL/Th1 development (94) through unknown 
mechanisms although it has been proposed that decreased CIS 
expression may lead to enhanced STAT5 activation, a transcription 
factor for Tregs, upsetting the Th1/Treg balance. If validated, this 
could account for at least some of the observed in vivo effects. 
However, in  vitro knockdown of CIS in DCs clearly support a 
role for CIS in promoting maturation and cytokine signaling. 
Given its similarity with SOCS2, it is possible CIS is acting as a 
negative regulator of other negative regulators, namely SOCS1 
and SOCS3. Although there is not currently any evidence to 
support this theory, SOCS2−/− monocytes/DCs closely resemble 
CIS-knockdown monocytes/DC. Intense investigation into the 
immune potentiating mechanisms of SOCS2 and CIS may reveal 
important clues about immune regulatory mechanisms and 
provide useful new approaches for immune-driven diseases from 
autoimmune diseases to cancer immunotherapies.

SOCS4, SOCS5, SOCS6, AND SOCS7 iN 
MACROPHAGe AND DeNDRiTiC CeLL 
POLARiZATiON AND FUNCTiON

As with the previously described SOCS family members, SOCS4, 
SOCS5, SOCS6, and SOCS7 are expressed by myeloid cells and 
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regulate a variety of cytokine and hormone signaling pathways. 
Until recently, no direct function could be ascribed to SOCS4 
and no animal models were available to being to investigate its 
role in inflammation. Kedzierski et al. (95) generated mice defi-
cient in SOCS4 and reported normal thymic development and 
immune system development. However, upon influenza virus 
infection, these mice rapidly succumbed to cytokine-driven 
immune pathology. In spite of enhanced chemokine and cytokine 
responses in the lung and spleen of SOCS4−/− mice, the authors 
observed decreased CD8 T cell recruitment and impaired viral 
clearance. In vitro analysis of T cell revealed SOCS4−/− CD8 T cells 
did not respond to polyclonal CD3/CD28 activation, indicating 
SOCS4 positively regulates T cell receptor signaling. Although 
preliminary, these findings would suggest that SOCS4 may 
negatively regulate cytokine/chemokine responses in myeloid 
and structural cells while the mechanisms of SOCS4 positive 
regulation of T cell receptor signaling remain to be investigated. 
Given these observations, detailed analysis of SOCS4 binding 
partners in macrophages and interactions with other SOCS fam-
ily members merit consideration.

SOCS5 has been shown to be expressed in CD4 T cells and 
inhibit Th2 differentiation by binding the IL-4Rα and block-
ing STAT6 phosphorylation, thus favoring Th1-polarization 
(96). Global overexpression of SOCS5 lead to enhanced local 
inflammation in a murine model of bacterial peritonitis (97). 
Closer examination of infiltrating cells revealed M1-polarized 
macrophages displaying enhanced phagocytic capability and 
decreased STAT6 phosphorylation. Taken together, these find-
ings suggest that SOCS5 may promote M1 polarization through 
the inhibition of IL-4 signaling although this remains to be 
validated. Furthermore, SOCS5 induction has not been reported 
in monocytes/macrophages in response to M1 or M2 polarizing 
conditions, suggesting that SOCS5 plays a minor role in mac-
rophage polarization or SOCS5 functions basally to limit M2 
polarization. Systematic evaluation of SOCS5 protein induction 
may be necessary to determine that SOCS5 plays a meaningful 
role in macrophage biology.

SOCS6 and SOCS7 negatively regulate insulin signaling 
through the interaction with insulin receptor substrate (IRS) 
signaling molecules IRS-4 in the case of SOCS6 (98, 99) and 
IRS-1 in the case of SOCS7 (100). Given the importance of 
insulin availability and metabolism in macrophage polarization 
(101–103) as well as the importance of IRS-1/-2 in IL-4 signaling 
(104, 105), SOCS6 and SOCS7 may play a yet undefined role in 
macrophage polarization. More in-depth analysis of the role of 
these lesser-studied SOCS family members is required.

SOCS PROTeiNS ReGULATe 
NeUROiNFLAMMATiON

Suppressor of cytokine signaling family members have been 
implicated in regulation of CNS inflammation (106). SOCS1 
and SOCS3 have been shown to control inflammatory cytokine 
signaling in neurons (107–113), Schwann cells (107, 114), oli-
godendrocytes (115–117), astrocytes (118–120), and microglia 
(121–128). Microglia are free-moving macrophage-like cells that 

are the primary immune component of the CNS immune system 
and carry out immune surveillance, scavenging, phagocytosis, 
and antigen presentation (129–131). Like M1 macrophages, 
microglia respond to conditions of infection, trauma, and 
neuronal death by transiently activation to release TNF-α, NO, 
and reactive oxygen species to eliminate pathogenic organisms 
and remove dead cells in the damaged area (132). Prolonged or 
chronic M1-polarized microglial activation causes loosening of 
the blood–brain barrier, leukocyte, and lymphocyte influx (132, 
133) and it is a hallmark of neurodegenerative diseases, such as 
amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, 
and Huntington’s diseases (129, 134, 135). Microglia rapidly 
return to a resting or M2-like state in order to regulate inflam-
mation, repair, and maintain homeostasis (129, 130, 136, 137). 
M2-polarized microglia express typical M2 macrophage markers 
(138, 139), secrete anti-inflammatory factors (140–143), IL-10, 
TGF-β, neuronal growth factors (144–149), and express SOCS 
proteins (150), necessary for wound healing. This shift is associ-
ated with re-myelination in a rodent model of de-myelinating 
disease (138), better control of inflammation in a rodent model 
of ALS (151) and ischemic stroke (152). Failure to shift to a M2 
microglia phenotype or a predominance of M1-polarized micro-
glia is associated with worsening tissue damage and neuronal loss 
(153), suggesting that M2-polarized microglia act as gate-keepers 
against neuroinflammation.

Apoptotic cells, cytokines, and neurotoxic mediators, such as 
amyloid beta peptide (154), among others, are known to induce 
expression of SOCS family members. As a result, investigation has 
gone into deciphering the role of SOCS in modulating neuroin-
flammation. The observations discussed below regarding the role 
of SOCS proteins in neuroinflammation have been made from 
human disease or from studies carried out in SOCS competent 
animals rather than SOCS-deficient animals, therefore, the precise 
inflammatory triggers and downstream signaling pathways have 
not been delineated in microglia. However, given our extensive 
understanding of TLR-ligand and cytokine-driven signaling in 
macrophages, we can certainly extrapolate our understanding 
of SOCS proteins in regulating macrophage inflammation into 
neuroinflammation. SOCS1-expressing microglia have been 
correlated with reduced NO production, decreased sensitivity to 
TLR ligand stimulation and cytokine-induced signaling, all lead-
ing to controlled neuroinflammation (127, 155, 156). Attenuating 
SOCS1 expression in microglia promoted proinflammatory 
M1-like microglia and worsening neuroinflammation (157). 
Taken together, these findings indicate that SOCS1 induction 
and subsequent M2 polarization are critical for the neuroprotec-
tive functions of microglia. Given our understanding of SOCS1 
in regulating M1 macrophage polarization, it is likely SOCS1 is 
performing a similar role in microglia although this remains to be 
explicitly demonstrated. Interestingly, blood-derived monocytes 
recruited into the brain also display an M2-polarized phenotype 
and express high levels of SOCS1. Enhancing SOCS1 expression 
in the brain is viable therapeutic option for treating acute brain 
injuries such as stroke and trauma.

Recently, two several reports showing that resveratrol has 
neuroprotective effects in a mouse model of Parkinson’s disease 
(158, 159) through the induction of SOCS1 expression in microglia 
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in vitro (159). These studies provide evidence that enhancing SOCS1 
expression in microglial cells can have a dramatic neuroprotective 
effects on CNS inflammation and support continued investigation 
into therapies that increase SOCS1 expression in microglia to 
control progressive neuroinflammatory diseases.

To date, SOCS1 and SOCS3 appear to be similarly induced 
and have overlapping roles in microglia, although the kinetics, 
factors that regulate their expression and discrete roles of SOCS 
expression in microglia during the course of disease are only 
partially elucidated. SOCS3 expression has been suggested to 
be detrimental for axonal growth by inhibiting the production 
of growth factors (160). Examination of the expression patterns 
of SOCS after peripheral nerve injury revealed that SOCS1 
expression is restricted primarily to macrophages whereas SOCS3 
expression is restricted to Schwann cells (114). In this model, 
SOCS1 expression inversely correlated with phosphorylation 
of JAK2 and STAT3 and the expression of proinflammatory 
cytokines IL-1β and TNF-α, whereas SOCS3 expression negatively 
correlated with the expression of IL-6 and LIF (161, 162). These 
findings indicate that these molecules regulate discrete aspects 
of neuronal inflammation and may be restricted to different cell 
types. Detailed analysis of SOCS1 and SOCS3, as well as other 
SOCS family members, including SOCS2 and CIS in microglia, 
will help to elucidate how and when microglia transition from 
a proinflammatory to immunoregulatory phenotype and how 
to best exploit this process to protect against neuronal loss and 
slow chronic degenerative diseases. Moreover, identifying drugs/
biologics agents that modulate SOCS expression in the brain may 
help to combat progressive neurodegenerative as well as acute 
brain injuries.

ReGULATiON OF SOCS ACTiviTY iN 
MACROPHAGeS AND DCs FOR 
THeRAPeUTiC BeNeFiT iN DiSeASe

Because altering the expression of SOCS1 and SOCS3 can have 
profound effects on the polarization and function of both mac-
rophages and DCs, therapeutic strategies aimed at augmenting or 
suppressing expression or function of the SOCS proteins could 
significantly affect disease progression and pathogenesis. In this 
regard, researchers have used different approaches to modulate 
SOCS expression or function in vitro and in vivo to try to inhibit 
inflammatory signaling that leads to pathogenesis.

microRNAs ReGULATe SOCS 
eXPReSSiON

Several mechanisms that regulate SOCS expression have been 
characterized, including promoter methylation and microRNAs 
(miRNAs). MiRNAs are small 22–26-nucleotide non-coding 
RNAs that target mRNA to fine-tune gene expression. Long 
primary transcripts (primary microRNA) are transcribed by 
RNA polymerase II, processed by the nuclear enzyme Drosha 
and released as a hairpin precursor. Precursor microRNA are 
processed by the RNase III enzyme Dicer to ~22 nucleotides 
(mature microRNA) and then incorporated into RNA-induced 

silencing complex (RISC). The microRNA–RISC complex binds 
the 3′-untranslated region of target messenger RNA (mRNA) and 
either promotes translational repression or mRNA degradation.

Many miRNAs have been described to regulate SOCS1 and 
SOCS3 expression. Perhaps the best characterized is mir-155. 
Mir-155 regulates SOCS1 expression by inhibiting translation 
and attenuating protein expression (163–166). Consequently, 
DCs deficient in mir-155 have greater SOCS1 expression, display 
decreased co-stimulatory molecule expression, have decreased 
antigen presentation, and have a reduced ability to cause T cell 
proliferation in vitro (167, 168). Animals with mir-155-deficient 
DCs are less susceptible to the development of autoimmune disease 
and staphylococcal enterotoxin B-induced acute lung injury (169) 
and are resistant to allergic airway disease (170). Furthermore, 
mir-155-deficient apoE−/− mice are partially protected from 
atherogenic inflammation (171). Overexpression of mir-155 or 
lentiviral delivery of pre-mir-155 in macrophages partially reca-
pitulates the SOCS1−/− phenotype of increased sensitivity to TLR 
stimulation and cytokine signaling. It is important to note that 
mir-155 targets other proteins and that some of its reported bio-
logical roles likely occur through a SOCS1-independent mecha-
nism. Taken together, there is compelling evidence that mir-155 
is important for fine-tuning SOCS expression and, therefore, has 
a profound impact on macrophage polarization and function. 
Other miRNAs are predicted to bind SOCS1, including mir-150 
(172), mir-221 (173), mir-572 (174), and mir-19a (175); upregu-
lation of these miRNAs correlates with increased inflammation. 
In contrast to miRNAs that suppress SOCS1 expression, mir-29b 
reportedly induces SOCS1 by demethylating its promoter (176). 
Although these SOCS-regulating miRNAs have been identified 
in clinical disease, their cell specificity and functional role in 
macrophages remains uninvestigated.

The miRNAs that regulate SOCS3 expression are less well 
defined than miRNA regulators of SOCS1. Several miRNAs, mir-
19b (177), mir-203 (178), and let-7 (179), are predicted to bind 
SOCS3 transcripts. Mir-19a, which is also predicted to inhibit 
SOCS1, has been shown to decrease SOCS3 expression and 
subsequent IFN-α and IL-6 signaling by regulating the JAK-STAT 
pathway (180). Balasubramanyam et al. reported that mir-146a 
expression was decreased in PBMCs from patients with type 2 
diabetes. Decreased mir-146a was associated with increased type 
I inflammation, TNF-α and IL-6 and a trend toward increased 
SOCS3 expression (181). These changes further correlated with 
insulin resistance and poor glycemic control. These findings 
support the current paradigm in which SOCS3 is required for 
M1polarization, and increased SOCS3 expression may facilitate 
increased M1-driven inflammation. Since many diseases are 
drawn-out processes that occur over many years and involve 
several cell types, the changes in miRNA-driven SOCS expression 
or repression are likely complex. They cannot be distilled down 
to a single failed regulatory pathway and their regulatory 
mechanisms may differ between effector cell types. These findings 
highlight the distinct role for SOCS family members in regulating 
discrete pathogenic mechanisms in autoimmune and chronic 
diseases. Further elucidation is still needed into the differences 
in mechanisms that regulate miRNA expression in peripheral 
immune cells and local inflammatory immune cells.
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The human genome contains 11 let-7 miRNA genes that 
produce eight different mature let-7 miRNAs. There are several 
reports of changes in let-7 miRNA expression in human diseases, 
including asthma/allergy (182), myasthenia gravis (183), MS 
(184), and Alzheimer’s disease (185, 186). Systematic analysis of 
let-7 family members revealed that overexpression of let-7c inhib-
ited M1 polarization and promoted M2 polarization through the 
regulation of CEBP-δ expression (187). Though the authors do not 
report the effect of let-7c on SOCS expression, their observations 
are reminiscent of studies carried out in SOCS3−/− macrophages 
discussed in the section above. The discovery of new let-7 fam-
ily members and targets demonstrates there is a great deal that 
remains to be understood about this miRNA family in regulating 
SOCS expression and macrophage biology. Furthermore, these 
findings highlight the need to re-evaluate earlier results in order 
to better understand which family member is being described.

In addition to their ability to directly regulate SOCS 
expression in macrophages, miRNAs can be shuttled between 
cells via exosomes to modify SOCS expression. Exosomes 
are lipid-bilayer-enclosed vesicles that carry cellular proteins, 
mRNA, and miRNAs (188, 189). The membrane proteins appear 
in the same orientation as on the cell membrane, owing to two 
invaginations, one at the surface of the plasma membrane, 
during the formation of the endosome, and the second by the 
inward budding of the endosomal membrane (188). Exosomes 
can be taken up by virtually every cell in the body (189, 190). 
In the context of pulmonary inflammation, SOCS expression is 
critical to preventing inflammatory cell influx and pathology. 
Exosomes secreted from allergic epithelial cells have been shown 
to influence chemokine sensitivity, trafficking, and signaling. 
Levänen et  al. also identified altered miRNA expression in 
exosomes from the BAL fluid of allergic patients (191). They went 
on to identify several miRNAs known to regulate SOCS1 and 
SOCS3 expression. Bourdonnay et al. (192) reported that alveolar 
macrophages are capable of secreting microparticle vesicles laden 
with SOCS3 to epithelial cells, which were subsequently taken 
up. Delivery of SOCS3 to epithelial cells attenuated inflammation 
by blunting STAT signaling in response to IFN-γ or IL-6 (192). 
Taken together, these findings suggest not only that alveolar 
macrophages can influence epithelial cell expression of SOCS 
proteins, but that the reverse is also possible, potentially through 
exosome-mediated delivery of miRNA. These same mechanisms 
may allow DCs to influence T cell polarization. This novel 
pathway of SOCS delivery could influence cellular responsiveness 
and could also prove potentially useful in a therapeutic setting.

TARGeTiNG miRNAs AS THeRAPeUTiC 
STRATeGY

Modulating miRNA expression levels to fine-tune target gene 
expression is an attractive approach to enhancing inflammation 
in the case of vaccine immune responses, which can also be used 
to dampen inflammation in the case of autoimmune diseases. 
The effect of mir-155 on SOCS1 expression has been studied 
extensively and in vitro experiments suggest that delivering anti-
mir or mir-155 neutralizing nucleotides can effectively increase 

SOCS1 expression and attenuate inflammation (193–197). 
Targeted delivery of anti-mirs to specific cell types such as T 
cells, macrophages, and microglia has clearly demonstrated 
the potential of this technology in modulating inflammation. 
More importantly, systemic delivery of antisense peptide nucleic 
acids has been effective in rodent models of MS (193, 198, 199), 
Alzheimer’s disease (200, 201), ALS (202), and ischemic stroke 
(202). These findings are significant in that systemic delivery 
altered mir-155 targets throughout the body, including micro-
glia in the brain. This approach, coupled with advancements in 
polymer delivery technology and the efficiency and specificity of 
siRNA delivery, suggests that targeting SOCS-modifying miRNA 
may be feasible as a stand-alone or adjunct therapy for treating 
inflammatory disease. In addition, delivery of drug- or biological 
agent-conjugated poly(methyl methacrylate) nanoparticles (203) 
directly to effectively targets macrophages and microglia, making 
it possible to specifically target microglial SOCS expression in 
the CNS. Similarly, these nanoparticle delivery modes may be 
an option to target SOCS expression at the mucosal surface. For 
patients with asthma, globally targeting miRNAs known to pro-
mote Th2 responses or regulators of cytokine signaling, including 
M2 signaling, may be a safer approach to restoring immune 
regulation than targeting the systemic compartment, which may 
lead to undesired off-target effects.

THeRAPeUTiC DeLiveRY OF SOCS 
PePTiDeS AND FULL-LeNGTH PROTeiNS

A large emphasis has been placed on development of short, cell-
penetrative peptides that mimic the activity of the SOCS KIR. The 
KIR domain of the SOCS proteins is a 12-amino acid sequence that 
binds the activation loop of JAK2, inhibiting its kinase function. 
The SOCS1-KIR peptide was shown to inhibit STAT1α activation 
in response to IFN-γ in mouse macrophages (204). Additionally, a 
16-amino acid SOCS1-KIR peptide delivered to EAE mice greatly 
diminished disease scores compared to those of animals that 
received control peptide (205). The improved symptom scores 
were shown to result from inhibition of Th1/Th17 development 
(IFN-γ production and inhibited IL-23 signaling) and reduced 
lymphocyte infiltration of the CNS. A shorter SOCS1 mimetic 
peptide, Tkip (tyrosine kinase inhibitory peptide), designed based 
on complementarity to the JAK2 activation loop, also reduced 
inflammatory responses in the same relapsing-remitting EAE 
model (206). Doti et al. (207) used an alanine scanning approach 
to determine key KIR residues involved in JAK2 binding. Their 
experiments resulted in the development of a shorter, 10-amino 
acid SOCS1 KIR, named “New KIR,” which has greater affinity for 
JAK2. A screen of peptides generated by random incorporation of 
unnatural amino acids into the “new KIR” allowed for selection 
of another peptide called PS-5, which has increased affinity for 
JAK2 and enhanced protease stability. PS-5 blocked the IFN-γ-
induced STAT1/IRF-1 cascade that typically induces expression 
of integrins, chemokines, and MHCs from keratinocytes and 
recruits and activates immune cells in the skin (208). The authors 
demonstrated these capabilities both in a human keratinocyte cell 
line and in skin explants from human donors. Based on these 
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in vitro results, the PS-5 peptide holds great therapeutic potential 
for treatment of psoriasis, although its activity in vivo remains 
to be determined. Another condition that may be a candidate 
for SOCS1-mimetic peptide intervention in macrophages is 
insulin resistance. Dampening proinflammatory responses of the 
macrophages in adipose fat may prevent the inflammatory condi-
tions that lead to insulin resistance (209). Because overexpressed 
SOCS1 leads to insulin insensitivity through proteasomal degra-
dation of IR and IRS-2 (10, 210, 211), extensive in vivo analysis 
of these novel SOCS1 KIR peptides would be necessary before 
consideration of human therapeutic use.

Delivery of full-length SOCS proteins or SOCS overexpres-
sion may be an additional mechanism by which to influence 
polarization of macrophages and/or DCs. Disease processes that 
are dependent on the polarization and activity of macrophages, 
such as plaque formation in atherosclerosis, may be good targets 
for a SOCS-based therapy. Adenovirally overexpressed SOCS1 
(Ad-S1) reduced the accumulation of lipids and macrophages 
in the plaques of ApoE-deficient mice fed a high-fat diet (212). 
Interestingly, the blood of the Ad-S1-treated animals contained 
fewer Ly6Chi monocytes and more Ly6Clo monocytes than did 
that of controls, suggesting diminished systemic inflammation 
with SOCS1 treatment. Exciting new findings showed that 
alveolar macrophages in the lung secrete exosomes contain-
ing SOCS1 and SOCS3 proteins to control airway epithelial 
responses to cytokines (192). The secretory process becomes 
dysregulated in the alveolar macrophages of smokers and likely 
results in uncontrolled inflammation. Whether macrophages 
are also recipients of exosomally delivered SOCS proteins was 
not investigated, although exosomal or microparticle uptake by 
macrophages is likely, given their role as major “professional” 
phagocytes. Exploiting macrophage uptake processes may be a 
useful way to deliver therapeutic SOCS proteins or peptides to 
modify macrophage polarization.

Although enhancing the activity of SOCS proteins to sup-
press inflammatory responses would be advantageous, in some 
situations, enhancing immune responses is desirable, such as for 
clearing viral or bacterial pathogens and eliciting robust vaccine 
responses. In these cases, the suppressive activity of the SOCS 
proteins is unfavorable, and approaches are needed to reduce 
the expression or function of SOCS proteins. For example, to 
augment anti-tumor vaccine responses, Zhang et al. (213) tried 
silencing SOCS1 expression in DCs to enhance TLR/NF-κB sign-
aling in vitro. They nucleofected DCs with a plasmid that encoded 
an shRNA to SOCS1; overexpressed MAGE3, a tumor antigen; 
and overexpressed HMGB1 to stimulate NF-κB signaling. SOCS1 
expression was efficiently downregulated in the nucleofected DCs, 
and the cells were more potent at inducing Th1-polarization. In 
a similar approach, Zhu et  al. (214) downregulated SOCS1 in 
DCs in vitro by using an adenoviral vector that expressed shRNA 
to SOCS1 (Ad-shRNA-SOCS1). Their study went further and 
demonstrated that vaccination with Ad-shRNA-SOCS1 was able 
to shrink tumors and increase survival in tumor-injected mice.

Peptide antagonists have also proved useful in inhibiting the 
activity of the SOCS proteins. SOCS1 antagonist peptides are 
essentially the amino acid sequence of the activation loop of JAK2. 
The SOCS1 antagonist pJAK2 peptide (also called lipo-pJAK2) is 

a tyrosine-phosphorylated, 13-amino acid, palmitoylated peptide 
that blocks SOCS1 activity and enhances STAT3 activation in 
IL-6-stimulated human LNCaP cells (204). In very promising 
studies carried out in human monocyte-derived DCs, the pJAK2 
peptide enhanced the ability of human DCs to activate cytotoxic-
ity of tumor-specific human CD8 + CTLs (215). Whether these 
anti-tumor effects can be recapitulated in  vivo remains to be 
determined. Enhancing proinflammatory cytokine production 
with lipo-pJAK2 has beneficial antiviral effects. For example, 
mice that received intraperitoneal lipo-pJAK2 were protected 
from a lethal dose of vaccinia virus (216). In the same report, 
lipo-pJAK2 also afforded 60–80% protection against encephalo-
myocarditis virus.

The efficacy of SOCS-based peptides and proteins will 
depend on their uptake, stability, and ability to specifically 
target macrophages and DCs. To this end, a cell-penetrative 
SOCS3 (CP-SOCS3) was engineered to include hydrophobic 
amino acid sequences for translocating the cell membrane (125). 
Fluorescently labeled CP-SOCS3 was taken up efficiently by blood 
leukocytes and lymphocytes and was retained for up to 24  h. 
CP-SOCS3 was able to block inflammation in mice in vivo, and 
deletion of the SOCS box of CP-SOCS3 significantly increased 
the half-life of the protein (217). Using non-natural amino acids 
as part of the peptide, SOCS1 KIR sequence provided enhanced 
stability against proteases in the case of PS-5 (207). The SOCS 
proteins are attractive therapeutic targets because they are potent 
regulators of macrophage and DC polarization, but care must 
be exercised in their utilization as regulators of inflammation 
for therapeutic benefit. Over- or under-regulation of the pro- or 
anti-inflammatory responses of macrophages and DCs could 
have detrimental effects. Nonetheless, understanding the biol-
ogy of these regulatory proteins in macrophages, microglia, and 
DCs may lead to promising novel interventions for a variety of 
immune-mediated diseases.

CONCLUDiNG ReMARKS

The SOCS family of proteins plays a pivotal role in macrophage and 
DC biology. Of the eight family members, it is clear that SOCS1 
and SOCS3 are key players and have discrete, non-redundant 
roles in regulating macrophage and DC polarization and cytokine 
signaling. These differences also have important implications in 
host resistance to infection and regulation of immune responses. 
Targeting select SOCS family members in macrophages has 
immense therapeutic potential. New technologies and therapies 
aimed specifically at modulating SOCS expression may be an 
effective way to treat disease.
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