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B cells play a central role in multiple sclerosis (MS) pathology. B and plasma cells
may contribute to disease activity through multiple mechanisms: antigen presentation,
cytokine secretion, or antibody production. Molecular analyses of B cell populations
in MS patients have revealed significant overlaps between peripheral lymphoid and
clonally expanded central nervous system (CNS) B cell populations, indicating that B cell
trafficking may play a critical role in driving MS exacerbations. In this review, we will assess
our current knowledge of the mechanisms and pathways governing B cell migration into
the CNS and examine evidence for and against a compartmentalized B cell response
driving progressive MS pathology.
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INTRODUCTION

In recent decades, accumulating evidence has brought B cells into focus as critical players in
multiple sclerosis (MS) pathogenesis. B cells are present at elevated levels in inflamed MS central
nervous system (CNS) tissue and are significantly increased in MS cerebrospinal fluid (CSF) (1, 2).
Furthermore, IgG is synthesized intrathecally in MS patients (3), and IgG and complement are
characteristic features of both type 2 and active MS lesions (4–6). In the CSF, the presence of
oligoclonal IgG bands (OCBs) are a long-standing hallmark of MS diagnosis, and in the meninges,
B cell-predominant lymphoid aggregations [germinal center (GC)-like structures] are observed in
some relapsing and secondary progressive patients (7, 8). Finally, clinical trials of the anti-CD20
monoclonal antibodies rituximab (9), and ocrelizumab (10), have demonstrated beneficial effects
on MRI lesion load and relapse activity in MS patients.

Many questions about the role of B and plasma cells in MS remain unanswered. What factors
drive B cells into the CNS, through which pathways do they travel, and are these cells persistent or
transient? When during the course of disease do B cells populate the CNS and are there particular
CNS niches in which B cells thrive? How may (GC)-like structures contribute to MS pathology?
In this review, we will examine the chemotactic cues, migratory pathways, and CNS factors that
facilitate B cells trafficking and survival in the inflamed CNS, and evaluate evidence supporting a
compartmentalized B cell response in MS pathogenesis.

B CELL MIGRATION INTO THE CNS IN HEALTH AND DISEASE

B Cells are Directed into the CNS by Chemokine Signaling
B cells may be observed in the healthy brain but are sparse in number, and increase drastically
during neuroinflammation (11, 12). B cells express a robust array of chemokine receptors that largely
dictate their movement, and the B cell chemokine receptor profile is dependent upon their state of
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TABLE 1 | B cell chemokines in multiple sclerosis.

Chemokine Levels in MS Chemokine receptor Reference

CCL2 Expressed by astrocytes and macrophages in acutely demyelinating lesions and active chronic lesions, at
lesion edge, and in reactive astrocytes surrounding lesions

CCR2, CCR3 (19–22)

Decreased in CSF

CCL3 Unchanged in CSF CCR1, CCR5 (19)

CCL20 Undetectable in CSF CCR6 (23)
Decreased in serum during relapse

CXCL10 Increased in CSF CXCR3 (19, 24)
Upregulated in MS lesions

CXCL12 Upregulated in chronic active and inactive MS lesions on astrocytes and blood vessels CXCR4, CXCR7 (14)

CXCL13 Increased in actively demyelinating MS lesions, secreted by macrophages in the perivascular cuffs. Not present
in chronic inactive lesions. Shown to be the most important determinant for B cell recruitment into the CNS.

CXCR5 (14, 16, 25)

Increased in CSF during relapse and remission

CX3CL1 Increased in CSF CX3CR1 (26, 27)

differentiation and external microenvironment. The local milieu
of cytokines in the inflamed CNS may also promote B cell migra-
tion by enhancing B cell chemoattraction and lymphoid organiza-
tion. For instance, lymphotoxin-α expressed along the outer layer
of inflamed vessel walls may facilitate lymphoid organogenesis
and the formation of meningeal B cell GC-like structures (13).

Several chemokines and their receptors (in parentheses)
have been shown to influence CNS B cell trafficking: CCL2
(CCR2, CCR3), CCL3 (CCR1, CCR5), CCL20 (CCR6), CXCL10
(CXCR3), CXCL12 (CXCR4, CXCR7), and CXCL13 (CXCR5)
(Table 1). Among these factors, CXCL13 may play a central role.
The CSF concentration of CXCL13 is elevated in MS patients
(14), correlates with conversion from clinically isolated syndrome
(CIS) to definite MS (15), and shows a strong correlation with
B cell numbers in the CSF of MS and other neuroinflammatory
diseases (14, 16). Indeed, nearly all CD19+ CSF B cells express
the CXCL13 receptor, CXCR5 (14). Elevated CSF CXCL13 cor-
relates strongly with the CNS accumulation of class-switched
CD27+ memory B cells, CD27−IgD− B cells, and unswitched
CD27+ memory B cells, but bears no relationship to the numbers
of CD138+CD38+ antibody-secreting plasmablasts and plasma
cells (17). The ability of CXCL13 blockade to disrupt the forma-
tion of GC-like structures in the pancreatic islets of NOD mice
suggests that meningeal B cell aggregates in MS patients may
also develop from migrating memory B cells that differentiate
intrathecally to plasmablasts and plasma cells (18).

As short-lived plasmablasts comprise a significant proportion
of the CSF B cell population in MS (28), the chemokines CXCL10
and CXCL12 may also act as chemoattractants for CXCR3+ and
CXCR4+ plasmablasts and additionally regulate the dynamics of
CNS B cell trafficking in disease. Since CXCL10 is constitutively
expressed by a subset of cells in the CNS subventricular zone, the
gradient of CXCL10 may be a potent chemo-attractant signal for
both activated T cells and antibody-secreting cells (29).

Adhesion Molecules, B Cells, and the
Blood–Brain Barrier
B cells follow chemokine gradients into the CNS via one of several
anatomical pathways: (1) through the choroid plexus into the CSF;

(2) through parenchymal vessels into the perivascular space; or
(3) or through the post-capillary venules into the subarachnoid
and Virchow–Robin spaces (30). B cells entering into the CNS
through the choroid plexus must traverse apical tight junc-
tions between epithelial cells composing the blood–CSF barrier,
whereas B cells trafficking through parenchymal vessels or stro-
mal venules ultimately need to traverse the tight junctions of
the microvascular endothelial cells composing the blood–brain
barrier (BBB). While the stages of lymphocyte transmigration
across the blood–CSF barrier have yet to be described in detail,
the sequence of leukocyte rolling, activation, arrest, crawling, and
migration has been defined in great detail for blood–brain bar-
rier trafficking (30). Basic adhesion molecule interactions impor-
tant for T cell transmigration across the BBB include selectins
during rolling (31), leukocyte very late antigen-4 (VLA-4) and
endothelial vascular cell adhesion molecule-1 (VCAM-1) dur-
ing the rolling and arrest, leukocyte lymphocyte function asso-
ciated antigen-1 (LFA-1), and endothelial intercellular adhesion
molecule-1 (ICAM-1) during arrest andmigration (32, 33), as well
as activated leukocyte cell adhesionmolecule (ALCAM), andCD6
in migration (34).

The specific molecules required for B cell transmigration, how-
ever, are less clearly understood. Similar to requirements for T
cell BBB transit, ex vivo studies using human adult brain-derived
endothelial cells (HBECs) show that blockade of VLA-4, but not
VCAM-1, inhibits B cell transmigration (35). Consistent with
these findings,mice lacking the VLA-4 α-4 subunit specifically on
B cells but not on other lymphocyte populations reduced disease
severity significantly, and inhibited the recruitment of B cells
into the CNS in an experimental autoimmune encephalitis model
(36). In natalizumab-treated MS patients, CSF B and plasma cells
are decreased in concert with the reduction in intrathecal CD4+
and CD8+ T cells (37). Complete (55%) or partial (27%) loss
of CSF OCBs was observed in a natatlizumab-treated patient
cohort following 2 years of therapy, suggesting that continuous
trafficking of B cells to the CNS may be required to maintain
the plasma cell niches producing intrathecal oligoclonal IgG (38).
Antibody blockade of ICAM-1 andALCAMalso result in reduced
migration of CD19+ B cells in ex vivo transmigration assays using
HBECs as an artificial BBB (34, 35). The exact roles of ICAM-1
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and ALCAM in CNS B cell trafficking in vivo, however, remain to
be determined.

Recently, CNS meningeal lymphatic vessels containing T lym-
phocytes were discovered running parallel to the dural sinuses
(39). These vessels drain to the deep cervical lymphnodes andmay
provide a novel route for trafficking B and T cells into or out of
the CNS. This pathway may involve similar or distinct chemokine
and adhesionmolecules in the transit of various B cell populations
that may infiltrate into the brain parenchyma, circulate in the CSF,
populate GC-like structures, and transit back to the peripheral
lymphoid compartment (39).

BIDIRECTIONAL B CELL
TRAFFICKING IN MS

In general, lymphocytic surveillance of the healthy CNS is signifi-
cantly lower than that of other peripheral organs (40). The major-
ity of data, particularly in humans andmice, indicate that activated
antigen-experienced T and B cells constitute almost the entirety
(41) or the vast majority (17, 42) of the infiltrating lymphocytes.
Whether activated lymphocytes return from the CNS compart-
ment to the peripheral circulation has remained uncertain.

Recently, the ability of B cells to exit the CNS compartment
and re-enter the peripheral circulation and, potentially germinal
center responses, has been investigated by deep sequencing (43).
Deep, or next-generation sequencing, allows for high-throughput
recovery of B cell IgG heavy-chain variable region (VH) reper-
toires from patient fluids and tissues. When compared to single-
cell methods, the large number of VH sequences analyzed by
deep sequencing provides a more complete representation of the
B cell Ig repertoire contained in a biological sample and sub-
stantially increase the likelihood of observing identical or related
VH sequences between samples. This enhanced sensitivity likely
accounts for the frequent identification of common peripheral
and CNS B cell clones with deep sequencing (43–45) and the rare
identification of those with single-cell analyses (46, 47).

Using diverse strategies, patient populations, and methods, the
VH repertoire from the peripheral blood, cervical lymph nodes,
meninges, parenchyma, and CSF have been compared within the
sameMSpatient (43–45). A common finding of each investigation
was overlapping clonal B cell populations common to both the
peripheral andCNS compartments. Overlapping peripheral blood
and CSF B cell clones were observed among multiple subsets of Ig
class-switched and post-germinal center B cells: CD27(+)IgD(−)
memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts,
and CD27(−)IgD(−) negative memory B cells (44, 48, 49). While
the number of overlapping sequences observed in each study
varied due to technique and disease activity, lineage analysis of
bi-compartmental B cell clones demonstrated patterns of somatic
hypermutation consistent with bidirectional exchange (43–45).
Some lineages showed a balanced distribution of peripheral and
CNS compartment clones; while other lineages exhibited isolated
CNS clones that were closely related to germline sequences. The
pattern of overlapping B cell clones in these lineage trees suggest
that B cells may travel back and forth across the BBB and re-
enter germinal centers to undergo further somatic hypermutation
(43–45) (Figure 1). In-depth analysis of the relationship between

overlapping B cell clones in the cervical lymph nodes and CNS
compartment of the same patient revealed that most of the shared
VH clones were less mature sequences that originated, more
often, in the periphery (45). More mature B cell clones tended
to be restricted to either the peripheral lymph node or CNS
compartment. Permutation testing supported a model in which
B cell maturation into antibody-secreting cells occurs in both the
periphery and CNSwith antigen-specific maturation occurring in
the periphery.

COMPARTMENTALIZATION OF THE CNS
B CELL RESPONSE IN MS

A key question related to MS pathogenesis is whether B cell-
mediated antigen-driven responses are generated, supported, and
sustained within the CNS (43)? CNS B cells show evidence of
clonal expansion (50, 51), and express somatically mutated, class-
switched Ig transcripts (46, 52–55). As noted previously, B cells
with clonally related VH sequences are recovered on both sides of
the BBB; however, CNS B cells may eventually form a compart-
mentalized population that is independent of the peripheral B cell
pool as disease progresses. Interestingly, compartmentalized CNS
inflammation has been hypothesized to drive treatment-resistant
progressive disease (56).

Oligoclonal CSF IgG (OCBs) are observed in over 95% of MS
patients. The CSF Ig proteome and B cell Ig transcriptome show
strong overlap, indicating that CSF B cell clones are a major
contributor to MS intrathecal IgG (57). In a subsequent study,
peptide sequences from the CSF Ig proteome were also found to
match heavy- (VH) and light-chain (VL) transcriptome sequences
recovered from the CNS parenchyma and CSF of the same indi-
vidual (58). The CSF Ig proteome covered high percentages of VH
(CNS-77%; CSF-84%) and VL (CNS-39%; CSF-60%) transcrip-
tome sequences in one patient and were somewhat limited in a
second due to low CSF Ig quotient (58). The results indicate that
B cells and IgG in MS CSF accurately mirror the humoral immu-
nity present at the site of brain tissue damage (Figure 1). Indeed,
39–62% of the B cell transcriptome sequences recovered from
the meninges, demyelinating plaques, normal appearing white
matter, and CSF of the same MS patient were shared between
intrathecal compartments, indicating that a significant fraction
of intrathecal B cells trafficked through the CNS (59). Some
expanded B cells clones, however, appear restricted to regions of
MS plaque and meninges, suggesting some potential for localized
tissue injury (59).

Interestingly, recent studies have questioned whether the CSF-
restricted OCBs identified by isoelectric focusing are truly exclu-
sive to the CNS (60). While the majority of CSF OCBs matched
IgG-VH transcripts only recovered from the CSF B cell transcrip-
tome, several OCB peptides matched bi-compartmental periph-
eral blood and CSF VH sequences. Although the type of MS
and disease therapies were not reported, lineage tree analysis of
bi-compartmental B cell populations suggested that these B cell
groups underwent immune stimulation on both sides of the
BBB (Figure 1). As a result, there remains the possibility that
CNS immune populations may maintain molecular links with the
periphery despite contrary data from isoelectric focusing.
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FIGURE 1 | Potential patterns of B cell trafficking in multiple sclerosis. (A) The predominant stream of migratory B cells from the periphery to the CNS are
likely to consist of either memory B cells or plasmablasts produced in the germinal centers of cervical lymph nodes. The presence of CSF B cell clones closely related
to germline sequences suggests that naïve B cells may transit the blood–brain barrier to populate meningeal germinal center-like structures and produce
CNS-restricted memory B cells. (B) Both migratory plasmablasts and memory B cells may contribute to the pool of central nervous system (CNS) antibody-secreting
cells that produce the oligoclonal bands. Memory B cells may also enter germinal centers in meningeal lymphoid aggregates or draining cervical lymph nodes,
resulting in further clonal expansion and affinity maturation. (C) A significant fraction of expanded B cell clones circulates between CNS compartments: cerebrospinal
fluid, meningeal lymphoid aggregates, parenchymal lesions, and normal white matter. Solid arrows represent established pathways; dashed arrows represent
putative pathways.

Ig VH gene usage from the periphery and CNS provides
additional data supporting compartmentalization of the humoral
immune response inMS patients. The analysis of Ig VH sequences
fromdemyelinating plaques andCSF of affected individuals reveal
substantial VH4 family bias compared to normal VH4 prevalence
(61, 62). Similar to patients with viral meningitis, CNS VH4
germline sequences displayed evidence of clonal expansion and
extensive somatic mutations consistent with antigen selection (53,
54). MS patient with the longest disease course had the largest
number of distinct IgG clonal populations, while the patients
with recent diagnoses had limited clonal populations. CSF B cells
from patients with a single demyelinating event (clinically isolated
syndrome) also showed clonally expanded, somatically hyper-
mutated VH genes (63, 64). Interestingly, both the overrepre-
sentation of VH4 family sequences (65) and a unique pattern
of somatic hypermutation “antibody gene signature” (66) within
the CSF Ig VH transcriptome predicted transition to clinically
definite MS. Recent deep sequencing of MS CSF VH repertoires
from six MS patients has also revealed an overrepresentation
of VH4-39, VH4-59, and VH4-61 heavy-chain sequences. The
bias of MS CSF B cell heavy chains to VH4 germline sequences
suggests that their basic structure may define an antigen-
binding pocket that favors interaction with target antigen(s). As
a result, a compartmental CNS humoral immune response may
be able to drive CNS injury independent of peripheral immune
activity.

Lastly, the GC-like structures or lymphoid infiltration have
been noted in a large proportion of meningeal tissue from sec-
ondary progressive early stage cortical biopsies (7, 8, 67, 68).
These CNS-specific immune infiltrates correlate with the sever-
ity of disease progression (8) and are associated with corti-
cal neuronal loss in adjacent gray matter (69). The composi-
tion of these infiltrates included B cells, T cells, and dendritic
cells, whose organization may resemble lymphoid follicles (7,
67). In addition, the presence of IgG and CXCL13 (7, 67) pro-
vide additional information, suggesting the active attraction and
maintenance of B cells in MS meninges. The identification of
CD19+CD38hiCD77+Ki67+Bcl2− centroblasts in the CSF
but not the peripheral blood of MS patients suggests that a com-
partmental humoral immune response in the MS CNS recapit-
ulates all stages of B cell differentiation and may create a self-
sufficient CNS response that is independent of the immune activ-
ity in the periphery (13). Additional data, however, are required
to establish the relationship between the generation and mainte-
nance of meningeal GC-like structures, intrathecal B cell clonal
populations, and progressive disease (Figure 1). Peripheral B cell
depletion, effective in early phase clinical trials in relapsingMS (9,
10), has not delivered similar efficacy for the treatment of primary
progressive disease (70). This could be directly related to the inef-
ficient depletion of the intrathecal B cell population in progressive
(71) versus relapsing MS (72) due to compartmentalization of
the B cell response in progressive disease and inefficient transit
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of anti-CD20 monoclonal antibody across the BBB. Interestingly,
intrathecal administration of anti-CD20 monoclonal antibody
rapidly depleted both peripheral and CD19+ B cells within days
of delivery (73). Therefore, intrathecal anti-CD20 therapy may
offer a novel avenue to evaluate the role of intrathecal B cell
inflammation in progressive disease. The recent development of
novel MRI techniques to identify meningeal follicles may offer a
non-invasive tool to correlate therapeutic response with changes
in meningeal inflammation (74).

CONCLUSION

Molecular analysis of the B cell response in MS has demonstrated
that antigen-experienced B cells are shared between multiple
CNS compartments and the peripheral immune response. Several
features of CNS clonal B cell populations suggest that B cell
subsets may not be shared between the CNS and periphery as
disease progresses and that meningeal GC-like structures may
support an independent, compartmentalized immune response
that is correlative with measures of CNS injury. The data support-
ing the trafficking of B cells back and forth across the BBB are
undermined by the technical constraints of single-cell PCR, deep

sequencing, and sampling errors. For instance, the VH sequences
defining the bi-compartmental B cell clones may be skewed by
errors in PCR sequencing, multiple cDNA copies from the same
cell, errors in flow cytometry, or limited blood and CSF sampling.
Future studies are needed to confirm present data using defined
MS cohorts at multiple stages of disease. The influence of current
MS therapeutics on B cell trafficking and survival may be critical
for understanding MS pathogenesis and establishing biomarkers
of disease activity and therapeutic efficacy.
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