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Dendritic cells (DCs) are highly specialized professional antigen-presenting cells that 
regulate immune responses, maintaining the balance between tolerance and immunity. 
Mechanisms via which they can promote central and peripheral tolerance include clonal 
deletion, the inhibition of memory T cell responses, T cell anergy, and induction of regu-
latory T cells (Tregs). These properties have led to the analysis of human tolerogenic DCs 
as a therapeutic strategy for the induction or re-establishment of tolerance. In recent 
years, numerous protocols for the generation of human tolerogenic DCs have been 
developed and their tolerogenic mechanisms, including induction of Tregs, are relatively 
well understood. Phase I trials have been conducted in autoimmune disease, with results 
that emphasize the feasibility and safety of treatments with tolerogenic DCs. Therefore, 
the scientific rationale for the use of tolerogenic DCs therapy in the fields of transplan-
tation medicine and allergic and autoimmune diseases is strong. This review will give 
an overview on efforts and protocols to generate human tolerogenic DCs with focus on 
IL-10-modulated DCs as inducers of Tregs and discuss their clinical applications and 
challenges faced in further developing this form of immunotherapy.
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iNTRODUCTiON

Dendritic cells (DCs) have been progressively established as central players in immunity and toler-
ance. They are the most potent antigen-presenting cell (APC) of the immune system and termed 
professional APC as a result of their unique ability to capture and to present antigens to T cells, in 
particular for the stimulation of naïve T cells. This process is characterized as a bidirectional com-
munication between DCs and T cells, and results in the polarization and differentiation of various 
effector and regulatory T cell subpopulations. It is generally accepted that DCs play pivotal roles 
in tolerance induction and maintaining of immune-homeostasis and is explained further by their 
plasticity. DCs implicated in tolerance are in a different state of activation and/or differentiation. The 
surrounding microenvironment of DCs can affect the activation state of DCs leading to regulatory 
immune cells but it has also become evident that specialized subsets of DCs promote and maintain 
tissue homeostasis and tolerance. Focusing on the understanding of the immunobiology of tolero-
genic DCs has given us substantial insights on how we can generate and employ tolerogenic DCs for 
immunotherapeutic applications.

DCs AS ReGULATORS OF iMMUNiTY AND TOLeRANCe

Dendritic cells are a heterogeneous group of APC, which act as highly efficient regulators of immunity 
and key sentinels in a variety of tissues or lymphoid organs. In this regard, DCs can either function as 
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highly potent and specific inducers of immunity via the activation 
of lymphocytes and secretion of inflammatory mediators or as 
inducers of tolerance by various mechanisms of tolerance such 
as anergy and deletion of T cells or the instruction of Tregs (1).

Immature tissue-resident DCs encounter potential antigens 
via innate pattern-recognition receptors (PRRs), such as toll-like 
receptors (TLRs) or c-type-lectin receptors, take up the antigens 
via micropinocytosis and degrade them into smaller peptides, 
which can be presented to other immunes cells by surface 
displayed major histocompatibility complexes (MHC) (2). The 
antigen uptake triggers maturation processes of DCs that result 
in the upregulation of costimulatory molecules like CD40, CD80, 
CD86 and secretion of proinflammatory cytokines/interleukines 
(IL) like IL-1β, IL-12, IL-6, and TNF as well as more MHC–
peptide complexes (3). In order to reach T cells in secondary 
lymphoid organs, DCs upregulate trafficking receptors, such as 
CCR7, which enable them for migration to lymph nodes wherein 
they encounter naïve T cells which recognize the MHC–peptide 
complex with an antigen-specific T cell receptor (4). Sufficient 
activation and antigen recognition subsequently activate T cells 
to differentiate into T helper cells or cytotoxic T effector cells. 
With this in mind, it is easy to appreciate that DCs function as an 
important link between innate and adaptive immune responses.

Apart from the induction of efficient immune responses against 
invading pathogens, DCs do also exhibit regulatory functions in 
order to maintain central and peripheral tolerance. During steady 
state, DCs capture self-antigens and silence auto-reactive T cells 
(5). So-called tolerogenic DCs bear low amounts of costimulatory 
molecules on their surface and exhibit reduced secretion of 
proinflammatory IL-12 but high production of anti-inflammatory 
cytokines like IL-10 (6, 7). Tolerogenic DCs provide insufficient 
stimulatory signals for T cells and therefore drive naïve T cells to 
differentiate into Tregs rather than T effector cells (8). DCs which 
are not activated after phagocytosis of, for example apoptotic cells, 
exhibit a tolerogenic function via the secretion of transforming-
growth-factor-beta (TGF-β) and subsequent induction of Foxp3+ 
Tregs in the draining lymph nodes (9). Tregs can be induced 
by a variety of DCs in vivo. For one CD103+ DCs, which in the 
presence of retinoic acid in the gut, are able to activate gut T cell 
homing via CCR9 and α4β7 (10, 11). TGF-β and retinoic acid 
enhance the number of Foxp3+ Tregs, which is an example of how 
tolerogenic DCs in the gut induce Tregs (12, 13).

Although a variety of TLRs, such as TLR3, TLR4, TLR5, TLR7, 
and TLR8, can efficiently induce immune responses via DCs, 
TLR2, for instance, facilitates tolerance induction via promotion 
of IL-10 producing tolerogenic DCs in  vivo inhibiting type I 
interferon production via an inhibition of the TLR7/9 signaling 
pathway (14, 15). The maturation state of DCs alone does not 
define their potential to induce Tregs. In addition, the nature of 
the pattern recognition receptors or the expression of costimu-
latory or coinhibitory molecules by DCs affects the resulting 
immune response as well. Fully matured DCs are sufficient in the 
induction of T helper cell differentiation. Incomplete maturation 
of DCs (semi-mature DCs) or expression of inhibitory surface 
molecules results in the activation of Tregs, e.g., IL-10 producing 
T cells with regulatory potential in experimental autoimmune 
encephalomyelitis (EAE) (16, 17).

MeCHANiSMS OF iNDUCTiON AND 
FUNCTiON OF TOLeROGeNiC DCs

When analyzing tumor escape mechanisms scientists observed 
that cancer cells and the associated stroma converted myeloid DCs 
in the tumor microenvironment into tolerogenic phenotypes in 
order to induce Tregs, which subsequently dampened anti-tumor 
immunity (18, 19). The pool of tolerogenic and regulatory DCs 
is very heterogeneous and can be divided in naturally occurring 
regulatory DCs and induced tolerogenic DCs (5). Thymic DCs 
contribute to central tolerance induction by presentation of self-
antigen to thymocytes and are most likely influenced by thymic 
stromal lymphopoetin (TSLP) to show a tolerogenic phenotype 
and function (20). Most of the DCs described in certain tissues 
like pulmonary plasmacytoid or myeloid DCs have tolerogenic 
functions under steady state conditions.

Immature DCs (iDCs) are poorly immunogenic because 
of low surface expression of costimulatory molecules and only 
modest MHCII levels. Therefore, iDCs themselves are tolerance 
inducers under steady state conditions. Furthermore, repetitive 
stimulation of T cells with human iDCs can convert naïve T cells 
to Tregs (21, 22). This was also addressed in murine studies where 
antigen was given to mice without further maturation signals. 
Antigen-loaded DCs accumulated in secondary lymphoid organs 
where they promoted Treg differentiation and proliferation rather 
than inducing T effector cells (23).

In mucosal tissues such as lung and gut where a constant 
exposure to a variety of foreign antigens is given, DCs are kept 
in a tolerance promoting state by the action of IL-10 and TGF-β 
or enhanced production of CCL18 in the surrounding micro-
milieu (4, 24, 25). Most of these tolerogenic occurrences can be 
overwritten by inflammatory signals that convert tolerogenic 
DCs into an inflammatory phenotype. Though this is not the 
case for Langerhans cells (LCs) found in human skin as they most 
likely lack a high expression of PRRs like TLRs (5) and have been 
associated with tolerance induction as well as immunity. During 
leishmaniasis, parasite-infected DCs mediate protection against 
the infection by IL-12 production (26), but it has also been shown 
that a selective depletion of LCs from the DC population in the 
skin can attenuate the disease accompanied by increased num-
bers of CD4+Foxp3+ Tregs (27). In contact hypersensitivity (CHS) 
models, the role of LCs has also been controversially discussed. 
When UVR-depletion of LCs occurs during the sensitization 
phase, the ear swelling responses in CHS are reduced and Tregs 
are induced, but this is largely depending on the area and time of 
depletion (28, 29). Tolerogenic functions of LCs are mainly based 
on their low migratory properties, low expression of costimula-
tory molecules, and low secretion of cytokines (30).

Besides delivering costimulatory signals to T cells DCs also 
function as producers of mediators such as IL-12, a proinflamma-
tory cytokine driving Th1 cell differentiation of naïve T cells, or 
tolerance-promoting IL-10 on the other hand (31–33). Interleukin 
10 produced by tolerogenic iDCs is a prerequisite for Treg induc-
tion in a variety of different tolerance models like allergy and 
autoimmunity (33, 34). Other factors secreted by tolerogenic DCs 
involve TGF-β, although it is not clear if the tolerogenic capacity 
of DCs relies on TGF-β production because TGF-β can promote 
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Treg differentiation and drive Foxp3 expression in Tregs in the 
absence of DCs as well (5).

In mice that have been exposed to low doses of a contact aller-
gen, the cross talk between DCs and Tregs plays an important role 
to induce a protective mechanism against contact hypersensitiv-
ity (CHS) reactions (35). During low-zone tolerance CD4+CD25+ 
Tregs contact CD11c+ DCs via gap junctions and render them 
tolerogenic resulting in subsequent induction of contact allergen-
specific Tregs which inhibit the action of CD8+ T effector cells 
in CHS (35). In the human system, cell aggregates of Tregs and 
DCs have been observed pointing toward a DC/Treg cross talk 
inhibiting the maturation process in DCs (36).

Notably different populations of Tregs require various levels 
of costimulation provided by DCs. A strong CD80/CD86 signal 
may be sufficient in maintaining thymus-derived Tregs but low 
or no costimulation is required for maintenance Foxp3+ Tregs 
(37). Besides costimulatory molecules, DCs do also display 
membrane receptors that may modulate T effector cells during 
activation, in particular, immunoglobuline-like transcripts (ILT) 
receptors. This context, ILT4 is exclusively expressed on human 
myelomonocytic cells and interacts with MHCI molecules on 
T cells inhibiting subsequent activation (38–40). Programed 
death ligand 1 (PD-L1) and PD-L2 are expressed by human DCs 
activating T cells by engagement of T cell displayed PD-1 (41). 
Upregulation of PD-1 occurs after repetitive stimulations of T 
cells (e.g., in chronic viral infections) and is a characteristic of 
“exhausted” T cells. Effects facilitated by PD-1 resemble in most 
parts IL-10 receptor (IL-10R) pathways such as limitation of PI3K 
activation and restriction of costimulatory signaling (42).

Another mechanism by which DCs, in particular plasmacytoid 
DCs (pDCs), indirectly drive Treg differentiation is mediated by 
indoleamin-2,3-dioxygenase (IDO). The IDO-dependent degra-
dation of the essential amino acid tryptophan around T cells and 
concurrent production of toxic metabolites like kynurenines leads 
to an inhibition of translation efficiency and apoptosis induction 
in T cells (43). Apart from pDCs, IDO was also found on myeloid 
DCs in chronic hepatitis C infection in which IDO inhibitors may 
function as potent treatment options for patients (44).

The broad spectrum of tolerogenic DCs and the DC-induced 
Treg/T effector responses, which arise in the immune system 
are a challenge to clinical concepts in the treatment of allergies, 
autoimmunity, and allograft rejections and have to be critically 
discussed when DCs are modulated (tolerized) in vitro for clinical 
applications.

iNDUCeD TOLeROGeNiC DCs iN MAN

Immature dendritic cells (iDCs) that ensure immune tolerance 
under steady state conditions display all properties of tolerogenic 
DCs cells and it has already been shown that they are capable of 
inducing tolerance in vitro and in vivo. However, the main obsta-
cle for application of iDCs for treatment of excessive immune 
responses is their relatively unstable phenotype under inflamma-
tory conditions (45, 46). The proinflammatory environment of 
inflammatory disorders would probably lead to activation and 
maturation of iDCs resulting in immune activation opposing 

the requested immune tolerance. Furthermore, iDCs exhibit low 
expression of lymph node homing receptors, so it is very unlikely 
for them to encounter T cells, which is essential for their func-
tion. Therefore, many different protocols for ex vivo generation of 
tolerogenic DCs cells that bear a stabilized phenotype have been 
established (Figure 1). In general, tolerogenic DCs with individual 
varying immune-modulatory actions can be induced in vitro by 
a multitude of diverse approaches that include genetic engineer-
ing, exposure to immune-modulating pharmacological agents or 
addition of distinct cytokines and growth factors (47) (Figure 1). 
As the focus of this review is the induction of Tregs by tolerogenic 
DCs, it is essential to point out which different populations of 
Tregs can be generated by tolerogenic DCs in vitro and in vivo. 
Several subpopulations of Tregs that differ in the expression of 
surface markers and their way of function have been identified 
from which the most important ones are CD4+ Foxp3+ Tregs and 
CD4+ IL-10 producing Tr1 cells, which both can be induced or 
activated by tolerogenic DCs (48). Foxp3+ Tregs are highly CD25 
positive (49) and express low levels of CD127 (50) and of CD49d 
(51). Furthermore, they mainly exhibit their suppressive capacity 
via cell-to cell contacts. In contrast, Tr1 Tregs are characterized 
by high secretion of IL-10 and TGF-β and predominantly induce 
tolerance by cytokine-mediated mechanisms (52). However, it is 
worth noting that many Tregs that are induced by tolerogenic 
DCs are not further characterized regarding surface marker 
expression and mode of suppression.

Progress in the field of genetic manipulation has raised the 
opportunity to genetically modify DCs to induce a tolerogenic 
phenotype and function. For instance, knock-down of proinflam-
matory cytokines or molecules, such as IL-12 (53) or NFκB (54), 
leads to a reduced DC maturation and inhibits efficient T cell acti-
vation, whereas overexpression of death receptor ligands like, for 
example, Fas ligand (55) and PD-L1 (56) or immunoregulatory 
proteins like IDO (57) and cytotoxic T lymphocyte antigen 4 (58) 
directly induce apoptosis or suppress the immunogenic function 
of the responding T cells (Figure 1). However, genetically engi-
neered tolerogenic DCs can also be used to induce Tregs as DCs 
with genetically enhanced IL-10, TGF-β, or SOCS1 expression 
sustain an immature phenotype and promote the induction of 
Tregs (59–61) (Figure 1).

Furthermore, tolerogenic DCs can be induced by various dif-
ferent immune-modulating pharmacological agents that, among 
others, are vitamin D3, corticosteroids, rapamycin, cyclosporine, 
tacrolimus, aspirin, and retinoid acid (5) (Figure 1). Depending 
on the length and time point of drug treatment, some of these 
are also capable of inducing Tregs (Figure 2). First, exposure of 
vitamin D3 to monocyte-derived DCs results in the induction of 
semi-mature DCs, characterized by low expression of costimula-
tory molecules but augmented levels of IDO, IL-10, TNF-related 
apoptosis-induced ligand (Trail) and PDL-1 in which the latter 
ones are critical for the induction of IL-10 expressing Tregs 
(41, 62, 63). Intriguingly, vitamin D3 exposed to different DC 
subsets leads to induction of distinct Treg populations. Addition 
of vitamin D3 to skin LCs or CD141−CD1c+ blood cells results 
in induction of CD25+Foxp3+ Tregs (64, 65) whereas exposure 
of dermal DCs to vitamin D3 results in Foxp3− Tr1 cells (65). 
Corticosteroids are well known as immunosuppressive agents 
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and frequently used as drugs in transplantation medicine. The 
immunosuppressive capacity of corticosteroids at least partially 
depends on the induction of tolerogenic DCs (66). For example, 
dexamethasone-induced tolerogenic DCs that are characterized 
by low expression of MHC II and costimulatory molecules and 
enhanced levels of ILT2, ILT3 expression, and IL-10 secretion 
acquire the ability to induce contact-dependent Tregs that sup-
press T cell responses in an antigen-dependent manner (41). 
Additionally, treatment with prednisolone induces tolerogenic 
DCs that provoke regulatory T cell induction (67). Another 

immunosuppressive drug, rapamycin, that inhibits the protein 
kinase mTOR (mammalian target of rapamycin) has also been 
reported to induce CD4+CD25+Foxp3+ T cells either by acting 
directly on T cell differentiation (68) or indirectly via induction 
of tolerogenic DCs that stimulate Treg expansion in  vitro and 
in  vivo (69–71) (Figure  2). Moreover, as already mentioned 
above, reduced NFκB activation in DCs leads to induction of a 
tolerogenic phenotype. In line with these results, treatment of 
DCs with the NFκB inhibitor BAY-117085 elicits Treg-inducing 
capabilities (72).

FiGURe 1 | Differentiation of monocyte-derived tolerogenic DCs. DCs differentiate from DC precursors in the peripheral blood under the influence of IL-4 and 
GM-CSF in vitro into immature DCs (iDCs). Repetitive stimulations of T cells with iDCs result in the induction of anergic/regulatory T cells (Tregs). In the presence of 
sufficient maturation signals, which are provided by bacterial components via toll-like receptors or by distinct combinations of proinflammatory cytokines, DCs 
mature into a migratory/stimulatory phenotype. Incubation of iDCs with several mediators or genetic modification of DCs in the presence or absence of maturation 
factors can lead to the generation of tolerogenic DCs, which inhibit effector/cytotoxic T cells responses by induction of anergy, apoptosis, or Tregs.
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In addition to genetic manipulation and immune- 
modulatory drugs, different cytokines and growth factors have 
also been reported to induce tolerogenic DCs. These include 
hepatocyte growth factor (HGF), vascular intestinal peptide 
(VIP), thymic stromal lymphopoietin, PGE2, GM-CSF, and 
TNF, some of which can also induce tolerogenic DCs with 
Treg inductive capacity (73) (Figures  1 and 2). DCs, gener-
ated in the presence of HGF, display a tolerogenic phenotype 
characterized by a high IL-10/IL-12 ratio and are capable of 
inducing Foxp3+ Tregs that show high expression of IL-10 in an 
at least partially ILT-3 dependent manner (74). Furthermore, 
among other immunosuppressive functions, the immune-
modulatory neuropeptide VIP has also been reported to induce 
tolerogenic DCs that are potent inducers of regulatory Tr1 cells 
that secrete high levels of IL-10 and TGF-β (75, 76). However, 
there are also different reports that VIP-treated DCs induce 
CD4+CD25+Foxp3+ Tregs (77–79) (Figure  2). Additionally, 
thymic stromal lymphoprotein enables DCs to induce differ-
entiation and proliferation of CD4+CD25+Foxp3+ T cells from 
CD4+CD25− thymocytes (80).

Last but not least, the two most prominent immunosuppres-
sive cytokines, TGF-β and IL-10, alone or in combination are also 
capable of inducing tolerogenic DCs that acquire the ability to 
induce Tregs. However, as a study by Boks et al. identified IL-10-
modulated DCs as the most potent tolerogenic DC subset for 
clinical application, they will be further highlighted in the next 
section (81).

iL-10-MODULATeD TOLeROGeNiC DCs 
AS iNDUCeRS OF ReGULATORY T CeLLS

The immune-modulatory cytokine IL-10 plays an indispen-
sable role in the induction of tolerance and the limitation 
of excessive immune responses. IL-10 exerts its immuno-
suppressive function after binding to the IL-10 receptor 
complex that further leads to downstream activation and 
homodimerization of STAT3 through tyrosin phospho-
rylation of Tyk2/JAK1 (82). In general, IL-10 acts on DCs by 
downregulation of MHC II and costimulatory molecules in 
combination with reduced release of IL-6, IL-1β, TNF, and 
most prominent IL-12 (83–86) Additionally, DCs that are 
cultured in the presence of IL-10 upregulate the expression 
of inhibitory molecules like HLA-G (85, 87, 88), ILT2, ILT4 
(89), and HO-1 (90) and produce more IL-10 (91), resulting 
in a positive feedback loop.

Many different protocols for the addition of exogenous IL-10 
to DC cultures have been established (Figure 3). Addition of 
IL-10 during the entire DC culture starting with monocytes in 
the presence of IL-4 and GM-CSF results in cells that exhibit a 
macrophage-like phenotype characterized by high expression 
of CD14 and CD16. Therefore, it was assumed that IL-10, 
during early stages, inhibits DC generation by favoring mac-
rophage differentiation (92). However, it has subsequently been 
reported that IL-10 added at early stages of DC generation out 
of monocytes in the presence of IL-4 and GM-CSF results in 
CD14+CD16+CD83+CD86+ and HLA-DR+ tolerogenic myeloid 

cells that additionally express tolerance-associated proteins 
like HLA-G, ILT2, ILT3, and ILT4 and secrete high amounts of 
IL-10 (88). These IL-10-modulated DCs (DC-10) are pheno-
typically and functionally stable after stimulation. Moreover, 
they are capable of inducing antigen-specific, IL-10 producing 
Tr1 Tregs in an ILT4-, HLA-G-, and IL-10-dependent mecha-
nism (85, 88) (Figure 3). In mixed leukocyte reaction, those 
induced Tr1 Tregs that can be characterized by coexpression 
of CD49b and LAG-3 suppress primary T cell responses by 
secretion of IL-10 and TGF-β (93). Although, when IL-10 is 
added after generation of iDCs without additional maturation 
stimuli, the resulting DCs express the tolerogenic IL-10 DCs 
phenotype that is described above and acquire the ability to 
induce anergic T cells though no regulatory activity of those 
anergic T cells was detected (94) (Figure  3). Intriguingly, 
simultaneous addition of IL-10 to a strong maturation stimulus 
that consists of IL-6, IL1β, PGE2, and TNF results in DCs with 
even stronger tolerogenic properties and a stable phenotype 
under proinflammatory conditions (95, 96). Treatment of naïve 
CD4+ or CD8+ T cells with those IL-10-modulated DCs results 
in induction of anergic Tregs that on their part acquire the 
capability to inhibit CD4+ and CD8+ T cell activation and func-
tion (Figure 3). In this case, the induction of Tregs is IL-10 and 
TGF-β independent and at least partially mediated by CTLA-4 
(97). Analysis of signal transduction events of the induced 
Tregs demonstrated downregulation of MAPKs, JNK, and ERK 
but a significant upregulation of p38. The elevated induction of 
p38 is essential for expression of the cell cycle inhibitor p27Kip1 
and required for their suppressive activity (98). Intriguingly, 
yet unpublished data indicate that those DCs, when IL-10 is 
added during a maturation step for the last two days of DC 
culture, are consisting of two distinct subpopulations: an 
immature phenotype of CCR7−CD83−HLA-DRlow and a mature 
subset of CCR7+CD83+HLA-DRhigh IL-10 DCs but both express 
co-inhibitory molecules ILT-3 and ILT-4 (Kryczanowsky and 
Steinbrink, unpublished observations) (Figure  3). However, 
the CCR7+CD83+HLA-DRhigh IL-10 DC subpopulation induces 
a Treg population with a stronger suppressive capacity, exerts 
high migratory capacity toward secondary lymphoid organs, 
and displays a stable phenotype under inflammatory condi-
tions. When IL-10 is added to fully mature DCs, it has no 
tolerogenic effect on DC function due to down-regulated IL-10 
receptor expression (95, 99).

Furthermore, Gregori et  al. demonstrated the existence of 
IL-10-modulated DCs in man in vivo. Those represent 0.3% of 
the blood mononuclear cells and differ from mDCs and pDCs 
as they are CD14bright, CD16+ and express CD83 (88). They can 
also be separated by macrophages due to their DC morphology. 
Furthermore, they are CD11c+, CD11b+ and express CD80, 
CD86, and HLA-DR. (88). This suggested important role for 
IL-10-modulated DCs in vivo is further emphasized by patients 
that suffer from hyper IgE syndrome, a disease that results from 
deficient IL-10 signaling due to defective STAT3. DCs isolated 
from those patients show an impaired sensitivity toward IL-10 
leading to a reduced capacity to induce Tregs (100).

Comparative analysis of a multitude of protocols of monocyte-
derived tolerogenic DCs demonstrated that Tregs induced by 
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IL10-DCs display an enhanced suppressive capacity compared 
to Tregs generated by TGF-β-, dexamethasone-, vitamin D3-, 
or rapamycin-induced tolerogenic DCs (81). Moreover, IL-10-
modulated DCs are terminally differentiated as they are stable 
under various different inflammatory conditions what makes 
them a promising tool for in vivo application in diseases that are 
linked to enhance immune activation.

CLiNiCAL APPLiCATiON OF 
TOLeROGeNiC DCs

The data discussed above greatly expand our current understand-
ing of the plasticity of distinct tolerogenic DC subsets in regula-
tion of inflammation and homeostasis. The most challenging 
issue is now to translate our knowledge of tolerogenic DCs into 
preclinical mouse models and into patients to prove the therapeu-
tic potential of DCs in man.

In contrast to tolerogenic DCs, immunostimulatory DCs are 
increasingly utilized in cancer immunotherapy (101, 102). The 
vast majority of these DC vaccination trials in cancer revealed 
that the administration of autologous DCs is well tolerable and 
strongly immunogenic and multiple approaches for DC gen-
eration, maturation, antigen loading, and application routes and 
doses have been developed and tested, so that these comprehen-
sive knowledge may support the development of DC vaccination 

strategies with tolerogenic DCs. Specific therapy to prevent or 
to inhibit immune activation is highly desired in allergic and 
autoimmune diseases and in transplantation medicine. Current 
therapies, which include immunosuppressive drugs, often do 
not specifically target the cause of disease or transplant rejection 
and can be associated with severe side effects. Ex vivo generated 
tolerogenic DCs are therefore an attractive preventive or thera-
peutic approach to enhance, maintain or restore immunological 
tolerance. Evidence from a multitude of animal models strongly 
demonstrated the efficiency of tolerogenic DCs in the fields of 
allergy, autoimmunity and transplantation medicine (5, 103). 
However, for DC-based immunotherapy in man, the methods 
for tolerogenic DC generation have to be converted into clini-
cally applicable protocols and the properties of tolerogenic DCs, 
including phenotype, stability, migratory capacity, and mode of 
tolerance induction (e.g., T cell anergy or apoptosis, induction of 
Tregs, interaction with other immune cells) have to be analyzed 
in comparative studies.

There have been a large number of in vitro studies performed 
as a proof-of-principle that human tolerogenic DCs can efficiently 
reduce effector T cell responses, in part by activation or expansion 
of Tregs as discussed above (25, 64, 66, 68, 81, 100). In this context, 
it has been shown that DCs can act in an antigen-specific fashion 
after loading with endogenous or exogenous antigens. Excitingly, 
several groups have started to study the properties of tolerogenic 
DCs in patients suffering from allergic or autoimmune diseases and 
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to analyze the potential of tolerogenic DCs in treatment of allergic, 
inflammatory and autoimmune disorders. Vitamin D3-conditioned 
tolerogenic DCs obtained from relapsing–remitting multiple 
sclerosis patients loaded with myelin peptides as specific antigen, 
expressed a semi-mature phenotype and an anti-inflammatory pro-
file and induced a stable antigen-specific T cell hypo-responsiveness 
(66). Another study revealed that clinically grade dexamethasone 
and vitamin D3-treated tolerogenic DCs from patients with rheu-
matoid arthritis suppressed mature antigen-specific DCs induced 
T cell activation and rendered T cells unresponsive to further 
restimulation (104). In addition, IL-10-modulated DCs generated 
from atopic asthmatic donors suppress specific allergen-driven 
proliferative and Th2 responses of autologous effector T cells and 
convert these effector T cells into Tregs (105).

One of the major concerns associated with tolerogenic 
DC-based immunotherapy is the functional stability of the 
regulatory phenotype, particularly when targeting inflamma-
tory diseases (e.g., allergies and autoimmune diseases). DCs 
express receptors for chemokines, growth factors, and PRRs 
that can be activated by a number of proinflammatory mediators 
and microbial and non-microbial agents in the microenviron-
ment (106–108). Therefore, a potential risk of ex vivo-generated 
tolerogenic DCs is that they lose their regulatory properties 
and switch to an immunostimulatory phenotype, resulting in 
an activation rather inhibition of (antigen-specific) immune 
responses. Thus, clinically applicable tolerogenic DCs must 
be tested rigorously for robust stability before transfusion 
into patients to assess the impact of maturation provoking or 
otherwise inflammatory signals on the tolerogenic phenotype 
of differentiated DCs. In this context, Boks et al. performed a 
comparative analysis of several ex vivo generated tolerogenic 
DCs to test their potential for clinical applications as discussed 
above (81). Among other characteristics, they found that IL-10-
modulated tolerogenic DCs maintained their regulatory prop-
erties in the presence of TLR and proinflammatory cytokines 
whereas dexamethasone-, rapamycin-, or TGF-β-induced DCs 
in part lost their tolerogenic phenotype and their capacity of 
immune regulation. Furthermore, important for the induction 
of suppressive immune responses in T cells is the CCR7-directed 
migratory capacity of tolerogenic DCs toward the secondary 
lymphatic organs (109). Therefore, a high and under proinflam-
matory condition stable expression of CCR7, resulting in a 
high migratory capability, as shown for IL-10-modulated DCs 
(Kryczanowsky and Steinbrink, unpublished observation), is a 
prerequisite for an optimal tolerogenic DCs subset as candidate 
for in vivo vaccination studies. In addition, the route, dose, and 
frequency of DC application have to be identified in man for the 
development of optimized protocol for tolerogenic DC-based 
immunotherapy. In a mouse model of collagen-induced arthri-
tis, low doses of DCs showed excellent anti-arthritis activity by 
induction of Foxp3+ Tregs, whereas high numbers accelerated 
arthritis symptoms (45). In contrast to these results, other groups 
using high number of tolerogenic DCs found a protective effect 
(110–112). These different results may be due to different routes 
of applications used. In the studies with high doses, tolerogenic 
DCs were administered by the i.v. or i.p. route whereas in the 
study where low dose application proved to be more effective, 

the DCs were injected s.c. Therefore, further studies addressing 
tolerogenic DCs migration in vivo will be useful to determine 
the optimal route, dose, and frequency of application for each 
tolerogenic DC subset and disease.

The first study of tolerogenic DCs in man was conducted in 
2001 in Ralf Steinman’s lab. They used iDCs, generated in the 
presence of IL-4 and GM-CSF which were pulsed with antigens 
and subsequently s.c. injected (2  ×  107/subject) into healthy 
donors (113, 114). They demonstrated that the DC adminis-
tration was well tolerated and that the treatment suppressed 
antigen-specific CD8+ T cells responses and that this immune 
regulation lasted for >6 months. They were the first to show the 
tolerogenic effect of DCs in vivo and at this time their results 
urge caution with the use of iDCs for enhancement of tumor or 
microbial immunity.

More recently, a randomized, double-blind phase I study was 
conducted in type I diabetic patients who required insulin treat-
ment for at least 5 years (115). Patients were injected with autologous 
monocyte-derived DCs that were either un-manipulated (control) 
or were treated ex vivo with anti-sense oligonucleotides targeting 
CD40, CD80, and CD86 to silence these molecules. During the 
trial protocol, the 10 study patients were i.d. injected with 1 × 107 
DCs four times at 2-week intervals and were monitored subse-
quently for a period of 12 months. DC treatment was well tolerated 
without any side effects and did not induce autoantibody produc-
tion. In addition, patients did not lose their capability to mount T 
cell responses to viral or allogeneic cells, indicating the absence of 
systemic immunosuppression. Analysis of the immune response 
in vivo after vaccination with these DCs revealed no alteration in 
the composition and activation of immune cells/responses with 
exception of increased IL-4 and IL-10 levels and an upregulation of 
the frequency of potentially beneficial B220+CD11c− B cell popula-
tion whose suppressive activity was shown in in vitro experiments. 
Overall, there were no significant differences between control and 
tolerogenic DCs in all parameters tested.

Another clinical phase I trial was conducted in patients 
suffering from rheumatoid arthritis. Here, tolerogenic DCs 
were generated in the presence of an NF-κB inhibitor. They 
are deficient for CD40 expression but express CD86 (116) and 
were loaded with four citrullinated peptide antigens. A total of 
18 patients received a single dose (either one or five million) of 
i.d. applicated tolerogenic DCs and were evaluated at baseline, 
and after 3 and 6 months after therapy. Vaccinations with these 
tolerogenic DCs were well tolerated and no adverse effects in 
any patient throughout this study have been observed (117). The 
main conclusion of these first two trails of tolerogenic DC-based 
immunotherapy is that i.d. injection of tolerogenic DCs appears 
to be safe and do not enhance autoimmune responses. Currently, 
a randomized placebo-controlled dose escalation phase I study 
was started and is still ongoing in which rheumatoid arthritis 
patients are injected intra-articularly (AUTODECRA trial) with 
autologous tolerogenic and antigen-pulsed DCs (117).

CONCLUSiON

It has been shown that multiple mediators can induce a tolerogenic 
phenotype in human DCs that, among other mechanisms, exploit 
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their regulatory capacity through the induction or expansion of 
Tregs. These tolerogenic DCs not only employ secreted mediators 
and inhibitory receptors to drive Treg generation but can also 
provide additional signals to direct Tregs to the anatomical site of 
function.

A better understanding of the phenotypical properties, the 
precise molecular mechanisms, and the immunological functions 
of tolerogenic DCs will provide essential information for rational 
design of tolerogenic DC-based immunotherapies. A major chal-
lenge in the future will be to identify the most appropriate tolero-
genic DC population for defined applications and to optimize 
the generation protocols, including dose, route, and frequency 
of administration. In the long run, these findings will support 
the development of novel and innovative immunotherapeutic 

approaches for the control of allergic and autoimmune diseases 
and allograft rejections.
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