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Natural killer (NK) cells are essential components of the innate immune system and play 
a critical role in host immunity against cancer. Recent progress in our understanding 
of NK cell immunobiology has paved the way for novel NK cell-based therapeutic 
strategies for the treatment of cancer. In this review, we will focus on recent advances 
in the field of NK cell immunotherapy, including augmentation of antibody-dependent 
cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immu-
notherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or 
engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack 
non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be 
achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, 
a number of factors limit the application of NK cell immunotherapy for the treatment of 
cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, 
efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by devel-
oping strategies to manipulate the NK cell product, host factors, and tumor targets 
are the subject of intense research. In the preclinical setting, genetic engineering of 
NK cells to express CARs to redirect their antitumor specificity has shown significant 
promise. Given the short lifespan and potent cytolytic function of mature NK cells, they 
are attractive candidate effector cells to express CARs for adoptive immunotherapies. 
Another innovative approach to redirect NK cytotoxicity towards tumor cells is to 
create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against 
tumor-associated antigens. These are exciting times for the study of NK cells; with 
recent advances in the field of NK cell biology and translational research, it is likely that 
NK cell immunotherapy will move to the forefront of cancer immunotherapy over the 
next few years.
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iNTRODUCTiON

Natural killer (NK) cell-mediated cytotoxicity contributes to the 
innate immune response against various malignancies, including 
leukemia (1, 2). The antitumor effect of NK cells is a subject of 
intense investigation in the field of cancer immunotherapy. In 
this review, we will focus on recent advances in NK cell immu-
notherapy, including augmentation of antibody-dependent 
cytotoxicity, manipulation of receptor-mediated activation, and 
adoptive immunotherapy with ex vivo-expanded, chimeric anti-
gen receptor (CAR)-engineered, or engager-modified NK cells.

BiOLOGY OF NK CeLLS ReLevANT TO 
ADOPTive iMMUNOTHeRAPY

Natural killer cells are characterized by the lack of CD3/TCR 
molecules and by the expression of CD16 and CD56 surface 
antigens. Around 90% of circulating NK cells are CD56dim, 
characterized by their distinct ability to mediate cytotoxicity in 
response to target cell stimulation (3, 4). This subset includes 
the alloreactive NK cells that play a central role in targeting leu-
kemia cells in the setting of allogeneic hematopoietic stem cell 
transplant (HSCT) (5). The remaining NK cells, predominantly 
housed in lymphoid organs, are CD56bright, and although less 
mature (“unlicensed”) (3, 6, 7), they have a greater capability to 
secrete and respond to cytokines (8, 9). CD56bright and CD56dim 
NK cells are also distinguished by their differential expression 
of FcγRIII (CD16), an integral determinant of NK-mediated 
antibody-dependent cellular cytotoxicity (ADCC), with CD56dim 
NK cells expressing high levels of the receptor, while CD56bright 
NK cells are CD16 dim or negative (6). In contrast to T and 
B lymphocytes, NK cells do not express rearranged, antigen-
specific receptors; rather, NK effector function is dictated by 
the integration of signals received through germ-line-encoded 
receptors that can recognize ligands on their cellular targets. 
Functionally, NK cell receptors are classified as activating or 
inhibitory. NK cell function, including cytotoxicity and cytokine 
release, is governed by a balance between signals received from 
inhibitory receptors, notably the killer Ig-like receptors (KIRs) 
and the heterodimeric C-type lectin receptor (NKG2A), and 
activating receptors, in particular the natural cytotoxicity recep-
tors (NCRs) NKp46, NKp30, NKp44, and the C-type lectin-like 
activating immunoreceptor NKG2D (9).

The inhibitory KIRs (iKIRs) with known HLA ligands 
include KIR2DL2 and KIR2DL3, which recognize the HLA-C 
group 1-related alleles characterized by an asparagine residue 
at position 80 of the α-1 helix (HLA-CAsn80); KIR2DL1, which 
recognizes the HLA-C group 2-related alleles characterized by 
a lysine residue at position 80 (HLA-CLys80); and KIR3DL1, 
which recognizes the HLA-Bw4 alleles (9, 10). NK cells also 
express several activating receptors that are potentially specific 
for self-molecules. KIR2DS1 has been shown to interact with 
group 2 HLA-C molecules (HLA-C2), while KIR2DS2 was 
recently shown to recognize HLA-A*11 (10, 11). Hence, these 
receptors require mechanisms to prevent inadvertent activation 
against normal tissues, processes referred to as “tolerance to self.” 

Engagement of iKIR receptors by HLA class I leads to signals 
that block NK-cell triggering during effector responses. These 
receptors explain the “missing self ” hypothesis, which postulates 
that NK cells survey tissues for normal levels of the ubiquitously 
expressed MHC class I molecules (12, 13). Upon cellular trans-
formation or viral infection, surface MHC class I expression on 
the cell surface is often reduced or lost to evade recognition by 
antitumor T cells. When a mature NK cell encounters trans-
formed cells lacking MHC class I, their inhibitory receptors are 
not engaged, and the unsuppressed activating signals, in turn, 
can trigger cytokine secretion and targeted attack of the virus-
infected or transformed cell (13, 14). In parallel, cellular stress 
and DNA damage (occurring in cells during viral or malignant 
transformation) results in upregulation of “stress ligands” that 
can be recognized by activating NK receptors. Thus, human 
tumor cells that have lost self-MHC class I expression or bear 
“altered-self ” stress-inducible proteins are ideal targets for NK 
recognition and killing (14–16). NK cells directly kill tumor cells 
through several mechanisms, including release of cytoplasmic 
granules containing perforin and granzyme (16–18), expression 
of tumor necrosis factor (TNF) family members, such as FasL 
or TNF-related apoptosis-inducing ligand (TRAIL), which 
induce tumor cell apoptosis by interacting with their respective 
receptors Fas and TRAIL receptor (TRAILR) (16–19) as well as 
ADCC (9).

iNTeRACTiON BeTweeN NATURAL 
KiLLeR CeLLS AND OTHeR iMMUNe 
SUBSeTS

Increasing understanding of NK cell biology and their interaction 
with other cells of the immune system has led to several novel 
immunotherapeutic approaches as discussed in this review. 
NK cells produce cytokines that can exert regulatory control of 
downstream adaptive immune responses by influencing the mag-
nitude of T cell responses, specifically T helper-1 (TH1) function 
(20). NK cell function, in turn, is regulated by cytokines, such 
as IL-2, IL-15, IL-12, and IL-18 (21), as well as by interactions 
with other cell types, such as dendritic cells, macrophages, and 
mesenchymal stromal cells (10, 22, 23). IL-15 has emerged as a 
pivotal cytokine required for NK cell development and mainte-
nance. Whereas mice deficient in IL-2 (historically the cytokine 
of choice to expand and activate NK cells) have normal NK cells, 
IL-15-deficient mice lack NK cells (24).

Several cytokines are also known to inhibit NK cell activation 
and function, thus playing a crucial role in tumor escape from NK 
immune surveillance. Recently, considerable attention has been 
paid to the inhibitory effects of transforming growth factor-beta 
(TGF-β) and IL-10 on NK cell cytotoxicity (12, 25, 26). Several 
groups have shown that secretion of TGF-β by tumor cells results 
in downregulation of activating receptors, such as NKp30 and 
NKG2D, with resultant NK dysfunction (25, 26). Similarly, IL-10 
production by acute myeloid leukemia (AML) blasts induces 
upregulation of NKG2A with significant impairment in NK 
function (3).
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MODULATiON OF ANTiBODY-
DePeNDeNT CeLLULAR CYTOTOXiCiTY

The CD56dim subset of NK cells expresses the Fcγ receptor CD16, 
through which NK cells mount ADCC, providing opportunities 
for its modulation to augment NK effector function (27, 28). 
In fact, a number of clinically approved therapeutic antibod-
ies targeting tumor-associated antigens (such as rituximab 
or cetuximab) function at least partially through triggering 
NK cell-mediated ADCC. Several studies using mouse tumor 
models have established that efficient antibody–Fc receptor 
(FcR) interactions are essential for the efficacy of monoclonal 
antibody (mAb) therapy, a mainstay of cancer therapy (28, 29). 
Based on this premise, Romain et al. successfully engineered the 
Fc region of the IgG mAb, HuM195 targeting the AML leuke-
mia antigen CD33, by introducing the triple mutation S293D/
A330L/I332E (DLE). Using timelapse imaging microscopy in 
nanowell grids (TIMING, a method of analyzing kinetics of 
thousands of NK cells and mAb-coated targets), they dem-
onstrated that the DLE-HuM195 antibody increased both the 
quality and quantity of NK cell-mediated ADCC by recruiting 
NK cells to participate in cytotoxicity via CD16-mediated 
signaling. NK cells encountering DLE-HuM195-coated targets 
induced rapid target cell apoptosis by promoting conjugation 
to multiple target cells (leading to increased “serial killing” of 
targets), thus inducing apoptosis in twice the number of targets 
as the wild-type mAb (27).

Additional approaches under investigation to enhance 
NK cell-mediated ADCC include antibody engineering and 
therapeutic combination of antibodies predicted to have syner-
gistic activity. For example, mogamulizumab (an anti-CCR4 mAb 
recently approved in Japan) is defucosylated to increase binding 
by FcγRIIIA and thereby enhances ADCC. Mogamulizumab suc-
cessfully induced ADCC activity against CCR4-positive cell lines 
and inhibited the growth of EBV-positive NK-cell lymphomas in 
a murine xenograft model (30). These findings suggest that moga-
mulizumab may be a therapeutic option against EBV-associated 
T and NK-lymphoproliferative diseases (30). Obinutuzumab 
(GA101) is a novel type II glycoengineered mAb against CD20 
with increased FcγRIII binding and ADCC activity. In contrast to 
rituximab, GA101 induces activation of NK cells irrespective of 
their inhibitory KIR expression, and its activity is not negatively 
affected by KIR/HLA interactions (31). These data show that 
modification of the Fc fragment to enhance NK-mediated ADCC 
can be an effective strategy to augment the efficacy of therapeutic 
mAbs (31).

Although enhanced NK-mediated ADCC occurs in the 
presence of certain mAbs, in the case of non-engineered mAbs 
(such as rituximab), this NK-mediated cytotoxicity is typically 
still under the jurisdiction of KIR-mediated inhibition. However, 
ADCC responses can be potentiated in vitro in the presence of 
antibodies that block NK cell inhibitory receptor interaction 
with MHC class I ligands (32). These include the use of anti-KIR 
Abs to block the interaction of iKIRs with their cognate HLA 
class I ligands. To exploit this pathway pharmacologically, a 
fully humanized anti-KIR mAb 1-7F9 (IPH2101) (33) with the 
ability to block KIR2DL1/L2/L3 and KIR2DS1/S2 was generated. 

In vitro, anti-KIR mAbs can augment NK cell-mediated lysis of 
HLA-C-expressing tumor cells, including autologous AML blasts 
and autologous CD138+ multiple myeloma (MM) cells (34). 
Additionally, in a dose-escalation phase 1 clinical trial in elderly 
patients with AML, 1-7F9 mAb was reported to be safe and could 
block KIRs for prolonged periods (35). A recombinant version 
of this mAb with a stabilized hinge (lirilumab) was recently 
developed. Lirilumab is a fully humanized IgG4 anti-KIR2DL1, 
-L2, -L3, -S1, and -S2 mAb. The iKIRs targeted by lirilumab col-
lectively recognize virtually all HLA-C alleles, and the blockade of 
the three KIR2DLs allows targeting of every patient without the 
need for prior HLA or KIR typing (33, 34). Furthermore, the com-
bination of an anti-KIR mAb with the immunomodulatory drug 
lenalidomide was shown to potentiate ADCC and is being tested 
in a phase 1 clinical trial in patients with MM [NCT01217203 
(35)]. A potential concern is related to how inhibitory KIR block-
ade may impact on the ability of NK cells to discriminate self, 
healthy cells from abnormal virally infected or cancerous cells. 
Preliminary in vitro data suggest that Ab blockade of iKIRs will 
preferentially augment the ADCC response, without increasing 
cytotoxicity against self healthy cells (32). It is reassuring that 
in the IPH2101 phase 1 studies, no alterations in the expression 
of major inhibitory or activating NK receptors or frequencies 
of circulating peripheral lymphocytes were reported, indicat-
ing that the Ab does not induce clinically significant targeting 
of normal cells by NK cells (35). Lin et al. recently reported on 
the application of an agonistic NK cell-targeted mAb to augment 
ADCC (36). Following FcR triggering during ADCC, expression 
of the activation marker CD137 is increased. Agonistic antibodies 
targeting CD137 have been reported to augment NK-cell func-
tion, including degranulation, secretion of IFN-γ, and antitumor 
cytotoxicity in in vitro and in vivo preclinical models of tumor 
(36–39). The combination of the agonistic anti-CD137 antibody 
with rituximab is currently being evaluated in a phase 1 trial in 
patients with lymphoma [NCT01307267 (35–37)].

Other factors, such as specific CD16 polymorphisms and 
NKG2D engagement, can also influence ADCC, with certain 
polymorphisms (such as FcγRIIIa-V158F polymorphism) result-
ing in a stronger IgG binding (40). These findings are clinically 
relevant, as supported by the observation that patients with 
non-Hodgkin lymphoma (NHL) with the FcγRIIIa-V158F poly-
morphism experienced improved clinical response to rituximab 
(41, 42). In summary, several antibody combinations designed 
to boost ADCC have shown promising results in preclinical and 
early clinical trials, thus warranting further study of this strategy 
to enhance NK cell activity against tumor cells.

ADOPTive TRANSFeR OF AUTOLOGOUS 
NK CeLLS

The early studies of adoptive NK cell therapy focused on enhanc-
ing the antitumor activity of endogenous NK cells (43). Initial 
trials of adoptive NK therapy in the autologous setting involved 
using CD56 beads to select NK cells from a leukapheresis product 
and subsequently infusing the bead-selected autologous NK cells 
into patients (43, 44). Infusions were followed by administration 
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of systemic cytokines (most commonly IL-2) to provide addi-
tional in  vivo stimulation and support their expansion. This 
strategy met with limited success due to a combination of factors 
(44). Although cytokine stimulation promoted NK cell activation 
and resulted in greater cytotoxicity against malignant targets 
in  vitro, only limited in  vivo antitumor activity was observed 
(43–45). Similar findings were observed when autologous NK 
cells and systemic IL-2 were given as consolidation treatment 
to patients with lymphoma who underwent autologous BMT 
(46). The poor clinical outcomes observed with adoptive transfer 
of ex vivo activated autologous NK cells followed by systemic 
IL-2 were attributed to three factors: (1) development of severe 
life-threatening side effects, such as vascular leak syndrome as a 
result of IL-2 therapy; (2) IL-2-induced expansion of regulatory 
T cells known to directly inhibit NK cell function and induce 
activation-induced cell death (47–49); and (3) lack of antitumor 
effect related to the inhibition of autologous NK cells by self-HLA 
molecules. Strategies to overcome this autologous “checkpoint,” 
thus redirecting autologous NK cells to target and kill leukemic 
blasts are the subject of intense investigation (33–35). These 
include the use of anti-KIR Abs (such as the aforementioned 
lirilumab) to block the interaction of inhibitory receptors on the 
surface of NK cells with their cognate HLA class I ligand.

eXPLOiTiNG THe ALLOReACTiviTY OF 
ALLOGeNeiC NK CeLLS – ADOPTive 
iMMUNOTHeRAPY AND BeYOND

An alternative strategy is to use allogeneic instead of autologous 
NK cells, thus taking advantage of the inherent alloreactivity 
afforded by the “missing self ” concept (13). Over the past decade, 
adoptive transfer of ex vivo-activated or -expanded allogeneic NK 
cells has emerged as a promising immunotherapeutic strategy for 
cancer (24, 50–52). Allogeneic NK cells are less likely to be subject 
to the inhibitory response resulting from NK cell recognition of 
self-MHC molecules as seen with autologous NK cells. A number 
of studies have shown that infusion of haploidentical NK cells to 
exploit KIR/HLA alloreactivity is safe and can mediate impres-
sive clinical activity in some patients with AML (50–52). In fact, 
algorithms have been developed to ensure selection of stem cell 
donors with the greatest potential for NK cell alloreactivity for 
allogeneic HSCT (50).

Promising results in the HSCT setting suggest that the applica-
tion of this strategy in the non-transplant setting may be a plausi-
ble option. Miller et al. were among the first to show that adoptive 
transfer of ex vivo-expanded haploidentical NK cells after lym-
phodepleting chemotherapy is safe, and can result in expansion of 
NK cells in vivo without inducing graft-vs.-host disease (GVHD) 
(50). In a phase I dose-escalation trial, 43 patients with either 
hematologic malignancies (poor prognosis AML or Hodgkin 
lymphoma) or solid tumor (metastatic melanoma or renal cell 
carcinoma) received up to 2 × 107cells/kg of haploidentical NK 
cells following either low intensity [low-dose cyclophosphamide 
(Cy) and methylprednisolone or fludarabine (Flu)] or high 
intensity regimens (Hi-Cy/Flu). All patients received subcutane-
ous IL-2 after NK cell infusion. Whereas adoptively infused NK 

cells persisted only transiently following low intensity regimens, 
AML patients who received the more intense Hi-Cy/Flu regimen 
had a marked rise in endogenous IL-15 associated with expansion 
of donor NK cells and induction of complete remission (CR) in 
five of 19 very high-risk patients. The superior NK expansion 
observed after high-dose compared to low-dose chemotherapy 
was attributed to a combination of factors including prevention 
of host T cell-mediated rejection and higher levels of cytokines, 
such as IL-15. These findings provided the first evidence that hap-
loidentical NK cells are safe and can persist and expand in vivo, 
supporting the proof of concept that NK cells may be applied 
for the treatment of selected malignancies either alone or as an 
adjunct to HSCT (50).

Another pivotal pilot study, the NKAML trial (Pilot Study 
of Haploidentical NK Transplantation for AML), reported that 
infusion of KIR-HLA-mismatched donor NK cells can reduce 
the risk of relapse in childhood AML (51). Ten pediatric patients 
with favorable or intermediate risk AML in first CR were enrolled 
following completion of 4–5 cycles of chemotherapy. All patients 
received a low-dose conditioning regimen consisting of Cy/Flu 
prior to infusion of NK cells (median, 29 × 106/kg NK cells) from 
a haploidentical donor, followed by six doses of IL-2. NK infu-
sions were well tolerated with limited non-hematologic toxicity. 
All patients had transient engraftment of NK cells for a median 
of 10 days (range 2–189 days) with significant expansion of KIR-
mismatched NK cells. With a median follow-up of 964 days, all 
patients remained in remission, suggesting that donor-recipient 
HLA-mismatched NK cells may reduce the risk of relapse in 
childhood AML (51).

Other strategies currently under investigation include the infu-
sion of KIR-ligand-mismatched haploidentical NK cells as part of 
the pre-HSCT conditioning regimen (NCT00402558), and NK 
cell infusion to prevent relapse or as therapy for minimal residual 
disease in patients after haploidentical HSCT (NCT01386619).

ADOPTive NK CeLL THeRAPY iN SOLiD 
MALiGNANCieS

Natural killer cell-based immunotherapies are also a promising 
therapeutic option for solid tumors. A number of studies have 
shown that the presence of intratumoral NK cells correlates with 
delayed tumor progression and improved outcomes (53–55). 
However, the successful application of NK cell-based therapies 
in the solid tumor setting poses a special challenge. In addi-
tion to the immune evasion strategies common to hematologic 
malignancies, such as secretion of immunosuppressive cytokines 
and downregulation of activating ligands (55–57), additional 
challenges specific to solid tumors exist; NK cells must not only 
traffic to sites of disease, but also penetrate the tumor capsule in 
order to exert their effector function. Furthermore, tumor targets 
must be inherently susceptible to NK-mediated cytotoxicity (58). 
Several groups have focused on strategies to alter the tumor 
microenvironment by targeting myeloid-derived suppressor cells 
or regulatory T cells (Treg) rather than the tumors themselves 
(58, 59). In fact, the prospect of combining NK cell-based immu-
notherapy with approaches to target the immunosuppressive 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5785

Rezvani and Rouce NK Cell Immunotherapy in Cancer

Frontiers in Immunology | www.frontiersin.org

tumor microenvironment or immune checkpoints, such as KIR 
blockade, is especially relevant to the treatment of solid tumors 
(55, 58). Several early phase clinical trials have demonstrated 
the feasibility of adoptive therapy with autologous or allogeneic 
ex vivo activated/expanded NK cells in patients with refractory 
solid malignancies [NCT01875601 (60)]; however, outside of 
the post-HSCT setting (namely in neuroblastoma), limited data 
on the clinical efficacy of NK cells in eradicating solid tumors 
exist. Currently, several trials are actively recruiting patients 
with refractory solid tumors for adoptive NK therapy (including 
NCT01807468, NCT02130869, and NCT0210089).

THe iDeAL MANUFACTURiNG STRATeGY 
FOR EX VIVO ACTivATiON OF NK CeLLS

Recent approaches to adoptive NK therapy focused on infusion 
of NK cells that have undergone a process of ex vivo cytokine 
activation and expansion (61). A number of cytokines (IL-2, 
IL-12, IL-15, IL-18, IL-21, and type I IFNs) have been studied to 
activate and expand NK cells ex vivo (62–65). The most exten-
sively studied cytokine is IL-2 (62, 63). This is not surprising, 
considering IL-2 was the only cytokine available in clinical grade 
until recently. Nevertheless, NK cells expanded in the presence 
of IL-12, IL-15, and IL-18, either alone or in combination, have 
shown remarkable activity against tumor targets in experimental 
models and offer an attractive strategy for clinical expansion of 
NK cells (64, 65). IL-15, in particular, is appealing as it does not 
stimulate Tregs (65). IL-15 has been tested in preclinical models 
with promising results; however, very high doses were necessary 
to observe any meaningful in vivo antitumor effects, and toxic-
ity of systemic cytokine administration and cytokine-induced 
NK-cell apoptosis remained major issues (65). Recently, Miller 
et al. compared the persistence and in vivo efficacy of adoptively 
infused freshly activated NK cells (FA-NK) and ex vivo-expanded 
NK cells (Ex-NK) in a xenotransplantation model. They showed 
that in vivo NK cell persistence is cytokine dependent, with IL-15 
being superior to IL-2. They also reported that cryopreservation 
of FA-NK or Ex-NK was detrimental to NK cell function, and that 
culture conditions influence homing, persistence, and expansion 
of NK cells in vivo (66).

Although the results from the abovementioned trials proved 
that transient persistence of adoptively transferred NK cells 
obtained via apheresis is feasible and safe, the requirement of a 
willing, available donor precludes the widespread applicability of 
this approach. Hence, more recent efforts have focused on opti-
mizing methods for ex vivo expansion of NK cells from peripheral 
blood mononuclear cells (PBMCs) collected by a simple blood 
draw, with a goal of producing large quantities of purified, func-
tionally active NK cells for clinical use. These expansion strategies 
include the use of “feeder cells,” such as monocytes in the form 
of irradiated PBMCs, EBV-transformed lymphoblastoid cell lines 
(EBV-LCLs) or gene-modified, irradiated K562 cells expressing 
membrane-bound IL-15 or IL-21 and 41BB ligand for costimula-
tion (61, 66–69) in gas-permeable large-scale expansion flasks. 
These techniques have dramatically increased the yield and 
activation status of NK cells, potentially overcoming the need for 

leukapheresis. Because the feeder cells used in these manufacture 
methods are lethally irradiated prior to use in culture (leaving 
the remaining feeder cells to be lysed by the expanding NK cells), 
the risk of infusing viable feeder cells is negligible. However, a 
number of safeguards have also been incorporated that include 
monitoring the growth rate of feeder cells and testing for the pres-
ence of viable feeder cells at the end of the culture period. Clinical 
products are, therefore, only released if no viable gene-modified 
K562 cells or transformed LCLs are present, with strict cutoff 
values for contaminating B cells and monocytes at the end of the 
culture period as well (67).

Although these expansion methods can produce large num-
bers of functionally active NK cells, concomitant expansion 
of competing cells with immunosuppressive properties, such 
as Tregs remains problematic. Early studies reported that NK 
cell infusions from haploidentical donors are able to induce 
remissions in some patients with AML, but not others (50–52). 
Several groups, therefore, set out to explore factors that may 
contribute to the failure of NK expansion in  vivo. Bachanova 
explored the effect of competition between Tregs and NK cells in 
57 patients with refractory AML who received lymphodepleting 
chemotherapy followed by NK cell infusion and IL-2 administra-
tion [NCT00274846 and NCT01106950 (70)]. Fifteen patients 
also received the IL-2-diphtheria toxin fusion protein (IL2DT) 
to deplete Tregs prior to NK cell infusion. IL2DT treatment 
was associated with increased donor NK cell persistence and 
improved CR and disease-free survival at 6 months (33 vs. 5% in 
patients not receiving IL2DT; P < 0.01). In the IL2DT cohort, NK 
cell expansion correlated with higher post-chemotherapy serum 
IL-15 levels (P = 0.002) and effective peripheral blood (PB) Treg 
depletion (<5%) at day 7 (P  <  0.01). This study shed light on 
the importance of optimizing the cytokine milieu to facilitate the 
in vivo expansion of adoptively transferred NK cells and identify-
ing ways to abrogate the immunosuppressive elements, such as 
regulatory T cells.

Although these data are encouraging, adoptive transfer of NK 
cells under good manufacturing practices (GMP) requires signifi-
cant infrastructure and specialized processing equipment, thus 
limiting the availability and scalability of these NK cell therapies 
to a few specialized institutions (61). Nonetheless, the feasibility of 
centralized processing and safe delivery of ex vivo-manufactured 
NK cells for infusion at remote clinics have been demonstrated, 
suggesting that the practice might become more widespread as 
procedures are optimized (71). For example, in order to improve 
access to ex vivo activated NK cells and ease the burden associated 
with producing cellular products at individual treatment centers, 
the National Heart, Lung, and Blood Institute (NHLBI, Bethesda, 
MD, USA) sponsored the Production Assistance for Cellular 
Therapies (PACT) program. Using this approach, activated NK 
cells have been sent to other centers for infusion into patients 
(72, 73).

Since the initial reports of successful adoptive transfer of NK 
cells (50–52), many groups continue to perform extensive pre-
clinical exploration of the ideal manufacturing strategy for ex vivo 
activation and expansion of NK cells. Several expansion methods 
optimized in the preclinical setting have been successfully scaled 
up for the clinic (61, 67–70). In addition to the six clinical trials 
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of adoptive NK cell therapy for leukemia that have reported their 
data (48–52, 70), there are currently 12 active clinical trials enroll-
ing patients with hematologic malignancies for NK cell adoptive 
therapy, a number that is steadily rising.

ALTeRNATive SOURCeS OF NK CeLLS 
FOR ADOPTive TRANSFeR – iS CORD 
BLOOD THe ANSweR?

Although the majority of clinical studies of NK cell immuno-
therapy have used PB NK cells, several alternative sources of NK 
cells exist. These include bone marrow, human embryonic stem 
cells (hESCs), induced pluripotent stem cells [iPCSs (74, 75)], and 
umbilical cord blood (CB). While the generation of NK cells from 
hESCs or iPCS has been largely experimental to date, clinical-
grade generation and expansion of NK cells from CB-derived 
CD34+ cells has been successfully achieved (76).

Umbilical CB as a source for NK cells lends additional clinical 
advantages. CB contains a high percentage of NK cells (77, 78) 
and serves as an immediate “off-the-shelf ” source of NK cells, 
with less stringent requirements for HLA matching, and lower 
risk of causing GVHD following infusion due to the naivety of 
the cord T cell repertoire (77, 78). Although no direct comparison 
of PB- and CB-derived NKs has been performed in the clinical 
setting, in vitro studies have identified a number of differences 
between CB and PB NK cells. CB NK cells form weaker conju-
gates with target cells due to the lower membrane expression of 
adhesion molecules on their surface (79, 80). CB NK cells also 
express higher levels of lectin-like inhibitory receptors (CD94/
NKG2A) and lower levels of KIRs, indicating an immature phe-
notype (81). CB NK cells are similarly sensitive to cytokines for 
in vivo expansion and persistence (82). However, it appears that 
the requirements for in vitro expansion of CB NK cells may be dif-
ferent to those required for PB NKs. CB NKs are less responsive 
to IL-2 stimulation, which may be related to the lower expression 
of IL-2Rα and reduced activation of the STAT5 signaling pathway 
as compared with PB NK cells (83). The combination of IL-15 and 
IL-18, however, can induce significant proliferation and cytokine 
production by CB NK cells, while the killing capacity of CB NK 
cells is significantly enhanced after stimulation with IL-15 (83). 
As with PB-derived NK cells, T-cell contamination is a concern, 
but can be ameliorated by CD3 depletion. T-cell contamination 
should be limited to <1–5 × 105/kg (61) to minimize the risk of 
GVHD. In addition, CD56+ selection reduces B-cell contamina-
tion to <1%, which minimizes passenger B lymphocyte-mediated 
complications, such as EBV-related post-transplant lymphopro-
liferative disorder (PTLD) and acute hemolytic anemia.

More recently, efforts have focused on optimizing the large-
scale expansion of purified CB-derived NK cells. Shah et  al. 
were the first to describe a strategy for expanding NK cells from 
cryopreserved CB units in which they employed K562-based 
artificial antigen-presenting cells (aAPCs) expressing membrane-
bound IL-21 (clone 9.mbIL21) (77, 84). The clone 9.mbIL21 cell 
line is GMP-grade and expresses membrane-bound IL-21, 4-1BB 
ligand, CD64 (FcγRI), and CD86. After only 14 days of culture in 
a gas-permeable culture system, mean-fold expansion of CB-NK 

cells was 1848-fold from fresh and 2389-fold from cryopreserved 
CB with >95% purity for CD56+CD3− NK cells. aAPC-expanded 
CB-NK cells displayed a phenotype similar to that of expanded 
PB-NK cells and maintained strong expression of the transcrip-
tion factors eomesodermin and T-bet. Furthermore, CB-NK cells 
formed functional immune synapses and efficiently killed various 
MM targets in vitro. Finally, aAPC-expanded CB-NK cells showed 
significant in  vivo activity against MM in a xenogenic mouse 
model. These findings highlight a clinically applicable strategy for 
the generation of highly functional CB-NK cells using an aAPC 
platform, which can be potentially extended to other hematologic 
malignancies and solid tumors (77). A number of phase I/II clini-
cal trials are underway to test the feasibility and efficacy of CB-NK 
cell adoptive therapy in patients with hematologic malignancies 
(NCT01619761, NCT01729091 NCT02280525, NCT01914263, 
and NCT00412360) (summarized in Table 1).

HUMAN NK CeLL LiNeS AS A SOURCe 
OF NK iMMUNOTHeRAPY

The adoptive transfer of NK cell lines has several theoretical advan-
tages over the use of patient- or donor-derived NK cells. These are 
primarily related to the lack of expression of iKIRs, presumed 
lack of immunogenicity, ease of expansion and availability as an 
“off-the-shelf ” product (85). Several human NK cell lines, such as 
NK-92 and KHYG-1, have been documented to exert antitumor 
activity in both preclinical and clinical settings (86–88). NK-92, 
the most extensively characterized NK-cell line, was established 
in 1994 from the PB of a male Caucasian patient with NHL. 
NK-92 cells are IL-2-dependent, harbor a CD2+CD56+CD57+ 
phenotype and exert potent in  vitro cytotoxicity (86). Infusion 
of up to 1010  cells/m2 NK-92 cells into patients with advanced 
lung cancer and other advanced malignancies was well tolerated 
and the cells persisted for a minimum of 48 h with encouraging 
clinical responses (86, 88–91). However, potential limitations of 
using NK cell lines, such as NK-92 cells, include the requirement 
for irradiation to reduce the risk of engrafting cells with potential 
in vivo tumorigenicity, and the need for pre-infusion condition-
ing to avoid host rejection. Furthermore, infusion of allogeneic 
NK cell lines may induce T and B cell alloimmune responses, 
limiting their in vivo persistence and precluding multiple infu-
sions. A number of studies are testing NK-92 cells (Neukoplast®) 
in patients with solid tumors, such as Merkel cell cancer and renal 
cell carcinoma, as well as in hematological malignancies (85).

While results from clinical studies of NK cell adoptive therapy 
are encouraging (48–52, 70), significant gaps remain in our 
understanding of the optimal conditions for NK cell infusion. 
Based on the pioneering work from Rosenberg et al. demonstrat-
ing the importance of lymphodepletion to support the expansion 
of tumor-infiltrating T cells (92) and given its emergence as a 
key determinant of efficacy with CAR therapy, several groups are 
actively investigating the ideal preparative regimen to promote 
the expansion and persistence of adoptively infused NK cells 
(53, 69, 70, 75). Available data support the use of high-dose Cy/
Flu regimen as the frontrunner, considering it is reasonably well 
tolerated and shown to support the in vivo expansion of NK cells TA
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TABLe 1 | Published results of NK adoptive immunotherapy trials in hematologic malignancies.

Reference Approach Disease NK source of cells Conditioning regimen Dose of cells Outcome

Burns et al. (43) Ex vivo IL-2 activated 
autologous NKs or bolus IL-2

Relapsed lymphoma
N = 29

Autologous None 4 × 107–8 × 107 cells/kg 1° endpoint safety/feasibility; no change in 
outcome compared to historical controls

aMiller  
et al. (50)

IL-2 activated NK cells HR AML (adults)
N = 19

Haplo-related donors Hi-Cy/Flu 1 × 106–2 × 107 cells/kg 
followed by 14 days IL-2

5/19 (26%) CR

aRubnitz and 
Inaba (51)

Fresh-activated NK (FA-NK) LR/IR AML (pedi)
N = 10

Haplo-related donors Hi-Cy/Flu Median 29 × 106 cells/kg 
followed by IL-2 × 6 doses

10/10 (100%) CR at 964 days

Yoon et al. (49) IL-7/15/21 ex vivo cultured NKs HR
ALL/AML/MDS 
(adults)
N = 14

Haplo-related HSCT donors 
(from CD34+ fraction)

Pre-SCT conditioning 
regimen (Bu/Flu/thymo)

Median 2.2 × 106 cells/kg 1° endpoint safety/feasibility; (no toxicity; 
low-grade GVHD); 4/14 (28%) alive and well

aCurti and 
Ruggeri (52)

CD56+ selected NKs AML-CR and 
relapsed (adult)
N = 13

Haplo-related donors Hi-Cy/Flu 5 × 106 cells/kg followed by 
IL-2 × 6 doses

6/13 (46%) remain in CR

Stern et al. (48) 1–3 doses positively selected 
NKs

ALL, AML (adult and 
pedi)
N = 15

Haplo donors Pre-SCT conditioning 
regimen

Median 1.2 × 107 cells/kg 4/16 (25%) alive

Klingemann and 
Grodman (71)

Apheresis-mobilized CD56 
selection

HL, NHL, MM
N = 13

Haplo donors None 1 × 105–2 × 107 cells/kg 1° endpoint safety/feasibility; 7/13 in 
remission

aBachanova (70) NK infusion w/IL-2 ± IL2DT  
Treg depletion

AML
N = 42 (IL-2 alone)
N = 15 (+IL2DT)

Haplo donors Hi-Cy/Flu Mean 2.6 ± 1.5 × 107 cells/
kg

IL-2 alone: 9/42 (21%) CR/CRi
IL2DT: 8/15 CR/CRi (53%)

Choi et al. (116) Apheresis-mobilized, ex vivo 
IL-15/21 induced NK cells

N = 41 Haplo donors Bu/Flu/ATG Median 1 × 108 cells/kg Reduced leukemia progression 46 vs. 74%

HR, high risk; haplo, haploidentical; LR, low risk; IR, intermediate risk; Hi-Cy/Flu, high-dose cyclophosphamide and fludarabine; CR, complete remission; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; MDS, 
myelodysplastic syndromes; SCT, hematopoietic stem cell transplant; HL, Hodgkin lymphoma; NHL, non-Hodgkin lymphoma; pedi, pediatric; CRi, complete remission with incomplete platelet recovery; IL2DT, IL-2-diphtheria fusion 
protein.
aNK cells infused outside of the setting of hematopoietic cell transplantation.
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(51, 70). IL-15 is an ideal candidate cytokine for the expansion of 
NK cells in vivo, especially since it does not promote expansion 
of regulatory T cells (66), which have been shown to suppress 
NK cell effector function in IL-2-based trials (69, 70). In a recent 
phase 1 study in patients with metastatic melanoma or renal cell 
carcinoma, rhIL-15 was shown to activate NK cells, monocytes, 
γδ, and CD8 T cells (93). However, as an intravenous bolus dose, 
rhIL-15 proved too difficult to administer because of significant 
clinical toxicities (93). Based on these promising data, alternative 
dosing strategies are being investigated, including continuous 
intravenous infusions. To this effect, systemic IL-15 along with 
infusion of donor NK cells are currently being tested in a phase I 
clinical trial for AML (NCT01385423).

CHiMeRiC ANTiGeN  
ReCePTOR-MODiFieD NK CeLLS

Chimeric antigen receptors have been used extensively to redirect 
the specificity of T cells against leukemia (94). Recently, use of 
an anti-CD19-BB-ζ receptor transduced into autologous or allo-
geneic T cells produced dramatic clinical responses in patients 
with acute lymphoblastic leukemia (95, 96); however, infusions of 
activated T cells from an allogeneic source are likely to increase 
the risk of GVHD. T cell-depleted allogeneic NK cells, by con-
trast, should not cause GVHD, as predicted by observations in 
murine models, as well as in patients with leukemia and solid 
malignancies treated with haploidentical NK cells (50–52). Given 
their shorter lifespan and potent cytolytic function, mature NK 
cells provide attractive candidate effector cells to express CARs 
and, provide an excellent source of off-the-shelf cellular therapy 
for patients with cancer.

The feasibility of genetically engineering NK cells to express 
CARs has been shown in the preclinical setting (97, 98). Primary 
human NK cells, as well as NK-92 cells, have been successfully 
engineered to express CARs against a number of targets includ-
ing CD19, CD20, CD244, and HER2 (97). CAR-transduced 
NK cells mediate efficient in  vitro and in  vivo killing of tumor 
targets (97, 98) although to date, no clinical data of CAR NK cell 
therapy have been reported. Shimasaki et al. recently tested the 
expression of a receptor containing CD3ζ and 4-1BB signaling 
molecules (anti-CD19-BB-ζ) in human NK cells after mRNA 
electroporation using a clinical-grade electroporator. The authors 
reported adequate transfection efficiency 24 h after electropora-
tion, with median anti-CD19-BB-ζ expression of 40.3% in freshly 
purified and 61.3% in expanded NK cells. NK cells expressing 
anti-CD19-BB-ζ secreted IFN-γ in response to CD19-positive 
target cells. Interestingly, the levels of CAR expression in NK cells 
after mRNA transfection were comparable to those achieved by 
retroviral transduction. A large-scale protocol was developed to 
transfect expanded NK cells, achieving excellent receptor expres-
sion and considerable cytotoxicity of CAR-transduced NK cells 
in xenograft models of B-cell leukemia (99). Another interesting 
strategy is the development of CAR-modified NK cells that target 
NKG2D ligands on the surface of tumor cells, rendering NK more 
cytotoxic against a variety of hematologic and solid malignancies 
(100). NK cells have also been successfully engineered to target 

antigens on a variety of solid tumors. For example, an NK-CAR 
targeting the ganglioside GD2 (present on neuroblastoma 
cells) has been tested in preclinical studies (101, 102). GD2 
is also expressed on breast cancer stem cells, thus raising the 
potential for its widespread use as a target for immunotherapy 
(103). Additional antigens targeted by NK CARs include HER2 
(overexpressed in a number of solid tumors), CD138, and CS1 
(overexpressed in MM) (104, 105).

Although these data support the use of CAR engineering to 
redirect the specificity of NK cells to augment their cytotoxicity, 
a number of challenges remain. These include the relative dif-
ficulty in expressing exogenous genes in primary human NK cells 
and the need to expand NK cells in culture to achieve adequate 
numbers for clinical studies of immunotherapy. To counteract 
this difficulty, some groups have expressed CARs in the human 
NK-like cell line NK-92, in an attempt to engineer a uniformly 
cytolytic effector cell population (106). As previously mentioned, 
NK-92 cells can be easily expanded in culture and their safety 
has been shown in phase I clinical trials in human subjects. Thus, 
CAR-expressing NK-92 cells may offer a practical source of cells 
for NK cell-based immunotherapeutic trials. In order to prevent 
the risk of engrafting cells with potential in vivo tumorigenicity, 
however, NK-92 cells must be irradiated prior to infusion, which 
may in turn significantly impact their in vivo persistence and 
long-term antitumor efficacy. Although limited in  vivo per-
sistence could prove beneficial once the alloreactive NK cells 
have eradicated the tumors, a number of studies of adoptive 
therapy with NK cells and CAR-modified T cells have reported 
the importance of cell persistence in inducing long-term anti-
tumor response (50, 95, 96).

As with CAR-modified T cell therapy, a number of variables 
can affect the activation, antitumor efficacy, and persistence of 
CAR-NK cells. Second and third generation CAR constructs 
incorporating additional costimulatory domains (e.g., CD28, 
OX-40, or 4-1BB) have been shown to enhance both in vitro and 
in  vivo activation, and the persistence of CAR T cells. Further 
studies exploring the optimal vector, construct and transduction 
method are necessary to identify the “perfect NK CAR.”

SAFeTY CONCeRNS ReLATeD TO 
ADOPTive TRANSFeR OF CAR-MODiFieD 
NK CeLLS

When considering the use of CAR-modified effector cells, one 
must take into account their safety profile. Many of the same 
concerns raised with CAR-modified T cells may be relevant to 
CAR-NK cells. These include on-target/off-tumor effects, GVHD, 
cytokine release syndrome, tumor lysis syndrome, and toxicity 
to normal tissues due to limited selectivity of the target antigen 
(107–109). Thus, the necessity of equipping CAR-modified 
NK cells with a “safety switch” or suicide gene is an important 
question to explore. While mature allogeneic CAR-engineered 
NK cells are expected to be short lived, data on the persistence 
of more immature NK cells, such as those derived from CB, are 
lacking. Interestingly, a recent study reported that IL15/4-1BBL-
activated NK cells infused early after T-depleted allogeneic stem 
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cell transplantation in patients not receiving immunosuppressive 
prophylaxis could contribute to acute GVHD (110). To this effect, 
the insertion of a suicide safety switch system, as employed with 
CAR-modified T cells (111, 112), can provide an efficient means 
for depletion of these cells if needed. Inducible suicide systems 
have safely and effectively eradicated GVHD in patients receiving 
adoptively transferred T cells without causing deleterious effects 
(112). However, these systems have not been extensively studied 
in NK cells, and in the absence of clinical data on the in  vivo 
persistence of CAR-modified NK cells, the necessity of a suicide 
switch in this setting remains unknown.

Despite the growing wealth of preclinical experience with 
CAR-engineered NK cells, to date, only two clinical studies (both 
targeting CD19+ malignancies using a retroviral transduced anti-
CD19-BB-ζ NK-CAR) have obtained regulatory approval: one is a 
recently completed pediatric study at St. Jude Children’s Research 
Hospital, where haploidentical NK cells modified with anti-CD19-
BB-ζ CAR were infused into patients with B-ALL (ClinicalTrials.
gov.NCT00995137) and the other is an ongoing study at the 

National University Hospital in Singapore (ClinicalTrials.gov.
NCT01974479) using IL-2-activated haploidentical CAR-modified 
NK cells in pediatric and adult patients with refractory B-ALL 
(99). The results of these studies have not been reported to date.

BiSPeCiFiC AND TRiSPeCiFiC 
eNGAGeRS

An innovative immunoglobulin-based strategy to redirect NK 
cytotoxicity towards tumor cells is to create either bispecific or 
trispecific antibodies (BiKE, TriKE) (113). BiKEs are constructed 
by joining a single-chain Fv against CD16 and a single-chain 
Fv against a tumor-associated antigen (BiKE), or two tumor-
associated antigens (TriKE). Gleason et al. showed that bispecific 
(bscFv) CD16/CD19 and trispecific (tscFv) CD16/CD19/CD22 
engagers directly trigger NK cell activation through CD16, sig-
nificantly increasing NK cell cytolytic activity and cytokine pro-
duction against various CD19-expressing B cell lines. The same 
group also developed and tested a CD16 × 33 BiKE in refractory 
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CD16 × 33 BiKE responses against primary AML targets (114).

NK CeLLS – wHAT DOeS THe FUTURe 
HOLD?

Recent advances in the understanding of NK cell immunobiol-
ogy have paved the way for novel and innovative anti-cancer 
therapies. Here, we have discussed a representation of these novel 
immunotherapeutic strategies to potentiate NK cell function and 
enhance antitumor activity including ADCC-inducing mAbs, 
ex  vivo activated or genetically modified NK cells and bi- or 
trispecific engagers (Figure 1).

Although experience has shown that adoptive immuno-
therapy with allogeneic NK cells may be more efficacious than 

with autologous NK cells, to date, their long-term antitumor 
benefits have been modest (3). Expansion and persistence of NK 
cells following infusion appear to be the main determinants of 
clinical response (50–52, 70), thus underscoring the importance 
of identifying ways to enhance their persistence and antitumor 
activity. It is likely that the combination of high-dose lymphode-
pleting chemotherapy with additional modifications (such 
as Treg depletion, in  vivo administration of cytokines, such as 
IL-15 or enhancement of CD16-mediated antigen targeting) may 
maximize NK persistence and efficacy.

In addition, the possibility of third-party “off-the-shelf ” 
products with partially HLA-matched NK cells from CB, third-
party donors, or NK cell lines allow the advantage of unlimited 
sources of cells to improve the practicality of cell therapy. With 
increasing focus on genetically modifying NK cells to redirect 
their specificity or engager-modified NK cells, it is likely that 
NK cells will move to the forefront of cancer therapy over the 
next few years.
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