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The immunogenicity of malignant cells has recently been acknowledged as a critical
determinant of efficacy in cancer therapy. Thus, besides developing direct immuno-
stimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking
therapies, and adoptive T-cell transfer, researchers have started to focus on the overall
immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to
some anticancer therapies by undergoing a peculiar form of cell death that is charac-
terized by an increased immunogenic potential, owing to the emission of the so-called
“damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other
immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors
the establishment of a productive interface with the immune system. This results in
the elicitation of tumor-targeting immune responses associated with the elimination of
residual, treatment-resistant cancer cells, as well as with the establishment of immuno-
logical memory. Although ICD has been characterized with increased precision since its
discovery, several questions remain to be addressed. Here, we summarize and tabulate
the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt
to capture the essence of this phenomenon, and identify future challenges for this rapidly
expanding field of investigation.

Keywords: anti-tumor immunity, immunogenicity, immunotherapy, molecular medicine, oncoimmunology, patient
prognosis, translational medicine

INTRODUCTION AND HISTORICAL
BACKGROUND

Augmenting the immunogenicity of cancer cells to improve the
efficacy of cancer therapy is a paradigm that has gained significant
momentum over the past 5 years (1-5). Researchers have realized
that besides therapeutically exploiting innate or adaptive immune
cells directly (e.g., through dendritic cell (DC)-based vaccines or
adoptive T-cell transfer) and/or improving the effector functions
of T cells (through checkpoint-blocking therapies), cancer cells
also need to be made immunogenic (1, 4, 6, 7). This has diverted
attention toward studying the interface between stressed or dying
cancer cells and the immune system, in the hope of efficiently
exploiting it for therapeutic purposes (1).

Early indications regarding immune system-driven tumor
control emerged in the eighteenth century, when feverish

infectionsin cancer patients were circumstantially associated with
tumor remission (8). The first evidence that immunotherapy can
be applied to achieve tumor regression emerged from the work
of William Coley, who in the 1890s achieved tumor regression
in some sarcoma/lymphoma patients upon the intra-tumoral
injection of streptococcal cultures (provided by Robert Koch) (8,
9). In the following 43 years, Coley injected nearly 900 (mostly
sarcoma) patients with his bacterial preparation (achieving a
cure rate >10%), which later became known as “Coley’s toxin”
(8, 10). However, the Coley’s toxin came under intense scrutiny
owing to an elevated toxicity and some difficulties in reproducing
remission rates (8). Eventually, the first experimental evidence
that virus-unrelated tumors can indeed be recognized by the host
immune system emerged in the 1940s, and by the 1960s, coupled
with the discovery of T cells, it was proposed that the human
immune system may also react against tumors (11). The ability
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of anticancer therapies to enhance the immunogenic potential of
malignant cells gained some appreciation by the 1970s (12-14).
It was recognized that if specific treatments are applied (e.g.,
radiotherapy, the bacillus Calmette-Guerin, or some chemo-
therapeutics), the immunogenicity of malignant cells increases
enough to induce durable anti-tumor immunity (12-14). By the
1980s, researchers started to report more specific observations
regarding the therapeutic impact of cancer cell immunogenicity,
e.g., the ability of curative hyperthermia to cause the (heat-shock
based) generation of circumstantial anti-tumor immunity (15),
the fact that the immunogenicity of cancer cells influences patient
prognosis after radiotherapy (16), and the increase in tumor
immunogenicity due to hydrostatic pressure (17). However,
these early studies (especially those published before the 1980s)
had several issues linked to a lack in consensus. For instance,
due to early controversies on the existence of tumor-associated
antigens (TAAs) (11), the target of tumor-specific immune
responses was unclear, and the mechanism of action of some
therapies came under scrutiny. Moreover, such therapies could
operate by directly modulating immune effector cells rather
than improving the immunogenic potential of tumors (18). In
particular, the death of cancer cells exposed to therapy was never
suspected to drive anti-tumor immunity, since it was considered
to be a relatively “silent” process in terms of immunogenicity
(19). Moreover, the classical “self/non-self” theory was unable
to explain the possibility that dying cancer cells could elicit an
immune response (20).

By the early 1990s, the molecular characterization of mice
and human TAAs clarified the entities targeted by anti-tumor
immune responses (11). Similarly, the so-called “danger theory”
started to emerge, challenging the classical model of “self/non-
self” immune recognition, especially in a diseased or damaged
tissue (20, 21). This model proposed that the immune recognition
is not restricted to “non-self” entities, but rather discriminates
between “dangerous” and “safe” entities, irrespective of source
(20-22). Indeed, “dangerous” entities include pathogens as well
as injured, infected, diseased and necrotic tissues, or cells under-
going non-physiological cell death which emit danger signals (or
alarmins) with pro-inflammatory activity (21, 22). These danger
signals are now collectively referred to as “damage-associated
molecular patterns” (DAMPs) (23). DAMPs are endogenous
molecules that are concealed intracellularly in normal condi-
tions, but are exposed or released upon stress, injury, cell death,
thereby becoming able to bind cognate receptors on immune
cells (3,24-27). Table 1 summarizes the most prominent DAMPs
characterized to date and their mode of emission, the cell death
pathway they are associated with, and their known cognate
receptors. It is important to consider that not all DAMPs may
act as immunogenic danger signals. Several DAMPs exist that
are crucial for the maintenance of tissue homeostasis, and the
avoidance of auto-immune responses, as they exert immunosup-
pressive effects, including phosphatidylserine (PS), annexin Al
(ANXAL), death domain la (DDla), B-cell CLL/lymphoma
2 (BCL2) and some extracellular matrix-derived molecules
(Table 1). Accordingly, the blockade of these anti-inflammatory
DAMDPs accentuates the immunogenic potential of dying cells, or

renders immunogenic otherwise tolerogenic forms of cell death
(28, 29). Moreover, some danger signals are not always involved
in the immunogenicity of cell death, but act as “bystanders.” This
is the case for heat shock protein 90 kDa alpha (cytosolic), class
A member 1 (HSP90AA1, best known as HSP90) exposed on
the cell surface after melphalan treatment (30). Last (but not
least), several DAMPs may be subjected to post-translational
modifications (e.g., oxidation, reduction, citrullination) that
may potentially neutralize, increase, or change their immuno-
genic properties (31, 32) — a process that is still incompletely
understood.

Despite these advances, the overall role of regulated cell death
(RCD) (97) in augmenting cancer immunogenicity remained
obscure. Initial observations involving the immunogenicity of
celldeathintheeflicacy of cancer therapy were published between
1998 and 2004, when it was proposed that the non-apoptotic
demise of malignant cells (within the context of the so-called
“immunogenic death”) could be associated with the emission
of the danger signal heat shock 70 kDa protein 1A (HSPAI1A,
best known as HSP70) (Table 1), enhancing the immunogenic
potential of dying cancer cells in vivo (98, 99). The dogmatic
view that only necrotic or non-apoptotic (as postulated by the
“immunogenic death” concept) cancer cells are characterized by
an elevated immunogenic potential started to be questioned by a
series of studies published between 2005 and 2007 (41, 70, 100,
101). These publications outlined that cancer cells undergoing
apoptosis in response to specific anticancer therapies are immu-
nogenic [a subroutine termed immunogenic cell death (ICD)], as
long as they emit precise DAMPs in a spatiotemporally defined
fashion (26, 102, 103). Cells succumbing to ICD are sufficient
for the elicitation of durable anti-tumor immune responses (1,
26,53,102,104). ICD is indeed paralleled by the redirection and
emission of DAMPs, owing to the stimulation of distinct danger
signaling pathways occurring in synchrony with cell death
signaling (103). Table 2 summarizes the main signaling path-
ways that play a role in the trafficking and emission of DAMPs.
ICD-associated DAMPs and other immunostimulatory factors
released by cells destined to undergo ICD favor the establish-
ment of a productive interface between dying cancer cells and
innate immune cells (like DCs or macrophages), thereby leading
to the initiation of a therapeutically relevant adaptive immune
response (Figure 1) (102, 105). In some contexts, DAMPs may
regulate the function of specific innate immune cell subsets,
e.g., following anthracycline treatment, extracellular adenosine
triphosphate (ATP) assists in recruitment and differentiation of
CD11c*Cd11b*Ly6Chieh cells into CD11c*CD86*MHCII* DCs
(106); similarly, necrosis associated F-actin exposure activates an
immune response by directing the dead cell debris to specifically
CD8a* DCs (59, 107).Indeed, DCs and other antigen-presenting
cells exposed to cancer cells succumbing to ICD can then prime
CD4" T cells (and polarize them into Tul, Tul7, or Tul/Tul7-
like phenotype), CD8* cytotoxic T lymphocytes (CTLs) and yd
T lymphocytes against one or several TAAs (Figure 1) (102). Of
note, residual cancer cells that survive ICD inducers can also
show some enduring immunogenic characteristics that make
them susceptible to immunological control by CTLs (108-110).
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FIGURE 1 | The molecular complexity of immunogenic cell death in cancer. Cancer cells undergoing immunogenic cell death (ICD) emit danger signals for
establishing a productive interface with components of the host immune system, including dendritic cells (DCs). DCs exposed to cancer cells succumbing to ICD
“prime” the adaptive arm of the immune system, consisting of various effector T-cell populations, which in turn targets therapy-resistant cancer cells. Various
molecules are critical for the execution of these processes. The molecular network of ICD-relevant proteins was build using the STRING modeling database (http://

IMMUNOGENIC CELL DEATH INDUCERS

Over the past few years, a number of single-agent ICD inducers
have been discovered, encompassing conventional chemothera-
peutics, targeted anticancer agents and various other biological
and physicochemical therapies (18, 102, 104, 127). Table 3 sum-
marizes single-agent ICD inducers characterized so far, as per
consensus guidelines (104), and the spectra of DAMPs and other
immunostimulatory signals associated with them. For combina-
torial therapeutic strategies capable of achieving ICD, readers may
want to refer to other recent publications (18, 128, 129). It is clear
that a general structure-function relationship capable of cluster-
ing all existing ICD inducers and predicting new ones does not
exist (130), an issue that makes discovering new ICD-inducing
therapies based on cheminformatic analyses challenging, if not
impossible. A peculiar characteristic of most, if not all, ICD induc-
ers is their ability to induce reactive oxygen species (ROS)-based/
associated endoplasmic reticulum (ER) stress, as first delineated
for anthracyclines (30, 34, 35, 42, 123, 131-133). This peculiarity

was exploited for the targeted discovery of hypericin-based pho-
todynamic therapy (Hyp-PDT) - a therapeutic modality that can
trigger ICD through the induction of ROS that target the ER (35,
116, 134). Along with an ever more precise characterization of the
links between ROS, ER stress, and ICD induction (135, 136), it
became clear that the more “focused” ER stress is, the higher the
probability of inducing ICD (3, 26, 53, 137). These observations
paved way for a classification system based on how ICD inducers
engage ER stress for cell death and danger signaling (3, 26, 53,
138). Based on this classification, Type I ICD inducers are defined
as anticancer agents that act on non-ER proteins for the induction
of cell death, but promote collateral ER stress for danger signaling,
thereby operating on multiple targets (3, 26, 53), while Type II
ICD inducers are anticancer agents that target the ER for both
cell death induction and danger signaling (3, 26, 53). Table 4
summarizes the classification of current ICD inducers into Type
I and Type II, and their cell death/danger signaling targets. Such
a classification suggest that while Type I ICD inducers can be
discovered through various approaches (e.g., DAMP-based drug
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screening platforms) (130, 139), putative Type II ICD inducers
can be characterized rapidly on the basis of their ability to selec-
tively or predominantly target the ER. Recent findings comforted
the purpose and usefulness of this classification system, as two
novel Type II ICD inducers [ie., Pt" N-heterocyclic carbene
complex (140) and Newcastle disease virotherapy (NDV) (43)]
were identified based on the notion that they induce predominant
ROS-based ER stress (138). Nevertheless, as more ICD inducers
and features are discovered, this classification system is expected
to evolve or be substituted by a more refined one.

Since its discovery, a plethora of molecular and immunological
components responsible for ICD have been discovered (Figure 1)
(26, 102, 188). Table 5 summarizes the molecular and immuno-
logical determinants of ICD characterized so far, as well as the
models of ICD in which they operate (in a positive, negative or
dispensable manner). Anthracyclines and oxaliplatin are the most
common ICD inducers employed in experimental settings, fol-
lowed by Hyp-PDT. According to current understanding, cancer
cell-associated determinants of ICD can be subdivided into those
that are common to all ICD inducers (i.e., “core” signaling com-
ponents), and those that operate in an ICD inducer-dependent
manner (i.e., “private” signaling components) (26, 189). Thus,
eukaryotic translation initiation factor 2-alphakinase 3 (EIF2AK3,
best known as PERK) and the ER-to-Golgi secretory machinery
are considered “core” signaling components on the cancer cell
side (26, 102). Similarly, from the immune system side, a general
role for (IFNy-producing) CD4* and CD8* T cells has been con-
firmed for most, if not all, ICD inducers (Table 5). Interestingly,
some components that are required for ICD induction by some
agents (like autophagy for anthracyclines and oxaliplatin) (190)
might be either dispensable for ICD induction by other agents,
e.g., autophagy for NDV (43) and phosphorylation of eukaryotic
translation initiation factor 2a (eIF2ar), caspase-8 (CASP8) activa-
tion or cytosolic Ca** levels for Hyp-PDT (35); or even negatively
regulate ICD in some settings, e.g., autophagy in case of Hyp-PDT
(34) (Table 5). Thus, it will be important to expand our molecular
knowledge of ICD to as many experimental settings as possible.

IMMUNOGENIC CELL DEATH FROM
BENCH TO BEDSIDE

The relevance of ICD has been verified in a number of rodent
models, with a variety of chemical and physicochemical ICD
inducers (26, 102). Table 6 summarizes the most prominent
mouse or rat models used so far for the characterization and study
of ICD. For the moment, ICD has been mostly investigated in
heterotopic syngeneic subcutaneous models (195). Within such
models, inter-species differences (mouse versus rats), inter-strain
differences (among BALB/c, C57BL/6, C3H and KMF mice), and
inter-cell line differences, as well as differences in therapeutic
setups (prophylactic versus curative) have been amply accounted
for (Table 6). Nevertheless, there is predominance in the use of
cancer cells derived from carcinogen-induced tumors and trans-
planted subcutaneously (Table 6). In very few cases, ICD has been
characterized in either orthotopic (for NDV) or spontaneous (for
anthracyclines) tumor murine models (Table 6). This has been

questioned as a prominent Achilles’ heel of ICD research (195).
While this criticism is valid, it has to be recognized that no rodent
model is perfect at all immunological levels (196).

As a recent systematic review summarized (196), heterotopic
murine models suffer from a number of caveats, including the
inability to recapitulate the early interaction between transformed
cells and the immune system and the incompatibility between
the cancer type and the site-of-transplantation (196). Orthotopic
murine models are useful as they overcome the cancer cell-tissue
type incompatibility issue (196). While genetically engineered
tumor murine models (GEMMs) overcome most of the issues
mentioned above, they come with their own set of shortcomings,
including a limited genetic mosaicism, a low tumor heterogene-
ity, a lack of well-defined immunogenic TAAs, the presence of
unintended “passenger” genetic modifications, and a reduced
mutational spectrum (196). Many of these parameters are
critical for responses to immunotherapy/ICD. For instance, the
lack of well-defined immunogenic TAAs was the reason why
preliminary results obtained in spontaneously developing murine
tumors disputed the very existence of TAAs (11). Similarly, a high
mutational spectrum (which produces considerable amounts of
neo-antigens) has been found to be mandatory for the clinical
efficacy of checkpoint blockers (209). Last (but not least), labora-
tory rodent models in general are associated with some critical
issues, including the fact that a high level of inbreeding (which
produces a number of shortcomings e.g., homozygous recessive
defects) reduces the general immunological fitness, responsive-
ness and diversity in these models (196, 210, 211). Moreover,
numerous immunological differences between mouse and
humans tend to affect the translational relevance of the findings
obtained (26, 211, 212). Also, the time frames of tumor growth
rates between rodent models and humans are relatively divergent
(196, 213, 214). This further complicates clinical translation of
immunotherapeutic paradigms since the level of immunosurveil-
lance and immunoediting experienced by human tumors can be
much higher than any rodent tumor model.

In summary, it would be ideal to test ICD across as many
different rodent models as possible, in order to determine the fea-
tures that can be exploited for therapeutic purposes in humans.
Moreover, if ICD fails in a specific experimental model, active
effort should be made to characterize the mechanisms behind
such failure, since resistance phenotypes can have profound clini-
cal implications. This emerges from various studies summarized
in Table 7. Indeed, several ICD resistance mechanisms exist
operating at both the cancer cell and the immune system level,
which have been characterized in different experimental models.
Several of these resistance mechanisms have also been identified
in cancer patients, thereby justifying further studies along these
lines Table 7.

A considerable amounts of clinical findings support the rel-
evance of ICD or ICD-related signatures in (at least subsets of)
cancer patients. As summarized in Table 8, various ICD-linked
(specific) parameters have been associated with the prognosis
of cancer patients treated with clinically relevant ICD inducers
(like anthracyclines, oxaliplatin, paclitaxel, or radiotherapy).
Moreover, it is becoming clear that ICD-related or ICD-derived
(immunological) genetic signatures (e.g., a MXI-centered
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metagene, a CXCR3-PRFI1-CASPI-centered metagene, an
ASAH]I-centered metagene) can be positively associated with
good prognosis in patients affected by various neoplasms, includ-
ing breast, lung, and ovarian malignancies (141, 188, 220). These
observations indicate that ICD or ICD-relevant parameters may
have prognostic or predictive relevance in at least a subset of
cancer patients. It will be important to characterize new and more
specific ICD-associated parameters linked to patient prognosis as
well as biomarkers that may predict improved disease outcome
in cancer patient treated with ICD inducers. Of note, consider-
ing the current clinical experience with immunotherapies
(209, 221), the patients with an increased likelihood to benefit
from ICD inducers are probably those that display pre-existing
(baseline) immune reactivity against cancer cells (220, 222, 223).
This may depend on the ability of ICD to reboot and/or revive
pre-existing TAA-directed immunity rather to prime de novo
immune reactivity (5, 191, 224). In future, it would be crucial to
characterize biomarkers that allow clinicians to delineate patients
with reduced baseline immune reactivity against malignant cells
so that proper combinatorial therapies involving ICD inducers
can be implemented.

CONFRONTING THE CLINICAL REALITIES
OF ANTI-TUMOR IMMUNITY

Itis well-established that the response of cancer patients to immu-
notherapy relies on the activity of effector T cells [that employ
their T-cell receptors (TCRs) for recognizing TAAs]. However,
these TAA-targeting T cells may also constitute obstacles for effec-
tive anti-tumor immunity (234). As opposed to T lymphocytes
recognizing pathogen-associated antigens (PAAs) (Figure 2),
indeed, T cells directed against some TAAs (derived from non-
mutated proteins that are source of self or near-to-self antigens)
are developmentally subjected to negative selection in the thymus
and peripheral lymphoid organs (234, 235) (Figure 2). As a result,
T cells bearing TCRs with high affinity for self antigens (includ-
ing some TAAs) are clonally deleted to avoid auto-immunity
(234-237) (Figure 2). However, some “leakiness” in this process
allows TAA-specific T cells possessing TCRs with low affinity to
escape deletion (234, 236, 237) and persist, although at low pre-
cursor frequencies (238) (Figure 2). Unfortunately, as compared
to PAA-specific T cells, which bear high-affinity TCRs (Figure 2),
TAA-specific T cells exhibit limited effector and memory func-
tions (234, 239). Coupled with the tendency of progressing tumors
to generate a highly immunosuppressive microenvironment, this
renders the insurgence of lifelong protective immunity nearly
impossible (234). Of note, central and peripheral tolerance may
not affect T cells reactive toward neo-tumor-specific antigens
(neo-TSAs) e.g., tumor-specific neo-antigens that are generated
de novo in the course of tumor progression because of mutational
events (240, 241). However, the extent to which such neo-TSAs
can elicit consistent “immunodominant” T cell reactivity is still a
matter of investigation (240, 241). Nevertheless, in this context,
inefficient T-cell stimulation can be overcome through the ICD-
based improvement of effector T-cell functions (102). ICD can
be further combined with checkpoint-blocking therapies, which
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FIGURE 2 | Population dynamics of antigen-specific T cells during an
immune response to infection or cancer. (A) T cells capable of putatively
recognizing non-self, pathogen-associated antigens (PAAs) are not exposed
to negative selection in the thymus or peripheral organs like lymph nodes.
This allows for the constitutive presence of T lymphocytes bearing
high-affinity T-cell receptor (TCR) in naive conditions. Upon infection, these
cells undergo robust expansion and acquire potent effector functions, hence
driving an immune response that clears the pathogen and PAAs. Finally,
PAA-specific T cells undergo contraction along with the establishment of
immunological memory. To a limited extent, T cells reacting against PAAs
expressed by virus-induced tumors may exhibit similar (although not identical)
responses. (B) T cells that may recognize self or close-to-self antigens
expressed by virus-unrelated malignancies undergo robust negative selection
in the thymus and lymph nodes. Thus, all putative T lymphocytes bearing a
high-affinity TCR against tumor-associated antigens (TAAs) are eliminated.
However, some leakiness in this process allows for the persistence of
TAA-specific T lymphocytes with low-affinity TCR, although at very low
precursor frequencies. This is one of the reasons why in some individuals
immunosurveillance at some stage fails to impede tumor progression. As
malignant lesions progress, the amount of TAAs increases, causing a weak
rise in TAA-specific T cells. However, tumor progression is generally coupled
with the establishment of robust immunosuppressive networks that potently
inhibit such TAA-targeting T cells. In this context, the administration of
immunogenic cell death (ICD) according to a schedule that does not lead to
lymphodepletion can favor the stimulation of TAA-targeting T cells and (re)
instate immunosurveillance. Combining ICD inducers with checkpoint-
blocking agents may further boost TAA-targeting immune responses.
However, these treatments may not ensure the lifelong persistence of
TAA-recognizing T cells, some of which are susceptible to elimination
through tolerance mechanisms. Anticancer vaccines may counteract, at
least to some extent, such loss. The figure was partly inspired from Baitsch
etal. (234).
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potently reverse immunosuppression (209, 242). However, the
lifelong maintenance of anti-tumor T cells remains a particularly
hard challenge.

In the clinical reality, anticancer agents are administered to
patients in a limited number of cycles. Even if these therapeutic
regimens may attain optimal efficacy in terms of ICD induction,
they are unlikely to ensure the lifelong persistence of TAA-
directed T cells with low-affinity TCR (234, 243). This probably
reflects the contraction of TAA-targeting T cells occurring once
the immunostimulatory stimulus provided by ICD ceases, owing
to peripheral tolerance mechanisms (234). Clinically, it may not
be feasible to administer ICD inducers repeatedly over time,
since many of them can cause lymphopenia (which negatively
affects disease outcome), or are associated with other side effects
(244). It has been proposed that active immunization with ICD-
based anticancer vaccines (which are associated with robust
immunogenicity) given in a repetitive manner may achieve this
goal (Figure 2) (234, 243, 245). Thus, it will be important to test
whether the long-term administration of ICD-based anticancer
vaccines can sustain the effector function of TAA-specific T cells
bearing low-affinity TCRs, hence, ensuring lifelong disease-free
survival. Of note, in the case of hematological malignancies, this
issue could be overcome upon the adoptive transfer of CTLs
expressing chimeric antigen receptors (CARs) (1). However,
whether CAR-expressing CTLs generate protective immunologi-
cal memory in the absence of considerable side effects remains
to be determined. Moreover, the use of this therapeutic strategy
against solid malignancies is relatively challenging owing to lack
of well-defined “unique” TAAs (1, 246).

CONCLUSION

The model of ICD has been considerably refined since the initial
identification of a cell death modality manifesting apoptotic fea-
tures but able to induce an adaptive immune response. This model
strives to integrate several phenomena observed throughout the
second half of the twentieth century in one therapeutically rel-
evant platform. However, as discussed above, several challenges
still need to be addressed. First, comprehensive testing should be
performed in advanced experimental settings like GEMMs or
orthotopic tumor models. Second, ICD resistance mechanisms
should be characterized with precision. Third, various issues
linked to the successful translation of ICD to cancer therapy
will have to be resolved, including (but not limited to) treatment
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TABLES

TABLE 1 | A list of prominent damage-associated molecular patterns (DAMPs) associated with cell death pathways or extracellular matrix.

DAMPs Localization and Relevant cell death Receptors Reference
mode-of-emission pathway
Annexin A1 Surface exposed or actively/ Apoptosis FPR-1 receptor (33)
passively released?
Adenosine triphosphate Actively or passively released ICD, apoptosis/secondary P-Y2 and P.x; (34-37)
necrosis and necrosis
B-cell CLL/lymphoma 2 Passive release Necrosis TLR2 (38)
Biglycan Extracellular matrix = TLR2, TLR4, P, (39, 40)
and P>x;
Calreticulin Mostly surface exposed; ICD CD91 (35, 41-44)
sometimes passively released
Cardiolipin Surface exposed? Apoptosis ? (45, 46)
Ceramide and sphingosine-1-phosphate Surface exposed Apoptosis ? 47)
Covalent/cross-linked dimer of ribosomal protein S19 Passively released? Apoptosis cD88 (48-51)
Carbamoyl-phosphate synthase 1 ? ? ? (52)
Cyclophilin A Passive release Necrosis CD147 (53)
Cytochrome ¢ Passively released? Secondary necrosis and LPG? (54, 55)
necrosis?
Death domain 1a Surface exposed Apoptosis DD1a (56)
Endothelial monocyte-activating polypeptide |l Passively released? Apoptosis CXCR3? (50, 57, 58)
F-actin Passive release Necrosis DNGR-1/Clec9a (59)
Fibrinogen Extracellular matrix - TLR4 (40)
Fibronectin extra domain A Extracellular matrix - TLR4? (40)
Fragments of human tyrosyl tRNA synthetase Passively released? Apoptosis ? (50)
Genomic DNA, mRNA, snRNPs Passive release Necrosis TLR3 (8, 60, 61)
GRP78/BiP Passive release Necrosis, apoptosis? ? (81)
H:0, ? Apoptosis ? (62)
Heat shock proteins (HSP70, HSP90, HSP6B0, HSP72, Surface exposure, active ICD, apoptosis/secondary CD91, TLR2, TLR4, (63-67)
and GP96) secretion, or passive release NEecrosis, Necrosis SREC-1 and FEEL-1
Heparan sulfate fragments Extracellular matrix - TLR4 (40)
Hepatoma-derived growth factor Passively released Necrosis ? (68)
Histones Passively released Necrosis TLR-9 (69)
High-mobility group box 1 Mostly passively released; ICD, secondary necrosis ~ TLR2, TLR4, RAGE (70-73)
sometimes actively released and necrosis and TIM3
High-mobility group nucleosome binding domain 1 Passive release Necrosis TLR4 (74)
Hyaluronan Extracellular matrix - TLR2 and TLR4 (40)
IL-1a Passive release Necrosis IL-1R (75)
IL-33 Passive release Necrosis ST2 (3, 61)
IL-6 Passive release Necrosis IL-6R and GP130 (76)
Lysophosphatidylcholine Passively released? Apoptosis G2A (50, 77)
Mit DNA Passively released Necrosis TLR-9 (78-80)
Monosodium urate or uric acid Passively released Necrosis Purinergic receptors (50, 81)
N-formylated peptides Passively released Necrosis FPR-1 (78, 82-84)
Oxidation-associated molecular patterns (reactive protein Passively released Necrosis, Secondary CD36, SR-A, TLR- (85-87)
carbonyls, per-oxidized phospholipids, oxidized low-density necrosis 2/4, CD14
lipoprotein)
Peroxiredoxin 1 Actively secreted or passively  Apoptosis, necrosis TLR4 (88)
released
(Continued)
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TABLE 1 | Continued

DAMPs Localization and Relevant cell death Receptors Reference
mode-of-emission pathway
Phosphatidylserine Actively externalized on the Apoptosis TIM-1/-3/-4, BAI1, (56, 89-93)
surface Stabilin-2, MFG-E8,
Clq
S100/calgranulin protein family members (S100A8, ST100A9, Passively released Necrosis RAGE (50, 94)
S100A12/EN-RAGE)
Tenascin-C Extracellular matrix - TLR4? (95)
Thrombospondin 1 and its heparin-binding domain Passively released or surface Apoptosis oPs integrin (50, 96)
associated
Versican Extracellular matrix - TLR2, TLR6, and (40)
CD14

CD, cluster of differentiation; CLEC9A, C-type lectin domain family 9, member A; CPS-1, carbamoyl-phosphate synthase 1, mitochondrial; CXCR3, C-X-C motif receptor 3; FEEL-1/
CLEVER-1, fasciclin EGF-like/common lymphatic endothelial and vascular endothelial receptor-1; FPR-1, formyl peptides receptor-1; G2A, G2 accumulation; HMGB1, high-mobility
group box 1; HSR, heat shock proteins; ICD, immunogenic cell death; IL, interleukin; LPG, leucine-rich alpha-2-glycoprotein-1;, MFG-ES8, milk fat globule-egf factor 8 protein; Mit
DNA, mitochondrial DNA; P2XR, P2X receptor; P2YR, P2Y receptor; RAGE, receptor for advanced glycation endproducts; SREC-1, scavenger receptor class f member 1; TFAM,
mitochondrial transcription factor A; TIM, transmembrane immunoglobulin and mucin domain; TLR, toll-like receptor(s).

Glossary (5, 19, 97): (1) Necrosis: primary necrosis is a form of cell death that can occur in a regulated or accidental manner, characterized by cellular swelling and rapid breakdown
of the plasma membrane; (2) Necroptosis: necroptosis is a form of regulated cell death (RCD) manifesting with necrotic morphology and controlled by a signaling cascade involving
(among other proteins) RIPK1, RIPK3, and MLKL; (3) Apoptosis: apoptosis is a form of RCD largely dependent on caspases activity and morphologically characterized by cell
shrinkage, membrane blebbing, formation of apoptotic bodies, chromatin condensation, and systematic DNA fragmentation; (4) Secondary Necrosis: Secondary necrosis is a terminal
process experienced by late-apoptotic cells if they are not cleared by phagocytes in time, and is characterized by general spill-over of apoptotic cellular contents.

“?” Unclear or not determined yet.

TABLE 2 | Danger signaling pathways characterized as traffickers of DAMPs.

DAMPs Role of Role Role of Role of Role of Caspase Role of Comments Reference
ROS of ER autophagy chaperone- secretory activity lysosomes
stress mediated pathway
autophagy

Secreted + +/0 +/0 0 +/0 + +/0 Underlying pathway is highly inducer dependent (34, 35,

ATP 111-113)

Released 0 0 + ? 0 - ? Mostly released passively on account of (73, 114,

HMGB1 necrosis; only DT-EGF reported to cause active 115)
secretion so far

Secreted ? ? ? ? ? + + ABC transporters help in endolysosomal- (116-122)

or surface secretion; HSP70 has also been reported to be

HSP70 secreted in an exosome surface-bound format

Surface + + -/0 + + +/0 ? LRP1/lipid rafts mediate surface tethering; (34, 35,

CRT components that positively regulate surface-CRT 111, 112,
in an inducer-dependent fashion: ERp57, PI3K 116, 123,
p110a, BAX/BAK, cytosolic ER-Ca?*, BAP31; of 124)

note, anthracycline-induced pathway of surface
CRT induction has been found to be conserved
from yeast to mammals

Surface + + - ? + + ? - (30, 125)
HSP90
“+” denotes ability to positively regulate trafficking; “—" denotes ability to negatively regulate trafficking; “0” denotes confirmation of no role in regulation of trafficking and “?” denotes

that the role in regulating the trafficking is unknown; “+/0” denotes positive or no role in regqulation of trafficking in an inducer-dependent fashion; “—/0” denotes negative or no role in
regulation of trafficking in an inducer-dependent fashion.

ATR, adenosine triphosphate; CRT, calreticulin; DT-EGF, epidermal growth factor receptor-targeted diphtheria toxin; ER, endoplasmic reticulum; HMGB1, high-mobility group box 1
protein; HSR, heat shock protein; LRP1, low-density lipoprotein receptor-related protein 1; ROS, reactive oxygen species.

Frontiers in Immunology | www.frontiersin.org 16 November 2015 | Volume 6 | Article 588


http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org

Garg et al.

Danger Signalling and Cancer Immunotherapy

TABLE 3 | A list of prominent single-agent immunogenic cell death (ICD) inducers in cancer and their specific associations with danger signaling and
other immunostimulatory signaling.

ICD inducers Associated ICD-relevant DAMPs Other immunostimulatory activities or danger signals and other Reference
comments on immunomodulatory activity
DAMP Stage of cell death
Anthracyclines Surface CRT Pre-apoptotic Activation of Type | IFN response comprising MX-1 centered signature, (26, 42,
(epirubicin, Surface HSP70 Mid-apoptotic consisting of IFN-a/f and CXCL10; surface exposure of mannose-6-phopshate 102, 127,
doxorubicin, idarubicin,  Secreted ATP Early/mid-apoptotic receptor, which enables better interface with CTLs and facilitates GZMB- 141-144)
mitoxantrone), Released HMGB1 Post-apoptotic mediated cell death; radiotherapy is known to increase expression levels of
oxaliplatin, UVC various antigens in number of cancer models as well as induce “abscopal
radiation and effect” in both preclinical and clinical models; overall CALR levels were
radiotherapy predictive of prolonged OS in radiotherapy-treated lung cancer patients
Anti-EGFR Surface CRT Pre-apoptotic - (145)
antibody — 7A7 Surface HSP70 Early/mid-apoptotic
Surface HSP90 Early/mid-apoptotic
Bleomycin Surface CRT Mid/post-apoptotic Induces ambivalent immune response, i.e., all valid ICD markers but also (146)
Secreted ATP Mid/post-apoptotic increased Treg differentiation and, thus, a good candidate for anti-Treg
Released HMGB1 Post-apoptotic combinatorial therapy
Bortezomib Surface HSP90 Early/mid-apoptotic - (26, 66,
Surface CRT Early/mid-apoptotic 100, 127)
Surface HSP70 Early/mid-apoptotic
Oncolytic Adenovirus Surface CRT ? Immunogenicity of these viruses can be further increased by producing (147, 148)
Released ATP transgenic versions producing CD40L or GM-CSF
Released HMGB1
Clostridium difficile Surface CRT Early/mid-apoptotic - (149)
toxin B Released ATP Post-apoptotic
Released HMGB1 Post-apoptotic
Released HSP70/90  Post-apoptotic
Coxsackievirus B3 Surface CRT Early-apoptotic - (150, 151)
(cvBy)* Secreted ATP Early/mid-apoptotic
Released HMGB1 Post-apoptotic
Cyclophosphamide Surface CRT Pre-apoptotic Facilitates an interface between gut microbiota (leaked due to gut perforation) (18, 152,
Released HMGB1 Post-apoptotic and host immune system thereby allowing Th17 cells-dependent anti-tumor 153)
immune responses; cyclophosphamide’s effects on anti-tumor immunity
are strongly dose dependent. High doses of this chemotherapeutic can
be immunosuppressive yet low or metronomic doses facilitate anti-tumor
immunity through targeted depletion of Tregs/MDSCs. In ICD set-up, a low
dose (100 mg/kg in mice) of cyclophosphamide was shown to exert anti-tumor
immunity
High hydrostatic Surface CRT Early/mid-apoptotic - (154-156)
pressure Surface HSP70 Early/mid-apoptotic
Surface HSP90 Early/mid-apoptotic
Secreted ATP Mid/post-apoptotic
Released HMGB1 Mid/post-apoptotic
Hypericin-based PDT Surface CRT Pre-apoptotic High accumulation of OAMPs like protein carbonyls; down-regulates CD47; (26, 30,
Surface HSP70 Pre-apoptotic induces up-regulation of various molecules associated with Type | IFN response 34, 35,
Surface HSP90 Pre-apoptotic (IRF7,IRF1, OASL, IL18, CXCL2, IL15, IL8) but not IFN-a secretion 112, 116,
Secreted ATP Pre-apoptotic 157)
Released HMGB1 Post-apoptotic
Released HSP70/90  Post-apoptotic
Released CRT Post-apoptotic
Microwave thermal Surface CRT ? - (158)
ablation Secreted ATP
Released HMGB1
Newcastle disease virus  Surface CRT Early/mid-necroptotic  Increases expression levels of PMEL17 antigen in glioma cells; NDV treatment (43, 159)
(NDV) Released HMGB1 Post-necroptotic has also been shown to induce “abscopal effect” in a murine melanoma model
Paclitaxel Surface CRT Early/mid-apoptotic Overall CALR levels were predictive of prolonged OS or PFS in paclitaxel- (42,144,
Released HMGB1 Post-apoptotic treated ovarian cancer patients thereby establishing clinical validity of ICD in 160)
paclitaxel treatment set-up; paclitaxel has also been reported to enhance overall
antigen levels
(Continued)
Frontiers in Immunology | www.frontiersin.org 17 November 2015 | Volume 6 | Article 588


http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org

Garg et al. Danger Signalling and Cancer Immunotherapy

TABLE 3 | Continued

ICD inducers Associated ICD-relevant DAMPs Other immunostimulatory activities or danger signals and other Reference
)mments on immunomodulatory activity
DAMP Stage of cell death
Patupilone Surface CRT Early/mid-apoptotic - (128)
Photofrin-based PDT Surface CRT Early/mid-apoptotic The only anticancer modality for which a comparison between DAMPs 47,
Surface HSP70/60 Early/mid-apoptotic induced by in vitro versus in vivo treatment was carried out — however, none 161-164)
Released HMGB1 Post-apoptotic of ICD-related DAMPs were tested
Surface ceramide Early/mid-apoptotic
Surface S1P Early/mid-apoptotic
Pt N-heterocyclic Surface CRT Pre-apoptotic - (140)
carbene complex Released ATP Post-apoptotic

Released HMGB1 Post-apoptotic

RIG-I-like helicases Surface CRT Early-apoptotic Induces Type | IFN response (165)

(RLH) ligand Released HMGB1 Post-apoptotic
Released HSP70 Post-apoptotic

Septacidin Surface CRT Pre-apoptotic - (139)
Secreted ATP Early/mid-apoptotic
Released HMGB1 Post-apoptotic

Shikonin Surface CRT Early/mid-apoptotic Also, causes surface exposure of GRP78 a prominent inducer of pro- (160)
Surface HSP70 Early/mid-apoptotic tumorigenic effects; enhances overall cancer antigen levels

Vorinostat Surface CRT Early/mid-apoptotic - (166)
Secreted ATP Post-apoptotic
Released HMGB1 Post-apoptotic

Wogonin Surface CRT Early-apoptotic Surface-Annexin A1 is also induced by wogonin. In an ICD set-up, the role of (167)
Released ATP Post-apoptotic Annexin A1 is not clear since it is a noted anti-inflammatory factor

Released HMGB1 Post-apoptotic

CRT or CALR, calreticulin; CTLs, cytotoxic T lymphocytes; DAMPs, damage-associated molecular patterns; EGFR, epidermal growth factor receptor; GZMB, granzyme B; HMGB1,
high-mobility group box-1 protein; HSP, heat shock protein; ICD, immunogenic cell death;, IFN, interferon; MDSC, myeloid-derived suppressor cells; OAMPs, oxidation-associated
molecular patterns; OS, overall survival; PFS, progression-free survival.

Important note: It is worth noting that recently various promising candidate therapies have emerged that induce in vitro DAMPs relevant for ICD, e.g., Rose Bengal-based PDT (168),
Docosahexaenoic acid (169), and Capsaicin (170, 171). Such agents may emerge as potent inducers of ICD in future, however, in order to establish them as inducers of ICD-like
immunogenicity, it is imperative to confirm their (i.e., cancer cells treated with these agents) ability to stimulate T cells (in vitro or in vivo) and/or induce anti-cancer vaccination effect,
in vivo, as per the consensus guidelines (104).

Glossary: In the current setting, it is crucial to differentiate between the meanings of the words, “immunogenic” and “immunogenicity” as they are not supposed to have inter-
changeable meanings. Immunogenic, derives from the word immunogen, which refers to any substance that can elicit an immune response; this includes, whole cells or organisms
(eukaryotic or prokaryotic), specific cellular entities or specific proteins (e.g., antigens) (172). On the other hand, immunogenicity is a much more specific terms that is closer to
antigenicity in operational sense, since it refers to the ability of a specific entity (e.g., an antigen or an epitope) to be recognized by the immune system through binding interactions
with T or B cells, which may or may not result in an overt immunological response (4, 11).

“?” Unclear or not determined yet.

“#” Unconfirmed anti-tumour immune responses in adaptive immune system-competent.
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TABLE 4 | Classification of ICD inducers into Type | and Type Il based on their ER or non-ER-targeting modus operandi.

ICD inducer

Site of Cell-death inducing effects

Site of danger
signaling induction

Reference

Type | inducers - agents that induce icd through a “collateral” er stress effect

Anthracyclines (epirubicin, doxorubicin, idarubicin,
mitoxantrone), oxaliplatin, UVC radiation and radiotherapy

Anti-EGFR antibody — 7A7

Bleomycin

Bortezomib

Clostridium difficile toxin B

Cyclophosphamide
High hydrostatic pressure

Microwave thermal ablation

Paclitaxel, patupilone

Photofrin-based PDT

RIG-I-like helicases (RLH) ligand
Septacidin
Shikonin

Vorinostat

Wogonin

Nucleus (DNA or the DNA replication machinery
proteins)

Cell surface (epidermal growth factor receptor or

EGFR)
Nucleus (causes DNA strand-breaks)

Cytosol (26S proteasome or ERAD machinery;

CIP2A/cancerous inhibitor of protein phosphatase

2A)

Cytoskeleton (causes cytoskeletal disruption by
targeting RhoA, CDC42 and Rac1)

Nucleus (DNA)

Broad disrupting/denaturing effects on
membranes, and proteins

Hyperthermic ablation of cellular components

Cytoskeleton (target microtubules thereby
disrupting cytoskeletal functions)

Cellular membranes (ROS-based damage of
membranes)

Cytosol (targets RIG-I-like helicases)

?

Cytosol (tumor-specific pyruvate kinase-M2
protein)

Nucleus/Cytosol (targets histone deacetylase)

Mitochondria (generates mitochondria-derived
ROS)

Type Il inducers - agents that induce icd through a “focused” er stress effect

Hypericin-based PDT

Oncolytic adenovirus

Oncolytic coxsackievirus B3 (CVB3)
Oncolytic Newcastle disease virus (NDV)

Pt" N-heterocyclic carbene complex

ER (ROS-based damage at the ER membrane)
ER (ER membranes and lumen)
ER (ER membranes and lumen)

ER (ER membranes and lumen)

Predominantly targets ER (generates ER-directed

ROS)

ER, autophagy,
pannexin channels,
lysosomes

ER

ER?
ER

ER

ER

ER (mitochondria?)

ER?
ER

ER?

ER?
ER
ER

ER?
ER

ER
ER
ER
ER
ER

(36, 41, 70,111, 130, 173,
174)

(145)

(146)
(100, 175, 176)

(149, 177)

(152)
(154, 178)

(158)
(42, 104, 179)

(180, 181)

(165)
(139)
(160, 182)

(166)
(167, 183)

(35, 63, 116, 181, 184, 185)
(104, 147)
(150, 186)
43, 159, 187)
(140)

EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; ICD, immunogenic cell death; PDT, photodynamic therapy; ROS, reactive oxygen species.

“?” Unclear or not determined yet.
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TABLE 5 | A list of molecular and immunological components crucial for regulation of ICD.

Molecular or Acting on the Role in regulating ICD or ICD-related determinants for Confirmed by which experimental Reference
immunological level of? various therapies/inducers intervention?
components
Positive regulation Negative No role in
regulation regulation
Actin cytoskeleton Cancer cells Anthracyclines, hypericin-PDT - - Pharmacological inhibitors of actin (85, 123)
polymerization
ATGS5, ATG7, or Cancer cells Anthracyclines, oxaliplatin Hypericin-PDT Newcastle ATG5, ATG7 or BECN1 si/shRNA, (34, 43,112)
BECNH1 disease ATG5 KO MEFs, or transgenic mice
virotherapy model of spontaneous melanoma with
Atg7-'"- phenotype or pharmacological
inhibitors of macroautophagy
BAX/BAK Cancer cells Anthracyclines, hypericin-PDT - - BAX/BAK KO MEFs or Bax/Bak si/ (85, 123)
shRNA
Calreticulin Cancer cells Anthracyclines, radiotherapy, - - CRT si/shRNA (35, 41, 116,
oxaliplatin, hypericin-PDT 123)
Caspase 1 Host immune Anthracyclines and/or oxaliplatin - - Casp1~~ mice (36)
system
Caspase-8 Cancer cells Anthracyclines - Hypericin- Caspase-8 si/shRNA or Hel.a cancer (85, 123)
PDT cells expressing CrmA (a caspase-8
inhibitory protein)
CD4+/CD8* T cells Host immune Anthracyclines and/or oxaliplatin, - - Antibody-based depletion; Ex vivo (84, 43, 100,
system hypericin-PDT, high hydrostatic co-culture experiments 102, 152, 161,
pressure, bortezomib, vorinostat, 162, 166, 191)
photofrin-PDT, Newcastle disease
virotherapy, cyclophosphamide
CXCL10 Host immune Anthracyclines and/or oxaliplatin - - Recombinant protein (102, 141)
system
CXCR3 Host immune Anthracyclines and/or oxaliplatin - - Cxcr3~'- mice or antibody-based (141)
system blockade
elF2a-P Cancer cells Anthracyclines - Hypericin- MEFs expressing non-phosphorylable (85, 123)
PDT version of elF2a-P, salubrinal or
pharmacological inhibitors of GADD34
ER-Ca?* Cancer cells Anthracyclines - Hypericin- BAPTA, a Ca?* chelator or Reticulon-1C (35)
PDT overexpression;
ERp57 Cancer cells Anthracyclines - Hypericin- ERp57 si/shRNA or ERp57 KO MEFs (35, 116)
PDT
ER-to-Golgi Cancer cells Anthracyclines, hypericin-PDT - - Brefeldin A, a secretory pathway (85, 123)
transport inhibitor
HMGB1 Cancer cells Anthracyclines - - HMGBH1 si/shRNA (70)
HSP90 Cancer cells Bortezomib - - Pharmacological HSP9O inhibitors (66, 67, 100)
HSP70 Cancer cells Shikonin . - Antibody-mediated protein depletion (192)
IFN-o/p or Cancer cells Anthracyclines, cyclophosphamide, - - Antibody-based blockade or (141, 152)
IFN-a-receptor and/or oxaliplatin recombinant proteins (wherever
applicable)
IFN-y and Host immune Anthracyclines and/or oxaliplatin - - Ifng~'- or Ifngr1-'- mice (70, 102)
IFN-y-receptor system
IL17A or Host immune Anthracyclines and/or oxaliplatin - - II117a~= or ll17ra”- mice (36, 193)
IL17A-receptor system
IL1-receptor Host immune Anthracyclines and/or oxaliplatin - - II1r1-"- mice (36)
system
IL-1p Host immune Anthracyclines and/or oxaliplatin - - Antibody-based blockade (36)
system
Lipid rafts Cancer cells Mitoxantrone . Hypericin- MBC, a cholesterol-chelator that (35)
PDT disrupts lipid rafts
(Continued)
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TABLE 5 | Continued

Molecular or Acting on the Role in regulating ICD or ICD-related determinants for Confirmed by which experimental Reference
immunological level of? various therapies/inducers intervention?
components
Positive regulation Negative No role in
regulation regulation
LRP1 Cancer cells Mitoxantrone, hypericin-PDT - - LRP1 shRNA, LRP1 KO MEFs, (35)
LRP1 KO CHO cells and LRP1
overexpression in CHO cells
LY96 and MyD88 Host immune Anthracyclines and/or oxaliplatin - - Ly96~'- or Myd88~'- mice (102)
(TLR-adaptors) system
NLRP3 Host immune Anthracyclines and/or oxaliplatin - - Nirp3-"- mice (36)
system
P2 x 7 receptor Host immune Anthracyclines and/or oxaliplatin - - P2rx7-'- mice (36)
system
Perforin Host immune Anthracyclines and/or oxaliplatin - - Prf1-/- mice (36, 70, 102)
system
PERK Cancer cells Anthracyclines, hypericin-PDT, - - PERK si/shRNA, PERK KO MEFs (35, 123, 167)
wogonin
PIBK p110a Cancer cells Anthracyclines, hypericin-PDT, - - PIBK p110a shRNA or wortmannin, a (85, 167)
wogonin pharmacological inhibitor
Rag2 Host immune Anthracyclines and/or oxaliplatin, - - Rag2-"- mice (43, 70, 102,
system vorinostat, cyclophosphamide, 152, 161, 162,
photofrin-PDT, Newcastle disease 166)
virotherapy
STAT3 Cancer cells Anthracyclines and/or oxaliplatin - - Stat3~'~ cancer cells (194)
TLR3 Cancer cells Anthracyclines and/or oxaliplatin - - TLRS si/shRNA or TIr3~'~ cancer cells (141)
TLR4 Host immune Anthracyclines and/or oxaliplatin - - TIr4-"- mice (70, 102)
system
TNF or TNF-receptor Host immune Anthracyclines and/or oxaliplatin - - Tnf-= or Tnfr1~/- mice (102)
system
LAMP2A Cancer cells? Mitoxantrone and hypericin-PDT - - LAMP2A KO MEFs (112)

ATG, autophagy-related protein; BECN1, beclin-1; CD, cluster of differentiation; CRT, calreticulin; CXCL, C-X-C ligand; CXCR, C-X-C motif receptor; elF2, eukaryotic initiation
factor 2; ER, endoplasmic reticulum; ERp57, endoplasmic reticulum protein 57; HMGB1, high-mobility group box 1; HSR, heat shock protein; Hyp-PDT, hypericin-based
photodynamic therapy; ICD, immunogenic cell death; IFN, interferon; IL, interleukin; KO MEFs, knock-out murine embryonic fibroblasts; LAMF, lysosome-associated membrane
glycoprotein; LRP1, low-density lipoprotein receptor-related protein 1; MBC, methyl-p-cyclodextrin; NLRP3, NOD-like receptor family, pyrin domain containing 3; PERK, protein
kinase RNA-like endoplasmic reticulum kinase; PI3K, phosphoinositide 3-kinase; PRF, perforin; TLR, toll-like receptor; TNF, tumor necrosis factor.

TABLE 6 | A list of prominent preclinical mice or rat models used for analysis of ICD.

ICD inducer

Mice tumor models utilized for positive ICD characterization or ICD “restoration/rescue” analysis

Heterotopic subcutaneous mice or rat models

Orthotopic mice
models

Spontaneous tumor Carcinogen-induced
mice models tumor models

Anthracyclines

Anti-EGFR
antibody (7A7)

Bleomycin

CT26 cells in BALB/c mice — prophylactic immunization model (41, 70,
111, 123, 197) and curative tumor model (41, 70, 111, 197); MCA205
cells in C57BL/6 mice — prophylactic immunization and curative tumor
model (36, 70, 111, 130); MCA-2/-4 cells in C57BL/6 mice — curative
tumor model (36); D122 cells in C57BL/6 mice — prophylactic
immunization model (145); AY27 cells in Fischer 344 rats — prophylactic
immunization model (42)

D122 cells in C57BL/6 mice — curative tumor model and prophylactic
immunization model (145)

CT26 cells in BALB/c mice — curative tumor model (146)

MMTV-NeuT -
breast cancer mice
model — curative set-up
(198); Braf¥+;
Pten™-melanoma mice
model — curative set-up
(199)

(Continued)
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TABLE 6 | Continued

ICD inducer Mice tumor models utilized for positive ICD characterization or ICD “restoration/rescue” analysis
Heterotopic subcutaneous mice or rat models Orthotopic mice Spontaneous tumor Carcinogen-induced
models mice models tumor models
Bortezomib 67NR cells in BALB/c mice — prophylactic immunization model with use - - -

CD40L-encoding
Oncolytic
Adenovirus

Clostridium difficile
toxin B

Coxsackievirus B3

Cyclophosphamide

Hypericin-based
PDT

Microwave thermal
ablation

Newcastle disease
virus (NDV)

Oxaliplatin

Photofrin-based
PDT

Radiotherapy

RIG-I-like helicases
(RLH) ligand

Septacidin
Shikonin

UVC irradiation

Vorinostat

High hydrostatic
pressure

Pt" N-heterocyclic
carbene complex

of stimulated DCs (200); B16 cells in C57BL/6 mice — curative tumor
model, combination treatment with AAVMART1/DC and bortezomib is
significantly better than bortezomib alone (201); HM-1 cells in C57BL/6 x
CB8/He F; origin mice — prophylactic immunization model (202)

MB49 cells in C57BL/6 mice — curative tumor model (147)

CT26 cells in BALB/c mice — prophylactic immunization model (149)

A549 and EBC-1 cells in nude BALB/c mice — curative tumor
model (150)

EG7 cells in C57BL/6 mice (152); AB1-HA cells in BALB/c
mice — curative tumor model followed by resistance to challenge with live
cells (203)

CT26 cells in BALB/c mice — prophylactic immunization model
(85); — curative tumor model (184); AY27 cells in Fischer 344

rats — prophylactic immunization model (42); B78 cells in C57BL/6
mice — prophylactic immunization model (30)

K7M2 cells in BALB/c mice or UMR106 cells in SD rats — prophylactic
immunization model (158)

B16 cells in C57BL/6 mice — curative tumor model (159)

CT26 cells in BALB/c mice — prophylactic immunization model (123,
197); — curative tumor model (197); EL4 cells in C57BL/6 mice — curative
tumor model (36); EG7 cells in C57BL/6 mice — curative tumor model
(36); EG7 cells in C3H mice — prophylactic immunization model (70)

EMT® cells in BALB/c mice — curative tumor model (161); SCCVII cells in
C3H/HeN mice — curative tumor model (162, 163)

CT26 cells in BALB/c — prophylactic immunization model (204); 410.4
cells in BALB/c mice — prophylactic immunization model (205); EG7
cells in C57BL/6 mice and SCC VI cells in C3H mice — prophylactic
immunization model (206); B16F10 cells in C57BL/6 mice — prophylactic
immunization model with the use of irradiated cancer cells, as well as
DCs stimulated with irradiated cancer cells (207)

Panc02 cells in C57BL/6 mice — prophylactic immunization and curative
tumor model (165)

MCAZ205 cells in BALB/c mice — prophylactic set-up (139);

B16 cells in C57BL/6 mice — prophylactic immunization model (160);
P388 cells in KMF mice — curative tumor model (208)

CT26 cells in BALB/c mice — prophylactic immunization model (204);
EG7 cells in C57BL/6 mice — curative tumor model (152)

MC38 or Ep-myc 4242/299 lymphoma in C57BL/6 mice — curative
tumor set-up (166)

GL261 cells

in C57BL/6

mice — curative
tumor model (43)

4T1 cells in BALB/c
mice — curative
tumor model (192);

No mice or rat based preclinical data available to support their ICD-functions

DC, dendritic cell; ICD, immunogenic cell death; PDT, photodynamic therapy.
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TABLE 7 | Existence of intrinsic or naturally occurring resistance to ICD in experimental cancer models.

ICD Experimental set-up Reason behind Resistance Rescued by? Clinical applicability verified? Reference
inducer(s) where resistance
was observed
In vivo preclinical setting (cancer cell or host immune system-level resistance)
Anthracyclines  C3H mice with Host immune system-level resistance: defective Adoptive transfer  Yes; breast cancer, colon cancer, and (215)
or naturally occurring tir4  TLR4 in C3H mice causes failure of HMGB1- of TLR4- lung cancer patients carrying TLR4
anthracycline  mutation mediated immunity thereby leading to resistance expressing DCs gene mutation that ablates its ability
plus oxaliplatin to anti-cancer vaccination effect associated with loaded with dying  to bind its ligands is associated with
anthracyclines treatment tumor cells worse prognosis post-treatment
Doxorubicin AT-3 or 4T1.2 breast ~ Cancer cell-level resistance: CD73 overexpression  Blockade of CD73  VYes; in triple-negative breast cancer (216)
cancer cells in confers chemo-resistance to doxorubicin by patients, high CD73 in anthracycline-
C57BL/6 or BALB/c suppressing anti-tumor immunity through A2A treatment set-up associated with
mice, respectively adenosine receptors lower rate of complete responses
Mitoxantrone  AY27 rat bladder Cancer cell-level resistance: low endogenous CRT ~ Exogenous Yes; high tumoral CALR levels (42)
and cancer cells in Fischer levels, resulted in severely reduced surface-CRT addition of correlated with high expression of
Hypericin-PDT 344 rats upon treatment with mitoxantrone or Hyp-PDT; recombinant CRT  phagocytosis-associated genes
this in turn compromised immunogenic phagocytic and predicted for prolonged survival
clearance and anti-cancer vaccination effect after RT or PTX treatment of lung or
ovarian cancer patients respectively
Oxaliplatin Autochthonous Host immune system-level resistance: Genetic or Not directly, but possible validity is (217)
transgenic immunosuppressive B cells expressing IgA, IL10 pharmacological supported by human patient data
adenocarcinoma of and PD-L1 cause resistance to anti-tumorigenic depletion of B cells  showing that IL-10 expressing IgA+
the mouse prostate effects of oxaliplatin cells are abundant in therapy-
(TRAMP) model of resistant prostate cancer and are
metastatic prostate negative prognostic indicators
cancer
In vitro preclinical setting (cancer cell-level resistance)
Anthracycline  SH-SY5Y Anthracycline treatment of these cells failed to Overexpression of  — (132)
neuroblastoma cell induce surface-CRT due to reduced capacity to reticulon-1C
line efflux ER-Ca?* into cytosol
Doxorubicin HT29-dx and HT29 Doxorubicin failed to induce NO synthesis, which Addition of sodium - (218)
INOS-cells (human resulted in reduced toxicity, reduced surface-CRT nitroprusside or a
colon cancer cells) and subsequently compromised immunogenic NO donor
phagocytic clearance and DC stimulation
Doxorubicin MDR+ human cancer Increased MDR levels caused increased Addition of Not directly (219)

cells (HT29-dx, A549-
dx and MCF-7-dx)

P-glycoprotein expression which caused
resistance to doxorubicin-induced ICD by affecting
immunogenic phagocytic removal

zoledronic acid

CD, cluster of differentiation; CRT or CALR, calreticulin; DC, dendritic cells; ER, endoplasmic reticulum; HMGB1, high-mobility group box-1 protein; HSE, heat shock protein; Hyp-
PDT, hypericin-photodynamic therapy; ICD, immunogenic cell death; IL, interleukin; MDR, multiple drug-resistance; NO, nitric oxide; NOS, nitric oxide synthase; PD-L1, programed
cell death protein ligand 1; PTX, paclitaxel; RT, radiotherapy; TLR, toll-like receptor.
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TABLE 8 | A list of clinical observations supporting the existence of ICD in cancer patients.

ICD inducer Standard-of-care therapy or regularly applied ICD-related characteristics regulating clinical patient prognosis
palliative therapy in clinic? or treatment-responsiveness
Anthracyclines Yes P2RX7 loss-of-function mutation that compromises ICD also

negatively affects MFS in breast cancer patients treated with
adjuvant anthracyclines (36); breast cancer patients possessing a
wild-type TLR4 benefited more from the anthracyclines than those
who possessed a mutated TLR4 that compromises ICD (70); an
MX1-centered Type | IFN signature in anthracycline-treated breast
cancer patients predicts for improved disease outcome (141);
combined positivity for cytoplasmic LC3B+ puncta and nuclear
HMGBH1 is a positive predictor of improved survival following adjuvant
anthracycline-based chemotherapy (225)

High hydrostatic pressure No; but HHP-based anticancer DC vaccines No data are available
are currently being applied in clinical trials against
prostate cancer and ovarian cancer (155)

Hypericin-based PDT No; but few clinical trials have been carried out for ~ No data are available
non-melanoma skin cancer (226), cutaneous T-cell
lymphoma (227), mesothelioma (228), and basal or
squamous cell carcinoma (229)

Oncolytic adenoviruses No; but oncolytic adenoviruses are currently being ~ Serum HMGB1 levels and the temporal change in their levels during
applied in various clinical trials in cancer patients treatment was identified as a prognostic and predictive biomarker in
cancer patients (230)

Oxaliplatin Yes Similar to anthracyclines, cancer patients possessing wild-type TLR4
exhibited prolonged PFS and OS in comparison to patients bearing
the loss-of-function allele of TLR4 (197)

Paclitaxel Yes High tumoral CALR levels in paclitaxel-treated ovarian cancer patients
associated with prolonged OS/PFS as well as increased expression
levels of various phagocytosis-associated genes (42)

Photofrin-based PDT Yes; FDA-approved for application in No data available
esophageal and lung cancer (231)

Radiotherapy Yes In patients of eosophageal squamous cell carcinoma (ESCC) receiving
chemo-radiotherapy significant increase in serum HMGB1-levels and
increased intra-tumoral staining of HMGB1 correlated with better
patient survival (232); high tumoral CALR levels in radiotherapy-
treated lung cancer patients associated with prolonged OS as well
as increased expression levels of various phagocytosis-associated

genes (42)
Shikonin No; but shikonin is currently being applied in No data are available
an observational clinical study of breast cancer
patients (NCTO1287468)
UVC irradiation No; but UV treatment is sometimes applied for No data are available
the preparation of clinical cell-based anticancer
vaccines (233)
Bortezomib, Anti-EGFR antibody Yes No data are available
(7A7), bleomycin, cyclophosphamide,
microwave thermal ablation, vorinostat
Coxsackievirus B3; Clostridium difficile No No data are available

toxin B; Microwave thermal ablation;
Newcastle disease virus (NDV); RIG-I-
like helicases (RLH) ligand; Septacidin;
Pt" N-heterocyclic carbene complex;
Patupilone

CRT or CALR, calreticulin; HMGB1, high-mobility group box-1 protein; Hyp-PDT, hypericin-photodynamic therapy; ICD, immunogenic cell death; IFN, interferon; OS, overall survival;
PFS, progression-free survival; TLR, toll-like receptor.
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