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T regulatory cells (Tregs) are subsets of T lymphocytes specialized in modulating anti-
gen-specific immune responses in vivo. Hence, Tregs represent an ideal therapeutic tool 
to control detrimental immune reactions. Based on solid pre-clinical results, investiga-
tors started testing the safety and efficacy of Treg-based therapies in humans. Despite 
promising results, a number of issues remain to be solved. We will discuss the results 
obtained from clinical trials and the challenges and risks we are facing in the further 
development of Treg-based therapies.
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iNtrODUctiON

T regulatory cells (Tregs) are a component of the immune system involved in modulating immune 
reactions and in inducing tolerance. Due to their potential as immune modulators, therapeutic 
application of Tregs to control undesirable immune responses and to promote tolerance has become 
an active field of investigation (1). Over the years, several types of Tregs have been identified, and the 
forkhead box P3 (FOXP3)-expressing Tregs (FOXP3+ Tregs) (2) and the T regulatory type 1 (Tr1) 
cells (3) are the best characterized (Figure 1).

FOXP3+ Tregs can be either thymus-derived (tTregs), or induced in the periphery (pTregs) (4, 5). 
Regardless of their origin, both subsets are characterized by constitutive expression of the IL-2Rα-
chain (CD25), in the absence of the IL-7Rα-chain (CD127), and of FOXP3 (6), making the two 
subsets indistinguishable based on their phenotype. High expression of Helios has been identified 
in FOXP3+ Tregs (7), and suggested to be specific for tTregs (8). However, this notion was later 
challenged by the demonstration that Helios is also expressed by non-tTregs (9, 10). To date, the 
most reliable feature unambiguously identifying tTregs is the epigenetic remodeling of a specific 
region in the FOXP3 locus, indicated as Treg-specific-demethylated-region (TSDR) (11). A more 
comprehensive CpG hypomethylation pattern of tTregs including several Treg-related genes has 
been described (12).

In addition to CD25, along the years, the expression of several molecules, i.e., CTLA-4 (13), 
GITR (14), CD39 (15), Galectin 10 (16), latency-associated-peptide (LAP) (17), and glycoproteinA-
repetitions-predominant (GARP) (18) has been attributed to human FOXP3+ Tregs. The expression 
of the above-mentioned molecules is not exclusive to FOXP3+ Tregs, since they are often shared with 
activated conventional T cells.

CTLA-4, GITR, and CD39 are specifically associated with FOXP3+ Treg suppressive function, 
which is primarily dependent on contact with target cells. Additional mechanisms of suppression 
have been described for FOXP3+ Tregs, including release of IL-10 (19), TGF-β (20, 21), and IL-35 
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(22), direct killing of T effector (Teff) cells through the granzyme/
perforin axis (23), modulation of antigen-presenting cells (APCs) 
stimulatory capacity via CTLA-4 (24), cytokine deprivation (25), 
and generation of immunosuppressive metabolites, such as extra-
cellular adenosine (26) and intracellular cAMP (27). The variety 
of phenotypes and weapons discovered led from the original idea 
of FOXP3+ Tregs as homogeneous population to the modern view 
of a heterogeneous pool, including several specialized subtypes 
characterized by expression of specific cell surface markers such 
as ICOS (19), HLA-DR (28, 29), and CD45 isoforms (30, 31).

Tr1 cells are memory T lymphocytes expressing CD49b and 
LAG-3 (32). Tr1 cells, upon activation, secrete high levels of IL-10 
and TGF-β, variable amounts of IL-5, GM-CSF, and IFN-γ, and 

FiGUre 1 | schematic representation of cell surface and intracytoplasmic markers and mechanisms of action characterizing FOXP3-expressing (left 
cartoon) and type 1 (right cartoon) t regulatory cells. The shared and unique features of both cell types are listed in the frames. Ag, antigen; APC, antigen-
presenting cell; ATP, adenosine triphosphate; CTLA-4, cytotoxic T-lymphocyte antigen 4; FOXP3, forkhead box protein 3; GITR, glucocorticoid-induced TNFR family 
related gene; Gr; Granzymes; LAG-3, lymphocyte-activation gene 3; PRF, perforin; Teff, effector T cell; TGFβ, transforming growth factor β; Tr1, type 1 T regulatory cell.

minimal amounts of IL-2, IL-4, and IL-17 (3, 33, 34). Tr1 cells 
express CTLA-4, (35, 36), PD-1 (36), and ICOS (37). Similar 
to FOXP3+ Tregs, Tr1 cells can express CD39 and CD73 [Ref. 
(38–41) and (Gregori et al. unpublished data)]. Tr1 cells do not 
constitutively express FOXP3 (42), thus they are distinct from 
both tTregs and pTregs; however, upon activation, Tr1 cells can 
transiently up-regulate FOXP3, but its expression never reaches 
the levels of FOXP3+ Tregs (33, 43–45).

The main mechanism by which Tr1 cells control immune 
responses is the secretion of IL-10 and TGF-β. Importantly, to 
exert their suppressive function, Tr1 cells need to be activated 
via their TCR, but, once activated, they can mediate bystander 
suppressive activity against other antigen(Ag)s (3, 33). IL-10 
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and TGF-β directly inhibit T-cell responses by suppressing IL-2 
and IFN-γ production and T-cell proliferation, and indirectly 
act on APCs by down-modulating costimulatory molecules, 
HLA-class-II, and pro-inflammatory cytokine production (34). 
In addition to the cytokine-mediated suppression, Tr1 cells 
inhibit T-cell responses by killing myeloid APCs via granzyme 
B (46). Tr1 cell-mediated cytotoxicity of myeloid APCs requires 
stable adhesion with target cells and activation via HLA-class-I 
molecules and CD112/CD155 expressed on target cells (46). New 
evidence suggests that Tr1 cells use additional modes of immune 
regulation to achieve tolerance: they can inhibit T-cell responses 
by cell-contact dependent mechanisms (36) and by metabolic 
disruption (33, 39, 41).

Results from pre-clinical murine and humanized models 
convinced investigators that Tregs can be used to control graft-
versus-host disease (GvHD) as well as organ rejection, or to treat 
autoimmune diseases (47, 48). Good-manufacturing-practice 
(GMP)-grade protocols to isolate and expand human Tregs 
in vitro without losing their suppressive function and to generate 
human Ag-specific Tregs have been established allowing transla-
tion of Treg-based therapy to the clinical practice.

cOMPLeteD AND ONGOiNG treg-BAseD 
cLiNicAL triALs

Treg-based therapy has been used for the first time to prevent 
GvHD in patients undergoing allogeneic hematopoietic stem 
cell transplantation (allo-HSCT). Six independent trials, using 
either FOXP3+ Tregs or Tr1 cells, have been concluded, and all of 
them showed the feasibility and safety of Treg-based approaches 
(49–54) (Table 1). In five of these trials, either freshly isolated (51, 
54, 55) or ex vivo expanded FOXP3+ Tregs (49, 50) were infused 
in patients undergoing allo-HSCT for onco-hematological dis-
eases. Three of these trials also indicated the potential efficacy 
of the treatment. Brunstein et al. (50) reported a decreased inci-
dence of grade II–IV GvHD as compared to historical controls 
when umbilical cord blood (UBC)-derived Tregs were injected, 
without increased risk of infections. Similarly, Di Ianni et al. (51) 
described few cases of low grade GvHD (2 out of 26 patients) 
and no development of chronic GvHD in patients injected with 
un-manipulated peripheral Tregs. More recently, it has been 
reported that in Treg-treated patients, the cumulative incidence 
of relapse was significantly lower than in historical controls (54). 
Previous trials based on the adoptive transfer of alloAgs-specific 
anergic T cells generated in vitro in the presence of Belatacept 
(CTLA-4-Ig) to prevent GvHD after allo-HSCT were performed 
(56, 57). Later, it was demonstrated that alloAgs-specific anergic 
T cells generated with CTLA-4-Ig contained a small fraction of 
FOXP3+ Tregs (58).

Our group has completed a phase-I clinical trial in which IL-10-
anergized T cells (IL-10 DLI) containing Tr1 cells were injected in 
patients undergoing haploidentical-HSCT (53). Donor-derived 
IL-10-anergized T cells specific for host allo-Ags were generated 
in  vitro through activation of T cells by host-derived APCs in 
the presence of exogenous IL-10 (60). An improved protocol for 
the generation of Tr1 cells, which foresees the use of tolerogenic 

dendritic cells (DC-10)(61), has been developed (60, 62). Although 
a small cohort of patients was treated, our results demonstrated 
that after infusion of IL-10 DLI no acute adverse events and only 
mild GvHD (grade II or III responsive to therapy) were observed. 
Furthermore, the treatment accelerated immune reconstitution 
after transplant and long-lasting disease remission (53).

The above-mentioned trials paved the way to a wider applica-
tion of Tregs as advanced medical products for the treatment of 
autoimmunity in type 1 diabetes (T1D), inflammatory diseases, 
and rejection after solid organ transplantation. Ex vivo expanded 
CD4+CD25hiCD127− Tregs were administered to children with 
recent onset T1D in a phase-I trial (59) (Table 1). The procedure 
appeared to be safe, as no adverse reactions related to the treat-
ment were reported. However, the few data available do not allow 
drawing conclusions on the clinical relevance of the procedure 
(59). The group of Bluestone is currently testing the safety of 
ex vivo expanded polyclonal CD4+CD25hiCD127low/− Tregs in a 
phase-I clinical trial (NCT01210664) in which increasing doses 
of Tregs will be injected in recent onset adult T1D patients (63). 
A phase-I/IIa clinical study in which Ag-specific Tr1 cell clones 
were used to treat patients with Crohn’s Disease has been recently 
reported. Overall, a response was observed in 40% of patients, 
with stronger effect in the group of patients who received the 
lowest Tr1 cell dose (40) (Table 1). The France-based company 
TxCell is currently heading a consortium dedicated to the clinical 
development of collagen-specific Tr1 cells (Col-Treg) to be tested 
in a first-in-man clinical study for severe and refractory autoim-
mune uveitis scheduled to start in 2016.1

The power of Tregs in inducing tolerance to allo-Ags after 
solid organ transplantation is currently under evaluation. In 
liver transplantation, several clinical trials are ongoing using 
polyclonal expanded Tregs with or without rapamycin (Treg trial, 
NCT01624077, ThRIL trial NCT02166177) or donor-specific 
expanded Tregs (darTreg: deLTA Trial NCT02188719, and 
ARTEMIS Trial NCT02474199). In addition, ex vivo expanded 
autologous polyclonal CD4+CD25+ Tregs are currently tested in  
the context of kidney transplantation (TRACT Trial, NCT 
02145325 and TASK Trial NCT0288931). Moreover, an ambi-
tious project in which the efficacy of different immune-regulatory 
cells, including polyclonal expanded Tregs with or without 
rapamycin (One Treg1 Trial, NCT02129881, ONE nTreg13 Trial 
NCT02371434), darTreg cells (DART Trial NCT02244801), and 
donor-specific T cells anergized in the presence of Belatacept 
(NCT02091232), and Tr1 cells induced with DC-10, will be 
compared in kidney transplant  recipients (“The ONE study,” 
discussed in details below) is currently ongoing. Results of these 
trials will definitely address the safety of this approach and will 
also provide hints on their efficacy as therapeutic agents.

OPeN issUes iN treg-BAseD 
iMMUNOtHerAPY

Despite the promising results obtained from the above-mentioned 
pilot clinical trials, many open questions remain on the best 

1 http://www.txcell.com
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tABLe 1 | completed treg-based clinical trials.

trial iD cell product Disease safety efficacy reference

N.A. In vitro expanded donor-derived 
CD4+CD25highCD127− Tregs

GvHD after HLA-matched sibling HSCT for 
hematological malignancies

Yes N.A. (49)

N.A. Freshly isolated donor-derived 
CD4+CD25highCD127− Tregs

GvHD after allo-HSCT for hematological 
malignancies

Yes N.A. (55)

NCT00602693 In vitro expanded UCB-derived CD4+CD25+ Tregs GvHD after DUCBT for hematological 
malignancies

Yes Yes (50)

CEAS Umbria 
Protocol No 01/08 
2008

Freshly isolated donor-derived CD4+CD25+ Tregs GvHD after haplo-HSCT for hematological 
malignancies

Yes Yes (51)

CEAS Umbria 
Protocol No 0108

Freshly isolated donor-derived CD4+CD25+ Tregs GvHD after haplo-HSCT for hematological 
malignancies

Yes Yes (54)

NKEBN/8/2010 In vitro expanded autologous 
CD4+CD25highCD127− Tregs

Pediatric recent onset T1D Yes N.A. (59)

ALT-TEN IL-10 DLI donor-derived IL-10 anergized T cells GvHD after haplo-HSCT for hematological 
malignancies

yes N.A. (53)

CATS 1 Autologous OVA-specific Tr1 cell clones; Ovasave® Refractory Crohn’s Disease Yes Yes (40)

GvHD, graft-versus-host disease; haplo-HSCT, haploidentical-hematopoietic stem cell transplantation; UCB, umbilical cord blood; DUCBT, double umbilical cord blood transplant; 
allo-HSCT, allogeneic-HSCT; T1D, type 1 diabetes; DLI, donor lymphocyte infusion; OVA, ovalbumin.
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source and subtype of Tregs to be administered, the survival of 
these cells in the host, and their mechanisms of action.

The ONE Study2 is a large-scale, collaborative project funded 
by the Seventh Framework Programme (FP7) of the European 
Commission, envisioned to ascertain which immuno-modulatory 
cell type (among ex vivo isolated and in vitro expanded polyclonal 
or allo-specific FOXP3+ Tregs, Tr1 cells, and tolerogenic APCs) 
is best fit to induce tolerance to allo-Ags in patients receiving 
kidney transplants (64, 65). Results from this study will define 
which regulatory cell population is the most efficient in promot-
ing graft acceptance and tolerance.

Recent work has led to the identification of specialized 
subsets of Tregs, which reside in peripheral tissues, including 
skin, intestinal mucosa, adipose tissue, autoimmune target tis-
sues, and injured muscle (66). Although tissue-resident Tregs 
represent a small fraction of total Tregs, their peculiar phenotype 
and function confer the ability to regulate tissue-specific physi-
ological and pathological processes. Therapies aimed at targeting 
tissue-specific Tregs may potentially allow the local control of the 
disease, without affecting systemic immunity. Although the clini-
cal application of tissue-resident Tregs remains unexplored, the 
possibility of exploiting these subsets deserves to be investigated 
in the near future.

One pre-requisite for Treg-based therapies is their in  vivo 
viability and persistence. In a clinical trial in allo-HSCT, upon 
in vivo infusion Tregs were no longer detected in the circulation 
after 2 weeks (50). Similarly, in T1D patients, in vitro expanded 
CD4+CD25+CD127− Tregs labeled with deuterium were found at 
high frequency in the peripheral blood 2 weeks after injection, then 
declined but they were still detectable at low frequency 6 months 
after therapy [Bluestone JA, unpublished data presented at FOCIS 

2 www.onestudy.org

Annual Meeting 2015]. It is still unclear whether infused Tregs 
migrate to tissues or have limited in vivo survival because of in vitro 
expansion. In IL-10 DLI-treated patients, we found an expansion 
of circulating granzyme B/IL-10 and CD49b/LAG-3-expressing 
CD4+ T cells that progressively increased during follow up. The 
percentages of these cells were higher in the IL-10 DLI-treated 
long-term surviving patients (up to 8 years after haplo-HSCT), 
as compared to those in healthy subjects (53). These data support 
the hypothesis that IL-10 DLI infusion supports either Tr1 cell 
expansion, or the de novo induction of Tr1 cells.

Increasing evidence suggests that FOXP3-expressing Tregs 
are intrinsically plastic (67–69). Therefore, the risk of their 
in  vivo conversion into Teff cells under inflammatory condi-
tions, and consequent loss of their suppressive ability, cannot be 
ignored. To allow safe clinical application of Tregs, investigators 
are currently trying to address this issue. For example, rapamycin 
permits the in vitro expansion of FOXP3+ Tregs, while impairing 
the proliferation of contaminating Teff cells (70, 71). Importantly, 
rapamycin-expanded FOXP3+ Tregs maintain their regulatory 
phenotype, even upon exposure to a pro-inflammatory environ-
ment (72, 73). Clinical-grade Treg expansion protocols with rapa-
mycin have been implemented for ongoing clinical trials under 
the umbrella of the European consortium “The ONE study” (65, 
74). On the same line, in order to avoid infusion of Teff cell con-
taminants potentially allo-reactive, allo-anergization of T cells in 
the presence of costimulatory blockade with Belatacept has been 
proposed (58) and is currently being tested (NCT02091232).

One major concern for the use of immunotherapy with Tregs 
to control GvHD after allo-HSCT for hematological malignancies 
is the potential inhibition of the beneficial graft-versus-leukemia 
(GvL) effects. Results from one of the completed phase II trials 
showed that in CD25+ Treg-treated patients the cumulative inci-
dence of relapse was significantly lower than in historical controls. 
The Authors proposed that the failure of human CD4+CD25+ Tregs 
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to home to the bone marrow does not hamper the GvL activity of 
the donor conventional T cells (54). Although promising, these 
results are still preliminary and required further confirmation.

UP-cOMiNG cHALLeNGes iN  
treg-BAseD iMMUNOtHerAPY

As previously mentioned, increasing evidence suggests that 
FOXP3+ Tregs are a heterogeneous population, including 
several specialized subtypes, making it difficult to choose the 
“right” variety of cells for specific treatments. To overcome this 
limitation, we developed a novel and efficient method to generate 
homogeneous populations of human FOXP3-expressing Tregs by 
Lentiviral-Vector (LV)-mediated hFOXP3 gene transfer into con-
ventional CD4+ T cells, hereafter indicated as CD4FOXP3 T cells. 
Constitutive over-expression of FOXP3 generates functional and 
stable FOXP3+ Treg-like cells, with potent in  vitro and in  vivo 
suppressive activity, reduced proliferative capacity and cytokine 
production (75, 76). CD4FOXP3 T cells generated from naïve CD4+ 
T cells have stable expression of FOXP3 in steady state and inflam-
matory conditions, whereas CD4FOXP3 T cells generated from 
memory cells show reduced percentage of FOXP3+ T cells upon 
activation, especially in the presence of inflammatory cytokines. 
The instability of FOXP3 expression in memory CD4FOXP3 T cells 
results in weaker suppressive function and increased proliferative 
capacity, confirming that acquisition of Treg functions is depend-
ent on stable FOXP3 expression (76).

Despite recent advances in the establishment of protocols to 
efficiently generate Allo Ag-specific Tr1 cells in vitro, the result-
ing populations still contain contaminants that could potentially 
limit the in vivo efficacy of Tr1 cells (60, 61). The recent discovery 
of CD49b and LAG-3 as specific biomarkers of Tr1 cells that allow 
the isolation of Tr1 cells from in vitro Tr1-polarized populations 
(32) will open the possibility to select human Tr1 cells from mixed 
cultures. As an alternative to obtain a large and homogeneous 
population of Tr1 cells, the LV-mediated hIL-10 gene transfer 
has been used to convert conventional T cells into Tr1-like 
cells, termed CD4IL-10 (77). CD4IL-10 cells mirror the phenotype 
and function of Tr1 cells and suppress xeno-GvHD (77). These 
findings pave the way for adoptive cell therapy with FOXP3- or 
IL-10-engineered T cells in patients with autoimmune disorders 
and in patients undergoing allogeneic organ or HSC transplanta-
tion. Issues related to undesired effects of therapy with genetically 
modified cells, such as induction of general immunosuppression, 
impairment of immune reconstitution, and GvL activity in the 
context of allo-HSCT for hematological diseases are still under 
investigation.

In humanized pre-clinical models, allo-specific Tregs are more 
effective in preventing graft rejection as compared to polyclonal 
Tregs (78, 79). It is possible to select allo-specific Tregs from 
peripheral blood according to the expression of early activation 
markers and/or then in vitro expand them (78, 80). Moreover, a 
GMP-grade protocol to selectively expand human allo-specific 
Tregs using CD40L-activated B cells has also been established (79). 
As an alternative, ectopic expression of genes encoding for TCR 
with known specificity has been proposed. Forced expression of 

specific TCRs confers the desired specificity to human polyclonal 
Tregs. As a proof-of-concept, it has been shown that TCR or 
chimeric receptor specific for tumor Ags can be introduced in 
human polyclonal Tregs, conferring them the ability to potently 
suppress anti-tumor responses (81–83). It was also proposed to 
generate Ag-specific Tregs starting from conventional T cells 
engineered to over-express both hFOXP3 and TCR specific for a 
birch pollen allergen-derived peptide Betv1. The resulting T cells 
acquired a Treg phenotype and suppressed T-cell responses in an 
Ag-specific manner (84). Despite these data provided the proof-
of-concept for such approaches, several questions regarding the 
potential clinical application of these engeneered T cells have to 
be addressed. Among others, one of the major concerns regards 
the need to eliminate endogenous TCRs to avoid double specific-
ity and the risk of bystander undesired suppressive function. An 
interesting and promising approach to overcome this limitation 
is LV-mediated gene transfer of either hFOXP3 or hIL-10 in 
Ag-experienced T cells isolated from peripheral blood.

An additional crucial question for the success of Treg-based 
therapy, in particular in the context of solid organ transplanta-
tion, is how immunosuppressive treatments affect Treg survival 
and function. The impact of current immunosuppressive drugs on 
Tregs has been extensively reviewed in Ref. (48, 85). The general 
consensus is that calcineurin inhibitors are likely to be detrimental 
to Tregs, whereas drugs such as rapamycin or mycophenolate 
mofetil (MMF) preserve Tregs in vivo. However, indications will 
come from the results of “The ONE study” in which Tregs will be 
infused in patients receiving kidney transplantation and standard 
triple-therapy protocol (prednisolone, MMF, and tacrolimus) (65).

Finally, the heterogeneity of the parameters selected to 
monitor Treg activity in the recently completed trials hampers 
comparison of the results. To overcome this limitation, the EU 
COST Action “BM1305: action to focus and accelerate cell-based 
tolerance-inducing therapies3” has been funded to identify shared 
and disease specific biomarkers of tolerance in patients undergo-
ing Treg-based therapies. This action is complementary to “The 
ONE study” and aims at defining general tolerance signatures and 
standardized immune monitoring protocols (65).

cONcLUDiNG reMArKs

The discovery that Tregs modulate immune responses led to the 
idea that they could be developed as a therapeutic tool to promote/
restore tolerance to transplanted grafts and in inflammatory and 
autoimmune diseases. The recent clinical trials proved the safety 
of this approach and suggested a possible therapeutic effect. Thus 
far, the major challenges in the field were to expand hard-to-grow 
polyclonal Tregs to great purity, and to generate Ag-specific Tregs. 
Despite technical advances in the field, many questions relating 
to Treg-based therapies remain unanswered: Which cell type to 
be used? Which schedule of cell infusion? How long Tregs will 
survive in  vivo? How long their effect will last? What is their 
mechanism of action? Do they interfere with GvL in the context 
of allo-HSCT? Moreover, reliable biomarkers of tolerance and 

3 www.afactt.eu
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standardized methods to evaluate the efficacy of Treg-based 
therapy are required to compare the outcome of present and 
future trials. To address these questions, close collaboration 
between groups in the field is required to allow the systematic 
comparison of Tregs and outcomes of cell therapy trials.
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