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The central nervous system (CNS) of patients with multiple sclerosis (MS) is the site 
where disease pathology is evident. Damaged CNS tissue is commonly associated with 
immune cell infiltration. This infiltrate often includes B cells that are found in multiple loca-
tions throughout the CNS, including the cerebrospinal fluid (CSF), parenchyma, and the 
meninges, frequently forming tertiary lymphoid structures in the latter. Several groups, 
including our own, have shown that B cells from distinct locations within the MS CNS are 
clonally related and display the characteristics of an antigen-driven response. However, 
the antigen(s) driving this response have yet to be conclusively defined. To explore the 
antigen specificity of the MS B cell response, we produced recombinant human immu-
noglobulin (rIgG) from a series of expanded B cell clones that we isolated from the CNS 
tissue of six MS brains. The specificity of these MS-derived rIgG and control rIgG derived 
from non-MS tissues was then examined using multiple methodologies that included 
testing individual candidate antigens, screening with high-throughput antigen arrays and 
evaluating binding to CNS-derived cell lines. We report that while several MS-derived 
rIgG recognized particular antigens, including neurofilament light and a protocadherin 
isoform, none were unique to MS, as non-MS-derived rIgG used as controls invariably 
displayed similar binding specificities. We conclude that while MS CNS resident B cells 
display the characteristics of an antigen-driven B cell response, the antigen(s) driving this 
response remain at large.
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inTrODUcTiOn

Multiple sclerosis (MS) is the most common neurological disease affecting young adults. MS is an 
inflammatory disease of the central nervous system (CNS) characterized by immune cell infiltration 
and demyelination of the brain and spinal cord that leads to physical disability (1). Although the cause 
of the demyelination is not entirely clear, many studies have implicated T cells as the dominant immune 
cell type contributing to disease pathology. However, growing evidence also suggests that B cells play 
an active role in the disease (2). A recent ENCODE study (3) implicated B cells second only to T cells 
among the cell types most affected by MS susceptibility genes. B cells are found at sites of tissue injury in 
the CNS. They are also found in the CSF, white matter lesions, gray matter, and in the meninges, where 
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they form lymphoid-like tissue aggregates (4) that associate with 
proximal tissue damage (5). Furthermore, they are responsible for 
the production of the oligoclonal immunoglobulin bands (OCB) 
in the spinal fluid that are a hallmark of the disease. Their roles as 
both effective antigen-presenting cells (6) and immune response 
regulators (7) have recently been appreciated. Finally, B cell deple-
tion, which has emerged as a beneficial therapeutic approach for 
MS, confirms that B cells contribute to MS pathology (8).

A number of autoimmune demyelinating diseases of the 
CNS are associated with a robust B cell response, and in several 
cases, antigens implicated in this response have been identified. 
Neuromyelitis optica (NMO) serves as a prototypical example of 
demyelinating CNS autoimmunity associated with B cells. Most 
NMO patients produce antibodies [both serum immunoglobulin 
(9) and CSF-derived IgG (10)] that bind the water channel aqua-
porin-4 (AQP4). These antibodies have been shown to be derived 
in part from a clonally expanded B cell pool located within the 
CSF (11, 12). Other examples of B cell-related autoimmune demy-
elinating CNS conditions are pediatric MS and acute disseminated 
encephalomyelitis (ADEM), where antibodies to myelin oligo-
dendrocyte glycoprotein (MOG) have been identified (13, 14).

During subacute and chronic active infections of the CNS such 
as Lyme neuroborreliosis or subacute sclerosing panencephalitis 
(SSPE), OCB are found in the CSF and resolve when the infection 
is cleared. In SSPE, brain-derived, recombinant immunoglobulin 
can be specifically absorbed by the causative virus, namely, the 
measles virus (15). The humoral immune response in MS shares 
many similarities with that seen in SSPE, NMO, and other inflam-
matory diseases of known cause. The MS CSF often includes 
elevated immunoglobulin levels and OCB, both of which are 
derived from B cells residing in the CSF and CNS tissue (16, 17). 
The CNS B cells in SSPE, NMO, and MS display the character-
istics of an antigen-driven response, with high levels of clonal 
expansion and somatic hypermutation in IgG variable regions, 
all of which are consistent with post-germinal center activation 
(12, 18–20). However, in contrast to SSPE and many infectious 
encephalopathies, the antigen target of the CNS-associated 
immunoglobulin is not known in MS. Given these similarities 
and the clear evidence for an antigen-driven response displayed 
by MS CNS resident B cells, the identification of the autoantibody 
targets in MS is of substantial interest.

The search for specific autoantibodies in MS has been an area 
of focus for decades, but the antigens targeted by MS autoantibod-
ies have remained elusive. Many studies have focused on serum 
antibodies given their accessibility and that serum autoantibodies 
have been identified in several diseases. Myelin basic protein 
(MBP) autoantibodies are detected in a very small subset of MS 
patients (21). MOG autoantibodies appear to be reliably found 
in a small subset of patients with MS (14) that are primarily 
pediatric. More exhaustive lists of candidate MS antigens can 
be found in a number of valuable reviews (22, 23). Numerous 
candidate autoantibody targets have been reported [reviewed in 
Ref. (2, 24, 25)], but none have met all the criteria that would 
allow for widespread acceptance as a genuine disease-associated 
MS autoantibody. These criteria would, at the very least, include 
such characteristics as disease specificity, reproducible detection 
among different laboratories, and different patient cohorts and 

disease relevance in terms of diagnosis, prognosis, or contribu-
tion to immunopathology. Newly identified candidate antigens of 
interest include contactin-2 (26), ATP-sensitive inward rectifying 
potassium channel KIR4.1 (27), and sperm-associated antigen 16 
(28), all of which are undergoing validation. Although a number 
of serum-derived antibody targets, such as MOG, can be found 
in small subsets of MS patients, most of those identified in serum 
have failed to be sensitive and specific markers for the disease. 
Some candidate autoantigens appear to be enriched in (29) or 
restricted to the CSF relative to serum, such as recombination sig-
nal binding protein for immunoglobulin kappa J region (RBPJ) 
(30). These autoantigens also represent a small subset of patients 
that have not yet defined a unique clinical phenotype.

To date, no antigen has emerged as a validated and widely 
accepted “MS antigen.” We reasoned that the recombinant IgG 
(rIgG) derived from the clonally expanded and antigen experi-
enced B cells that populate sites of tissue damage in the MS CNS are 
likely to represent the most enriched sources of disease-relevant 
antibody. Accordingly, we sought to explore the specificity of such 
MS CNS-derived immunoglobulin. To this end, we produced 
rIgG from a series of clonally expanded CNS-derived B cells from 
different MS CNS specimens and controls. The rIgGs were then 
screened against previously implicated candidate antigens as well 
as with high throughput approaches that multiplex large sets of 
antigens such as whole protein arrays and CNS-derived cell lines. 
In all of the screening approaches, an effort was made to maximize 
preservation of conformational and post-translational epitopes. 
This study, to our knowledge, represents the first time that such a 
technically demanding approach utilizing recombinant antibod-
ies from CNS lesion-derived B-cells has been employed toward 
antigen discovery in MS.

MaTerials anD MeThODs

ethics statement
Patient-derived specimens did not include personally identifiable 
private information or intervention or interaction with an indi-
vidual and were accordingly collected under an exempt protocol 
approved by the Human Research Protection Program at Yale 
School of Medicine.

subject specimens
Tissues were dissected at autopsy from six subjects with clinically 
defined MS. Five of the six subjects had a progressive clinical 
course and one had a relapsing remitting clinical course. Collected 
tissues included lesions and meningeal follicles. Our group previ-
ously reported the characteristics of the B cells that infiltrated 
these specimens (18, 31). Control tissues, which harbored robust 
B cell infiltrates, included germ cell tumors and muscle tissue 
from patients with inclusion body myositis (IBM), both of which 
have been previously described by our group (32, 33).

laser capture Microdissection and B cell 
Variable region cloning
Central nervous system tissue was sectioned at 12  μm on a 
microtome/cryostat, mounted onto a glass slide then fixed 
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in 75% ethanol for 30  s. For the identification and capture of 
individual B lineage cells, the tissue was stained with mouse anti-
CD20 or anti-CD38 antibodies (Accurate Chemical & Scientific) 
after fixation, then counterstained with poly-horseradish 
peroxidase anti-mouse IgG (Ivax Diagnostics). The tissue was 
then dehydrated in consecutive washes of 75, 95, and 100% 
ethanol then xylene. Cells were captured with a PixCell IIe laser 
capture microdissection instrument and CapSure Macro caps 
(Arcturus) and immediately stored at −80°C. RNA was isolated 
with the Absolutely RNA Nanoprep Kit (Stratagene) according to 
the manufacturer’s protocol. B cell variable regions were cloned 
and analyzed according to procedures that we have previously 
reported (18, 33).

recombinant igg synthesis and 
Purification
Multiplex PCR was used to amplify the immunoglobulin variable 
heavy chain (VH) and variable light chain regions (VL). These 
products were subsequently directionally sub-cloned behind 
the CMV promoter into a pcDNA3.3- or pCEP4-based vector 
constructed in-house to harbor the human immunoglobulin 
IgG1 heavy chain and kappa constant domains, respectively. The 
heavy chain vector was modified to contain a C-terminal affin-
ity tag (HA-hemagglutinin). Expression and purification of the 
recombinant whole human IgG was performed with protocols 
that we have previously described (34). Recombinant IgGs (rIgG) 
were prepared from the matched variable heavy (VH) and light 
regions (VL) derived from either laser captured single cells or 
by matching the most highly expressed VH and VL clones from 
each library.

solid Phase immunosorbent assays
Solid phase ELISA was performed to evaluate rIgG recognition 
to a number of candidate antigens. These assays were performed 
using an approach that we have previously described (21). 
Similarly, the DELFIA assay for the detection of antibody binding 
to MBP was performed using an approach that we have previ-
ously described (35).

Protoarray
ProtoArray Human Protein Microarrays version 5.0 (Life 
Technologies), containing approximately 9,400 unique full-
length human proteins, were used. The assay was performed 
according to the manufacturer’s instructions as we have previ-
ously described (30). Briefly, protein microarray slides were 
probed with rIgG pools (normalized for total IgG content) by 
overnight incubation at 4°C. Bound rIgG was detected with 
an Alexa Fluor 647-conjugated goat anti-human IgG (Life 
Technologies). The arrays were then scanned using a GenePix 
4200A (Molecular Devices) fluorescent microarray scanner and 
analyzed with GenePix software. The standard score (Z-score) 
for binding to each antigen was determined using the Immune 
Response Profiling function within Prospector software (Life 
Technologies). The selection criteria applied for binding to be 
considered positive was a Z-score >3.

cell-Based antibody Binding assays
The cell-based assay for MOG binding was performed with 
Jurkat cells that were transfected to express a fusion protein that 
included the extracellular domain of human MOG linked to GFP. 
Antibody binding was then measured using an approach as we 
have previously described (13).

Cell lines were prepared for surface binding screening using 
methods we have previously described (34). Briefly, cells were 
incubated with each recombinant antibody at a concentration of 
5 µg/ml, and then incubated with a polyclonal goat anti-human 
IgG AlexaFluor 488-labeled antibody (Life Technologies) to 
detect binding. Cells were resuspended in BD Cytofix (BD 
Biosciences) and stored at 4°C in the dark until being analyzed 
by flow cytometry with a FACSCalibur flow cytometer (BD 
Biosciences). Median fluorescence intensity (MFI) was used to 
assess binding of MS-derived and control rIgG to the CNS and 
control cell lines. Similarly, intracellular staining was performed 
in the same manner as that described for surface binding except 
for the addition of the permeabilization step, which was facili-
tated using Cytofix/Cytoperm (BD Biosciences) according to the 
manufacturer’s instructions.

resUlTs

generation of recombinant iggs from  
Ms Brain
To explore the specificity of the antibodies produced by CNS-
derived B cells, we prepared rIgG from immunoglobulin vari-
able region sequences derived from MS and control tissues. The 
MS cohort included rIgG constructed from MS autopsy tissue 
specimens from six subjects, MS-A thru MS-F (Table  1). Five 
of the six subjects were female and one male, with ages ranging 
from 34 to 65 years at the time of death. Five of the MS subjects 
had a progressive course, while one had relapse-remitting MS. 
Disease duration ranged from 2 to 20  years. Six recombinant 
antibodies (Table S1 in Supplementary Material) were derived 
from clones present in MS-A; four recombinant antibodies each 

TaBle 1 | subject demographics and source of Ms and control tissue.

case age 
(years)

gender clinical course Disease 
duration 
(years)

source

MS-A 43 F Progressive MS 20 Autopsy
MS-B 34 F Progressive MS 2 Autopsy
MS-C 39 F Progressive MS 13 Autopsy
MS-D 38 F Relapsing 

remitting MS
n.a. Autopsy

MS-E 65 M Progressive MS n.a. Autopsy
MS-F 49 F Progressive MS 14 Autopsy
GCT <18 M Intracranial 

germinoma
n.a. Resection

IBM-A >40 M Inclusion body 
myositis 

n.a. Biopsy

IBM-B >40 M Inclusion body 
myositis

n.a. Biopsy

n.a., data not available.
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were derived from clones present in MS-C and MS-D and a single 
recombinant antibody was derived from each of the MS-B, MS-E, 
and MS-F tissues. All of the MS-derived rIgGs were constructed 
from clonally expanded cells that displayed evidence of affinity 
maturation including class switching and the accumulation of 
somatic mutations (Table S2 in Supplementary Material). The 
control rIgGs were derived (Table 1) from either an intracranial 
germinoma (GCT-A) or muscle tissue from two different patients 
with inclusion body myositis (IBM) (IBM-A and IBM-B). We 
previously demonstrated that the B lineage cells infiltrating both 
the tumor and muscle tissue (32, 33) shared antigen-driven char-
acteristics that were similar to those representing the MS cohort 
(Table S2 in Supplementary Material). Specifically they had 
class switched to IgG, had accumulated somatic mutations, and 
were remarkably clonally expanded into families that included 
numerous clonal variants. Nine recombinant antibodies (Table 
S1 in Supplementary Material) were derived from clones present 
in the germinoma (GCT-A1 thru GCT-A9) and three each from 
the two IBM specimens (IBM-A1-3 and IBM-B1-3). Finally, 
a well-described (36) monoclonal antibody that recognizes 
MOG, which we humanized, was included in the control cohort 
(h8-18C5) (Table S1 in Supplementary Material).

screening Ms rigg for Binding to 
candidate antigens
To investigate the specificity of CNS-derived antibodies, we began 
by screening against candidate antigens that have previously been 
implicated in MS. A DELFIA and an ELISA assay were performed 
to test MBP (37) and contactin (26), respectively. Differences in 
binding to MBP and contactin between the MS and control rIgG 
were unremarkable (not shown). We also used an ELISA assay to 
assess binding of MS and control rIgG to the intracellular protein 
neurofilament light (NF-L) (38). Ten MS-derived antibodies that 
were tested showed modest binding to NF-L (Figure  1) while 
three antibodies (MS-B1, MS-C2, and MS-C4) displayed strong 
binding with absorbance values that exceeded the mean +2SD of 
the control data set (benchmark for strong positive binding). The 
difference between the MS and the control group was significant 
(p  =  0.0018, Mann–Whitney test). However, binding was not 
restricted to MS-derived antibodies as a germinoma-derived 
antibody (GCT-A6) was also positive, indicating a lack of speci-
ficity for MS in the rIgG cohorts.

We also examined binding to MOG; autoantibodies to 
MOG have recently been described in a small subset of MS 
patients (13), in pediatric MS (14) and in NMO (39). MOG 
binding was evaluated using a cell-based assay that preserves 
conformational epitopes and, accordingly, has become a widely 
accepted approach for detection of such antibodies (13). Robust 
binding by the humanized monoclonal anti-MOG monoclonal 
antibody (h8-18C5) was recorded (Figure  2). The clear recog-
nition of MOG by our humanized h8-18C5 demonstrates that 
our recombinant expression system produces fully functional 
whole human IgG and did not introduce any artifacts that might 
confound native specificity. Applying this approach to the MS- 
and germinoma-derived rIgG demonstrated that none of these 
antibodies recognized MOG expressed on the surface of the cells 
(Figure 2; Figure S1 in Supplementary Material).

FigUre 1 | Ms and control-derived rigg binding to neurofilament light 
(nF-l) by solid phase elisa. MS-derived rIgG (n = 13) and control rIgG 
(n = 8) derived from a germinoma were tested by solid phase ELISA for 
binding to NF-L. The specific samples included in the assay are shown in the 
Supplementary Material. Each dot or square represents the binding of a 
single rIgG. The dashed line indicates the mean +2 SD of the control 
germinoma-derived cohort (0.76). Values above this line were determined to 
be positive (95% CI). To correct for non-specific binding, the reported ELISA 
signal (ΔOD) was calculated by subtracting the signal generated by binding 
to glyceraldehyde 3-phosphate dehydrogenase (GADPH) from that of the 
NF-L. The mean and SD are shown for each data set. Statistical differences 
are indicated when significant. Data associated with each rIgG for the MS 
and control groups are shown in the Supplementary Material.

screening Ms rigg reactivity with  
high-Throughput Protein arrays
Having shown no specificity for the MS-derived rIgG to several 
candidate antigens, we sought to expand the search by using 
an unbiased library of antigens that could be screened in a 
high-throughput manner. To this end, we examined the rIgG 
specificity from the MS and control cohorts with a commercially 
available protein array composed of approximately 9,400 unique 
full-length human proteins that were expressed in a system such 
that the products included some physiologic post-translational 
modifications and processing. The rIgGs from both the MS and 
controls groups were pooled so that three rIgG were included on 
each array during the initial scouting to maximize efficient use of 
the arrays. A total of three MS and three control arrays were run. 
Target antigens that were identified by at least one MS antibody 
pool that did not react with any of the control groups are shown in 
Figure S2 in Supplementary Material. In most instances, antigen 
targets were found on a single MS array; however, several were 
found on two of the three MS arrays. Of these, protocadherin 
gamma subfamily C, three (PCDHGC3), transcript variant three 
was of particular interest as a candidate autoantigen as protocad-
herin isoforms, include extracellular domains, are predominantly 
expressed in the nervous system and have been implicated in 
human neurological disorders (40, 41). Given their attractive role 
as candidate MS antigens we investigated this specificity further. 
To do this we tested binding to PCDHGC3 protein by ELISA 
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FigUre 2 | Ms and control-derived rigg binding to MOg detected with a cell-based assay. Representative binding of MS (MS-B1) or germinoma 
control-derived (GCT-A3) rIgG to Jurkat cells transfected with MOG-GFP (left column) or GFP alone (right column). Histograms show the MFI of transfected cells 
gated on those that were positive for both GFP and a florescent anti-human secondary antibody (red). The blue histograms show secondary antibody alone. A 
humanized monoclonal antibody, h8-18c5, specific for human MOG served as a positive control for the Jurkat–MOG–GFP binding. FACS data for additional rIgGs 
from the MS and control groups are shown in the Supplementary Material.
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with individual rIgGs rather than pooled mixtures (Figure  3). 
The MS-derived rIgG MS-C2 that was present in the pool that 
bound PCDHGC3 on the ProtoArray (MS array 2) bound to the 
protein. However, binding was not observed for the individual 
rIgGs present on the second array that also identified this target 
(MS array 3). Furthermore, the difference between the MS and 
the control group was not significant (p = 0.3432, Mann–Whitney 
test) and binding was not restricted to MS-derived antibodies as a 
germinoma-derived antibody (GCT-A10) also was positive in the 
ELISA, indicating a lack of specificity for MS in the rIgG cohorts.

screening Ms rigg for Binding to human 
cns-Derived cell lines
Limitations of the ProtoArray for autoantigen discovery include 
the underrepresentation of membrane proteins on the array that 
would have an extracellular domain accessible to antibody and the 
possibility of altered structural conformation. Cell-based assays 

can circumvent such restraints. Increased binding to extracellular 
components of oligodendrocyte precursor and neuronal-derived 
cell lines by MS serum immunoglobulin compared to healthy con-
trols has been reported (42). Thus, to complement the array data 
and address its limitations we screened the MS and control rIgG 
by flow cytometry for binding to extracellular antigens present 
on the surface of the CNS-derived cell lines including a human 
oligogendroglioma cell line (HOG) and a human neuroblastoma 
cell line (SKNSH). Applying this approach, we found that none of 
the MS or control rIgG tested bound to the surface of either of the 
CNS cell lines (Figure S1 in Supplementary Material).

We were also interested to test whether the rIgGs would rec-
ognize antigens that reside in the cell cytoplasm as CNS resident 
antibodies may be exposed to such antigens during tissue dam-
age. Flow cytometry was used to screen for intracellular binding 
of the rIgGs to the HOG cell line. All of the rIgGs from the MS 
and control cohorts bound to the permeabilized cells (Figure 
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FigUre 3 | Ms and control-derived rigg binding to protocadherin 
gamma (PcDhgc3) by solid phase elisa. MS-derived rIgG (n = 11) and 
control rIgG (n = 10) derived from a germinoma and muscle tissue were 
tested by solid phase ELISA for binding to protocadherin. The specific 
samples included in the assay are shown in the Supplementary Material. 
Each dot or square represents the binding of a single rIgG. The dashed line 
indicates the mean +2 SD of the control-derived cohort (0.87). Values above 
this line were determined to be positive (95% CI). The mean and SD are 
shown for each data set. Statistical differences are indicated when significant. 
Data associated with each rIgG for the MS and control groups are shown in 
the Supplementary Material.
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S3 in Supplementary Material). A similar pattern of binding 
was obtained with the 293T cell line (not shown). Overall, there 
were no significant or remarkable distinctions between the flow 
cytometry MFI histograms of the two cell lines for both the MS 
and control rIgGs, indicating that intracellular components are 
frequent non-specific targets of antibodies.

DiscUssiOn

The purpose of our work was to investigate the antigen specificity 
of the humoral immune response in MS. We focused on those B 
cells that reside at the site of tissue damage in MS brain as this 
compartment likely represents an enrichment of disease-associ-
ated antibodies compared to serum and to the CSF. Two studies 
have leveraged a similar approach to examine the specificity of 
antibody-secreting cells present in the MS CSF (43, 44). While 
these studies suggested that MS-derived B cells recognize myelin, 
also derived from MS brain, the specific myelin component could 
not be identified. Moreover, no reactivity was observed to the 
major myelin protein antigens, MBP, and MOG. Using CNS tissue-
derived B cell products, we found that MS-derived antibodies did 
recognize a number of candidate antigens, but when challenged 
with a matched set of appropriate controls the MS specificity did 
not persist. We carefully selected control rIgG that shared the 
same properties as the MS-derived rIgG. In studies outside of our 
MS program, we have characterized the B cells that infiltrate par-
ticular solid CNS tumors and the muscle tissue of patients with 

myositis. In both instances, similar to what we observed in MS, 
the tissue-enriched B cell repertoire was class switched, clonally 
expanded and somatically hypermutated. Clones were selected 
from these repertoires in the same manner as those selected from 
our MS cohort. In light of these considerations, we suggest that 
the set of controls we employed are superior to controls produced 
by naïve B cells or random memory B cells from the circulation. 
In spite of using candidate antigens coupled with systems biology 
approaches, we did not identify a validated target for the B cells 
that reside in the MS CNS tissue. Overall our study highlights the 
difficulty inherent in antigen discovery approaches, but provides 
a methodological road map for improvement in the field with 
emerging technology. We postulate that the target of MS CNS B 
cells may be: an undiscovered common antigen that may include 
post-translational modification; antigen(s) possibly exposed 
through tissue damage; a collection of target antigens that vary 
among smaller MS population subsets and/or vary based on 
compartments (serum/CSF) or an infectious agent in the brain 
itself that would not be identified using our current screening 
approaches.

Antibody-independent mechanisms may help to explain the 
pathological contribution of B cells to MS. However, the antigen-
driven characteristics of MS CNS B cells still point toward a 
role for antibody-dependent mechanisms. It is intriguing that B 
cells have been shown to form structures that resemble ectopic 
germinal centers in the meninges of MS patients (5, 18, 45) 
where they display all of the characteristics of an antigen-driven 
response. Similar organized structures have also been found in a 
number of autoimmune disease tissues (46) and often in different 
solid tumors (33). As an example, tertiary lymphoid structures 
have been identified in the thymus tissue of myasthenia gravis 
(MG) patients (47), where they have been shown to contribute to 
MG autoantibody production. With respect to MS, the question 
remains as to the target of the B cell response. Are the B cells 
directed toward a CNS target that is involved in disease initiation 
or is the B cell response generated as an indiscriminate secondary 
response to the dead tissue, rather than the cause of the pathology 
in the first place? In the case of organized tumor immune cell 
infiltrates, it is expected that there is not an underlying immune 
dysregulation that would be expected in autoimmune condi-
tions. Given the similarity between these organized infiltrates, 
this leaves the possibility open that the process in MS may not 
entirely be a product of abnormal immune regulation. Are the 
antibodies in the CNS a normal immune response to the ongo-
ing tissue damage that occurs? This possibility could provide an 
explanation for the B cell response in MS CNS tissue that it is part 
of apoptotic cell recognition, secondary to the disease pathology 
and part of a normal response.

Antigen discovery efforts are not without limitations and 
ours in not an exception. First, we employed LCM to confirm 
VH and VL domains were endogenously paired. However, this 
approach provides a low yield of paired VH and VL domains 
from single cells derived from autopsy tissue, so we chose to 
also pair domains based on their representation in the respec-
tive libraries. We acknowledge that pairing of VH and VL 
domains based on their dominant distribution in the repertoire 
is not a guarantee that they were naturally paired in a single 
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cell; however, it represents the best possible means toward 
obtaining rIgG from autopsy tissue with current technology. 
High-throughput technology to pair heavy and light chains 
from single cells (48) was not available when our study began 
and this technology is currently limited to use with cells in 
suspension, which is not possible with cryopreserved autopsy 
tissue. Pairing based on the most highly represented VH and VL 
domains was successfully demonstrated in a vaccination setting 
(49). Furthermore, “knock in” transgenic mice, which express 
the VH from the 8-18C5 anti-MOG antibody, produce antibody 
using the endogenous light chain repertoire of the host, and a 
large fraction of the antibodies recognize MOG regardless of the 
light pairing, demonstrating the dominant contribution of the 
VH in target binding (50).

The second limitation concerns the antigen sources. 
Although our screening strategy was thorough, it was not 
exhaustive. We focused on proteins since they constitute anti-
genic targets more frequently than other molecules. In testing 
individual antigens, we employed ELISA, which allows for 
rapid testing of multiple samples, and cell-based assays where 
physiological epitopes are better emulated. Our use of cell 
lines offers the advantage of presenting multiple cell surface 
candidate antigens that are present in the CNS. However, low 
or sparse endogenous expressional levels of proteins on the cell 
surface or altered expression can affect antibody binding (51) 
to such cells. Using tissue offers deliberate sourcing of com-
partments but also can present technical challenges including 
antigen recovery in fixed tissue used in immunohistochemistry 
and low antigen abundance when performing western blots or 
immunoprecipitations.

The protein array, we employed, offers the advantage of 
highly enriching low abundance proteins that might not be 
detectable when presented in other formats such as tissue. 
Furthermore, inclusion of whole proteins offers the potential 
for increased sensitivity and specificity compared to peptide 
arrays and phage display libraries. However, the arrays that 
we used include some shortcomings, such as an abundance of 
intracellular proteins and an absence of comprehensive post-
translational modifications. Moreover, certain surface proteins 
that have been implicated in demyelination such as contactin-1 
and 2, contactin-associated protein-1 and neurofascin-155 
were absent from the panel. Our array results were negative 
for several surface proteins (catenins, integrins, tetraspanins, 
claudins) that could be considered biologically plausible targets 
(52) and were also negative for myelin-associated proteins, as 
well as for the previously identified intracellular targets of CSF 
antibodies, myelin-associated enzyme CNPase and RBPJ (30, 53, 
54). Positive array hits primarily included several intracellular 
proteins. Abundant, intracellular protein autoantigens may be 
useful biomarkers only after extensive validation and scrutiny. 
Our cell-based assays comparing extracellular and intracel-
lular binding clearly illustrate lack of specificity of the latter. 
Second, intracellular proteins can be present in many cell types, 
and therefore lack the tissue specificity that is often associated 
with validated autoantigens. Thirdly, the question of access to 
circulating antibodies to intracellular proteins cannot be easily 

answered. Overall, both our data and other whole protein array 
studies suggest that IgG specificity may vary among subsets of 
MS patients (30, 55, 56).

cOnclUsiOn

A comprehensive method to systematically characterize and 
screen disease-associated immunoglobulins is needed. Such 
an ideal system is not yet available, but as one is developed it 
should include biologically relevant whole proteins presented 
in their native biological state, that is, with endogenous post-
translational modifications and process-dependent modifica-
tions that can occur during apoptosis or necrosis. Inclusion of 
surface proteins should be emphasized. Non-protein antigens 
would also be required, such as lipids, carbohydrates, and other 
small molecules. Human-derived antigens represent a  prior-
ity, but environmental antigen sources such as pathogens and 
viruses cannot be excluded. Technology is emerging that is 
approaching these goals through expressing the human genome 
(57) or virome (58) for the purpose of antibody screening 
(59). Continued development of these technologies will likely 
include tertiary structure and post-translational modifications 
that are important in the formation of many epitopes. Particular 
focus on MS antigens should start with well-characterized CNS 
tissue and CSF from early and progressive disease. Now that 
links between the CNS, CSF, cervical lymphnodes, and periph-
eral B cells are better understood (19, 60–62), the isolation and 
examination of particular B lineage subsets in the circulation 
will be of value. Next generation B cell antibody sequencing 
now allows comprehensive sequencing of B cell populations to 
create a repertoire that can be used to guide selection of clones 
for antigen screening. This can now be coupled with single cell 
approaches to pair the native VH and VL. The use of animal 
models to test and validate the contribution of MS-derived 
immunoglobulin to pathology should be leveraged. Finally, 
large scale, multi-center studies involving a number of inves-
tigators are best suited to tackle this expensive and high-risk 
endeavor.
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