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There is compelling clinical and experimental evidence to suggest that natural killer (NK) 
cells play a critical role in the recognition and eradication of tumors. Efforts at using NK 
cells as antitumor agents began over two decades ago, but recent advances in elucidat-
ing NK cell biology have accelerated the development of NK cell-targeting therapeutics. 
NK cell activation and the triggering of effector functions is governed by a complex set 
of activating and inhibitory receptors. In the early phases of cancer immune surveillance, 
NK cells directly identify and lyse cancer cells. Nascent transformed cells elicit NK cell 
activation and are eliminated. However, as tumors progress, cancerous cells develop 
immunosuppressive mechanisms that circumvent NK cell-mediated killing, allowing for 
tumor escape and proliferation. Therapeutic intervention aims to reverse tumor-induced 
NK cell suppression and sustain NK cells’ tumorlytic capacities. Here, we review tumor–
NK cell interactions, discuss the mechanisms by which NK cells generate an antitumor 
immune response, and discuss NK cell-based therapeutic strategies targeting activating, 
inhibitory, and co-stimulatory receptors.

Keywords: natural killer cells, immunotherapy, adoptive cell therapy, monoclonal antibody, cancer vaccines, 
checkpoint blockade

iNTRODUCTiON

The recent FDA approvals of the programmed cell death protein 1 (PD-1)-targeted checkpoint 
inhibitors pembrolizumab and nivolumab mark the latest successes in the rapidly expanding 
field of cancer immunotherapies. Immunotherapy represents a paradigm shift in cancer treat-
ment; instead of targeting tumor cells, the goal of immunotherapy is to augment and expand the 
immune system’s intrinsic antitumor response. To date, diverse immunotherapeutic modalities 
have been accepted as viable strategies for eliminating cancerous cells. Cytokines, cancer vac-
cines, adoptive cell transfers, and especially checkpoint inhibitors constitute valuable elements 
in the immunotherapeutic armamentarium. However, a class of important immune-modulators 
is conspicuously absent: agents that utilize the power of innate immune cells to eradicate tumors. 
An important class of innate immune cells that play a critical role in mediating the antitumor 
immune response is the natural killer (NK) cell.
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First described in 1975, NK cells were initially identified as 
a distinct sub-population of lymphocytes by their capacity to 
spontaneously lyse tumor cells (1). NK cells are now accepted to 
play an important role in both the adaptive and innate immune 
responses that govern infection, autoimmunity, and tumor 
immunosurveillance (2, 3). Human NK cells are phenotypically 
characterized by the expression of CD56 and the absence of CD3 
and can be further subdivided into a CD56bright population and a 
CD56dim population. The CD56bright population produces immu-
noregulatory cytokines, including interferon-γ (IFN-γ), tumor 
necrosis factor-beta (TNF-B), tumor necrosis factor-α (TNF-α), 
granulocyte macrophage-colony stimulating factor (GMCSF), 
IL-10, and IL-13 (4). The CD56dim subset is the terminally dif-
ferentiated successor of the CD56bright population and is primar-
ily responsible for exerting cytolytic functions (5, 6). However, 
CD56dim NK cells can produce cytokines, specifically IFN-γ, after 
cell triggering via NKp46 of NKp30 activating receptors or after 
stimulation with combinations of IL-2, IL-12, and IL-15 (7).

The defining functional feature of NK cells remains their 
intrinsic ability to conduct “natural killing” of cellular targets 
without prior sensitization. The antitumor effect provided by 
natural killing has been observed in tumors of hematopoietic and 
non-hematopoietic origins and reported in diverse in vivo models 
and clinical series (8). NK cell infiltration into tumor tissue is asso-
ciated with better disease prognosis in colorectal cancer, clear cell 
renal cell carcinoma, and lung carcinomas (9–11). Additionally, 
a 11-year prospective cohort study of Japanese inhabitants linked 
low peripheral-blood NK cell cytotoxicity with increased cancer 
risk (12). The combination of compelling preclinical evidence 
and early clinical success has established NK cell immunotherapy 
as a promising therapeutic strategy in cancer. Here, we review the 
current understanding of the NK cell mechanisms underpinning 
antitumor immunity and discuss immunomodulatory targets for 
augmenting NK cell-mediated tumor clearance.

Natural Killing
The initial hypothesis for the mechanism of NK cell-mediated 
killing postulated that the absence or altered expression of major 
histocompatibility complex (MHC) class I molecules would ren-
der target cells susceptible to NK cell attack (13). The “missing-
self ” hypothesis was the result of observations that NK cells can 
directly reject MHC class I-deficient tumors (14). Later in vivo 
experiments in murine and human systems confirmed that NK 
cytotoxicity was directly related to the absence of MHC class I 
expression on target cells (15, 16). However, the contemporary 
understanding of NK cell activation suggests that the transition 
of the NK cell from quiescence to activation is mediated by a 
network of activating and inhibitory receptors (17). While NK 
cells do express inhibitory receptors that detect the presence 
of MHC Class I molecules, it is the integration of multiple   
activating and inhibitory signals that determines if the NK cell 
becomes cytotoxic.

Natural killer cell cytotoxicity can be demonstrated in several 
related ways. The primary mechanism of cytotoxicity is based on 
granule exocytosis upon formation of an immunological synapse. 
NK cells contain preformed cytoplasmic granules that resemble 

secretory lysosomes and contain perforin and granzymes (18). 
Perforin is a membrane-disrupting protein that perforates the 
target cell membrane, while granzymes are a family of serine 
proteases that trigger cell apoptosis (19, 20). Upon activation, NK 
cells rapidly polarize the granules and reposition the microtubule 
organizing center toward the synapse with the target cell (21). 
The granule membrane then fuses with the plasma membrane, 
externalizes, and releases the cytotoxic granule contents, trigger-
ing target cell apoptosis (22).

NK cells can also contribute to target cell death indirectly 
by secreting pro-inflammatory cytokines. Two of the primary 
cytokines released by activated NK cells are IFN-γ and TNF-α. 
IFN-γ is a type II interferon that plays a critical role in promot-
ing host resistance to microbial infection and protecting against 
tumor development (4). In the tumor microenvironment (TME), 
the IFN-γ released by NK cells stimulates CD4+ T cells to polarize 
toward a Th1 subset and accelerates the development of activated 
macrophages and cytotoxic, tumor-targeting CD8+ T cells (23). 
TNF-α is a multifunctional cytokine that can cause direct tumor 
necrosis by inflicting tumor-associated capillary injury, but also 
generates an adaptive immune response (24). TNF-α can enhance 
B cell proliferation and also promote monocyte and macrophage 
differentiation (25, 26). Together IFN-γ and TNF-α help to 
activate both innate and adaptive immune cells in the TME and 
generate a sustained antitumor immune response.

Antibody-Dependent Cell-Mediated 
Cytotoxicity
Another granule-mediated mechanism of NK cell targeted kill-
ing is antibody-dependent cell-mediated cytotoxicity (ADCC). 
ADCC is thought to play an important role in mediating the 
antitumor effects of many of the monoclonal antibody (mAb) 
therapies used today as standard of care treatments for both solid 
tumors and hematologic malignancies (27). In ADCC, the Fc 
receptor expressed by NK cells (FcγRIII or CD16) binds to the 
Fc portion of the therapeutic antibody, which in turn is bound to 
tumor-associated antigen (TAA) on the tumor surface. The effec-
tiveness of ADCC depends on the FcγRIII ligation on the NK cell. 
Patients with a FcγRIIIa polymorphism, resulting in high-affinity 
binding of FcγRIII to IgG1, demonstrate enhanced clinical benefit. 
This effect has been seen in patients treated with rituximab, trastu-
zumab, and cetuximab (28–30). ADCC was initially described as 
the release of cytotoxic perforin and granzyme by NK cells follow-
ing ligation of FcγRIII by IgG target cells. However, ADCC is now 
recognized as a multi-tiered process that involves a network of 
coordinated immune cells and an adaptive immune response (31). 
For example, FcγR ligation on NK cells can induce the secretion 
of pro-inflammatory cytokines like IFN-γ, which can accelerate 
dendritic cell (DC) maturation (32). Mature DCs enhance antigen 
presentation and train tumor-specific lymphocytes, producing an 
immunological memory response (33).

Death Receptor-induced Apoptosis
Death receptor-induced apoptosis is a perforin-independent 
mechanism by which NK cells lyse target cells (34). This cytotoxic 
pathway relies on target cell expression of tumor necrosis factor 
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(TNF) receptor superfamily members. The two main TNF recep-
tors used in apoptotic induction are Fas (CD95) and TNF-related 
apoptosis-inducing ligand (TRAIL) (35). Fas is expressed on a wide 
variety of tissues, but Fas ligand (FasL) expression is restricted to 
activated NK cells and cytotoxic T lymphocytes (CTLs) (36). Fas 
cross-linking induces nuclear condensation, membrane blebbing, 
and caspase activation (37). The initial optimism surrounding 
the Fas–FasL pathway as a means of tumor control has decreased 
following the observations that Fas is downregulated in a variety 
of cancers during tumor progression (38).

TNF-related apoptosis-inducing ligand-mediated signaling is 
another death receptor-induced mechanism NK cells employ to 
kill target cells. TRAIL is constitutively expressed on some popu-
lations of NK cells and TRAIL-mediated signaling can induce 
spontaneous cytotoxicity against TRAIL-sensitive tumor cells 
(39, 40). Binding of TRAIL to its receptor, TRAILR1 or TRAILR2, 
results in receptor oligomerization on the cell membrane and 
triggering of a pro-apoptotic signal through activation of caspases 
(41). Preclinically, recombinant forms of TRAIL and agonistic 
anti-TRAIL receptor antibodies can have single-agent activity 
against TRAIL-sensitive tumor cells in  vitro and in  vivo (42). 
Recently, artificial nanoparticles coated with bioactive TRAIL 
demonstrated cytotoxicity against primary leukemic cells from 
a patient with acute lymphocytic leukemia (ALL) (43). However, 
despite preclinical successes, clinical trials of TRAIL-based thera-
pies have demonstrated little efficacy and tumors rapidly develop 
resistance mechanisms to TRAIL (44). A better understanding of 
how tumors evade targeting and removal by NK cells is needed 
to overcome immunosuppression in the TME.

NK–Tumor interactions
Despite the diverse repertoire of killing strategies utilized by 
NK cells, the tumor cell often avoids attack by direct and indi-
rect mechanisms (45). Direct mechanisms consist of shedding 
soluble ligands for NK cell-activating receptors, upregulation 
of HLA molecules, and release of inhibitory cytokines. Indirect 
mechanisms consist of activation of inhibitory regulatory T cells 
(Tregs), DC killing, and phagocyte-derived inhibitory cytokines. 
These immunosuppressive mechanisms collectively create a 
TME where NK cell cytotoxic functions are inhibited. By stifling 
NK-mediated tumor eradication, the tumor escapes immunosur-
veillance and is able to grow and develop. Restoring and augment-
ing NK cell cytotoxic functions in the TME is an important step 
in overcoming immunosuppression and eliminating tumor. In an 
attempt to generate potent tumor-lysing NK cells, therapeutics 
are being developed that target NK cell activating, inhibitory, and 
co-stimulatory receptors (Figure 1).

ACTivATiNG ReCePTORS

Activating receptors are a crucial element in regulating NK cell 
function. In the last decade, researchers have identified major 
signaling axes that control NK cell activation and suggested 
novel routes for therapeutic interventions (46). Some of the 
dominant activating receptors on NK cells are NKG2D, signaling 
lymphocytic activation molecule (SLAM) family molecule 2B4 
(CD244), the DNAX accessory molecule (DNAM-1, CD226), 

and the NCRs: NKp30, NKp44, NKp46, and NKp80 (42). Recent 
work suggests that in NK cells, there is not a dominant receptor 
for activation, but instead receptors induce activation through 
combinatorial synergy (17). Only when multiple activating recep-
tors are simultaneously engaged does the resulting signal surpass 
the requisite activation threshold and trigger cytokine secretion 
or direct cellular cytotoxicity. The requirement for activating 
receptor combinations helps prevent unrestrained activation of 
NK cells and provides flexibility in sensing and responding to 
environmental stimuli. What follows is a brief exploration of 
the dominant NK cell-activating receptors and summaries of 
attempts to target their tumorlytic capacity therapeutically.

NCRs
All NK cells express NKp30 and NKp46, whereas NKp44 is only 
expressed on activated NK cells (47, 48). The acquisition of NCR 
during NK cell maturation correlates with the acquisition of 
cytolytic activity against tumor target cells (49). Inversely, down-
regulation of NKp30, NKp44, and NKp46 correlates with low NK 
cytolytic activity (50). NKp80 is expressed by virtually all fresh 
NK cells and mAb-mediated cross-linking of NKp80 resulted in 
induction of cytolytic activity and Ca2+ mobilization (51).

The NKp30 activating receptor has emerged as a promising 
therapeutic target in multiple cancer histologies. Downregulation 
is observed in patients with cervical cancer and high-grade squa-
mous intraepithelial lesions (52). In lymphoma and leukemia 
models, ligation of NKp30 has been shown to activate human 
NK cells, trigger degranulation, and increase cytotoxicity (53). In 
patients with gastrointestinal sarcoma, the NKp30 isoform pre-
dicts the clinical outcome; patients with the immunostimulatory 
NKp30a and NKp30b isoforms have increased survival relative 
to patients with the immunosuppressive NKp30c isoform (54). 
Recently, the expression of distinct forms of NKp30 has been 
linked to 10-year progression free survival in patients with high-
risk neuroblastoma (NB) (55). In NB patients with metastatic 
disease, the percentage of CD3−CD56+ NK cells in the peripheral 
blood and bone marrow was significantly elevated relative to 
patients with localized tumors. Additionally, NKp30 expression 
in the bone marrow of patients with metastatic NB was lower 
than expression in patients with localized NB (55). The ligand 
for NKp30, B7-H6, was highly expressed in neuroblasts, and 
the serum soluble form of B7-H6 correlated with tumor load 
and disease dissemination. The authors conclude that NK cell 
modulating immunotherapeutics offer a promising strategy for 
treating NB patients and that antibodies neutralizing sB7-H6 
serum molecules and antibodies targeting NKp30 are worth 
pursuing in future clinical development.

NKG2D
NKG2D, a homodimeric activating receptor and member of 
the C-type lectin superfamily, is expressed by all NK cells and 
subsets of T cells (56). NKG2D serves as a major recognition 
receptor for detection and elimination of infected and trans-
formed cells (57). Ligands of the human NKG2D receptor are 
the MHC I-related molecules MICA/MICB, and the UL16-
binding proteins (ULBP-1 to ULBP-6) (57). These ligands 
are rarely expressed in healthy tissues but induced by various 
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cellular stresses, such as DNA damage, heat shock, or cellular 
transformation. Primary tumors frequently express NKG2D 
ligands: NK cell killing of both an urothelial tumor cell line and 
a bladder cancer cell appeared to be triggered by NK cell detec-
tion of the NKG2D ligands MICA/MICB (58, 59). However, 
tumors have also developed mechanisms for NK cell evasion 
despite NKG2D ligand expression. One such mechanism is the 
systemic release of NKG2D ligands by tumors in cancer patients 
(60, 61). The secreted NKG2D ligand was believed to cause 
downregulation of NK cell-expressed NKG2D, thus, depriv-
ing the NK cell of an activating signal and facilitating tumor 
escape. Recently, evidence has emerged that demonstrates an 
activating, antitumor role for soluble NKG2D ligands. The high-
affinity MULT1 mouse NKG2D ligand can stimulate NK cells 
and enhance antitumor activity (62). The NKG2D pathway is 
integral to immune surveillance and an active area of immuno-
therapy research.

2B4 and DNAM-1
One of the best-characterized NK cell activation receptors is 2B4, 
a member of the SLAM receptor family. The first data to suggest 
a role for 2B4 in regulating NK cell activation demonstrated 
that ligation of 2B4 by 2B4-specific antibodies induced IFN-y 
production in vitro and triggered NK cell-mediated cytotoxicity 
(63). Following the identification of the natural ligand for 2B4, 
CD48, researchers reported that target cell expression of CD48 

FiGURe 1 | The major NK cell receptors that are potential immunotherapeutic targets. The transition of the NK cell from quiescence to activation is 
mediated by a network of activating and inhibitory receptors; it is the integration of the activating and inhibitory signals that determines if the NK cell becomes 
cytotoxic. Using immunotherapeutic agents to increase activation and decreases inhibitory signaling has the potential to generate NK cells with enhanced tumor lytic 
capacity. MICA/B, MHC class I chain-related proteins A and B; ULBP, UL16-binding protein; BAG, Bcl2-associated athanogene.

augmented NK cell-mediated cytotoxicity (64). Researchers also 
reported significantly greater cytotoxic effects if 2B4 ligation 
was accompanied by ligation of DNAM-1 (65). DNAM-1 is an 
Ig-like family glycoprotein expressed on most human NK cells, 
monocytes, and T lymphocytes (66). Early support for DNAM-1 
controlling NK cell activation was provided by Lanier and col-
leagues using DX11, an anti-DNAM-1 mAb (67). Blockade via 
DX11 inhibited the cytotoxicity of NK cells against an array of 
different tumor cell lines. CD112 and CD155, two nectin family 
proteins regulated by cellular stress, were soon identified as the 
ligands for DNAM-1 (68). CD155 and CD112 are expressed in a 
wide range of both solid and hematologic tumors (69). In patients 
with NB, expression levels of CD155 and CD112 correlate with 
tumor cells susceptibility to NK cell-mediated lysis (70). However, 
tumors have developed mechanisms for downregulating NK cell 
DNAM-1 and effecting NK cell immunosuppression (71). In the 
design of future NK cell-based immunotherapies, mechanisms 
for preserving activation receptor surface expression need to be 
considered. Additionally, combinations of synergistic activating 
receptor pairs, like DNAM-1 and 2B4, need to be taken into 
account.

CHeCKPOiNT BLOCKADe iN NK CeLLS

Immune checkpoint blockade strategies have proven a powerful 
approach to cancer immunotherapy. By blocking the receptors 
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that transmit inhibitory signals to effector immune cells, check-
point blockade aims to reverse immune suppression and generate 
robust antitumor immune responses. The successes of ipilimumab 
(anti-CTLA-4 mAb) and nivolumab and pembrolizumab 
(anti-PD-1 mAbs) demonstrate the potential of this therapeutic 
strategy. Ipilimumab (Yervoy, BMS) was approved in 2011 for the 
treatment of unresectable or metastatic melanoma, and blocks 
the CTLA-4-mediated signaling in T cells (72). CTLA-4 is an 
inhibitory receptor that upon ligation sends a negative regula-
tory signal to the T-cell receptor (TCR), limiting T cell activation 
(73). Nivolumab (Opdivo, BMS) and pembrolizumab (Keytruda, 
Merck) target programmed cell death protein-1 (PD-1). PD-1 is 
upregulated on T cells following activation and ligation of PD-1 
transmits a negative regulatory signal (74). Histologically, diverse 
tumors upregulate the ligands of PD-1, PD-L1, and PD-L2 to 
take advantage of this immunosuppressive signaling pathway 
(75). Analogously to negative regulators of T cell activity, NK 
cells express surface receptors that can be targeted in checkpoint 
blockade strategies.

Killer Cell immunoglobulin-Like Receptor
Within the signaling pathways that govern NK lytic capacity, 
the killer cell immunoglobulin-like receptor (KIR) family is a 
dominant group of negative regulators. KIR receptors bind to 
the self-MHC class I ligands (HLA-A, -B, -C) and upon ligation 
transmit signals that abrogate the effects of activating receptors 
(76). The prevalence of MHC I on healthy cells provides an 
inhibitory signal that prevents NK cells from inducing autoim-
mune responses. However, in acute myeloid leukemia (AML) 
patients following haploidentical stem cell transplantation from 
KIR mismatched donors, the absence of KIR–HLA class I inter-
actions resulted in potent NK cell-mediated antitumor efficacy 
and increased survival (77, 78). The antitumor effect can also be 
obtained without undergoing stem cell transplant; mAb therapy 
provides a viable route for blocking KIR–HLA interactions. 
Preventing HLA ligation to KIRs with an anti-KIR mAb has been 
shown to increase NK cell degranulation, IFN-γ secretion, and 
tumor cell lysis as well as increasing overall survival in murine 
cancer models (79).

The development of a candidate anti-KIR antibody had to 
overcome significant challenges. The KIR gene content varies 
substantially from individual to individual depending on the 
inherited KIR haplotype and the KIR family is composed of 
several structurally different proteins, necessitating an antibody 
that has cross-reactivity between different KIRs (80). Despite 
these challenges, the anti-KIR mAb lirilumab (Innate Pharma) 
has entered clinical trials. The initial phase I safety trial reported 
safety and potential efficacy in patients with AML (81). A second 
phase I trial confirmed the early reports of safety and durable KIR-
blocking ability in patients with multiple myeloma (82). Recently, 
it has been reported that rituximab-mediated ADCC, a potent 
therapeutic mechanism of rituximab therapy, is reduced by KIR 
signaling (83). We have demonstrated that this KIR-mediated 
ADCC suppression can be overcome by combining rituximab 
with anti-KIR mAb therapy (84). Currently, multiple phase I and 
phase II clinical trials are ongoing, testing lirilumab (IPH2102/
BMS-986015), as a monotherapy or in combination with other 

checkpoint inhibitors in patients with hematological and solid 
tumors (NCT01714739) and (NCT01750580).

NKG2A
In addition to KIRs, the CD94/NKG2A heterodimer is another 
target for NK cell checkpoint blockade. The natural ligand of 
CD94/NKG2A is HLA-E, a non-classical HLA class I molecule 
that is expressed on the cell surface of most leukocytes and on 
transformed cells, including virus-infected cells and tumor cells 
(85, 86). Ligation of CD94/NKG2A by HLA-E transmits inhibi-
tory signaling that suppresses the effector functions of NK cells, 
resulting in decreased cytotoxicity and cytokine secretion. HLA-E 
and CD94/NKG2A expression has been reported in multiple 
tumor histologies and is associated with poor prognosis. In colo-
rectal cancer patients, tumor expression of HLA-E is associated 
with shorter disease-free survival time (87). In patients with head 
and neck squamous cell cancers (HNSCC), 78 to 86% of tumors 
express HLA-E (88). In patients with non-small cell lung cancer, 
intratumoral NK cells display higher expression levels of NKG2A 
mRNA relative to non-tumor NK cells (89). In breast cancer 
patients, expression of NKG2A by tumor infiltrating NK cells 
increases with cancer progression and correlates with impaired 
NK cell functions (90). Similarly to blocking KIR-mediated 
interactions, blockade of CD94/NKG2A-mediated signaling has 
the potential to restore and preserve NK cell cytotoxicity, leading 
to antitumor responses. A phase I/II trial testing an anti-NKG2A 
antibody (IPH2201, Innate Pharma) in HNSCC patients is ongo-
ing (NCT02331875).

CO-STiMULATORY SiGNALiNG viA mAbs

Activating co-stimulatory pathways to potentiate antitumor 
immune responses is a promising approach for augmenting 
NK-mediated tumor clearance. Members of the tumor necrosis 
factor receptor superfamily (TNFRsf) include several co-stimu-
latory proteins with key roles in the regulation of the activation, 
proliferation, and apoptosis of lymphocytes, including NK cells.

CD137
First identified in 1989, CD137 (or 4-1BB) is a co-stimulatory 
receptor and member of the TNF receptor superfamily (91). 
CD137 is expressed on T cells and DCs and is upregulated on 
NK cells following FcγRIIIa ligation (92). In a variety of different 
tumor models, agonistic anti-CD137 mAbs have demonstrated 
the capacity to amplify antitumor immune responses and 
eliminate established tumors (93). Despite the broad expression 
of CD137 and its multiple contributions to immune dynamics, 
the therapeutic efficacy of anti-CD137 relies on functional NK 
cells. In preclinical models, the selective depletion of NK cells 
via the anti-AsialoGM1 or anti-NK1.1 antibodies completely 
abrogated the antitumor effect of anti-CD137 mAb therapy (94). 
Simultaneously, anti-CD137 agonistic antibodies increase NK 
cell proliferation, degranulation, and IFN-γ secretion, leading 
to enhanced ADCC of tumor cells (95). Because of the potential 
to enhance ADCC-mediated tumor clearance, anti-CD137 anti-
bodies are being tested in combination treatment strategies with 
FDA-approved mAbs. We have previously demonstrated that 
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antibodies targeting CD137 synergize with rituximab and trastu-
zumab to clear tumors in murine xenograft models of lymphoma 
and breast cancer (27, 96). Recently, we combined cetuximab and 
anti-CD137 antibody therapy to obtain complete tumor resolution 
and prolonged survival in xenograft models of EGFR-expressing 
cancer cells (97). In all three disease models and combination 
treatment regimens, expression of CD137 on NK cells increases 
significantly when NK cells encounter mAbs bound to tumor 
cells. We believe the synergy between anti-CD137 treatment and 
established mAbs demonstrates a promising therapeutic strategy 
and warrants future investigation.

Anti-CD137 mAb therapy has also entered clinical testing. 
The anti-CD137 antibody, urelumab, is currently in clinical 
trials with rituximab for patients with non-Hodgkin’s lym-
phoma (NCT01775631) and with cetuximab in patients with 
colorectal cancer or head and neck cancer (NCT02110082). 
In addition to urelumab, clinical trials of Pfizer’s anti-CD137 
mAb, PF–05082566, are also ongoing (NCT01307267). A recent 
presentation of the preliminary findings reports that 27 patients 
with mixed tumor types have been treated with PF-05082566; 
disease stabilization was the best overall response, observed in 
22% (6/27) patients (98).

OX40
OX40, also known as CD134 or TNFRSF4, is a co-stimulatory 
molecule expressed primarily by activated T cells, but also 
expressed on natural killer T (NKT) cells and NKs (99). In NK 
cells, OX40 ligation appears to induce an activating signal and 
IFN-γ production (100). Engagement of the OX40 receptor in vivo 
in tumor-bearing mice enhanced antitumor immunity, resulting 
in increased survival in four separate murine tumor models of 
diverse histology and immunogenicity (101). The initial phase 
I/II trial of an anti-OX40 mAb demonstrated tolerability and 
regression of at least one metastatic lesion in 12 out of 30 study 
patients (102). Immunologically, treatment with agonistic anti-
OX40 increased the proliferation of NK cells as well as CD4+ T 
cells (103). Additional trials of anti-OX40 are ongoing, includ-
ing combination therapies with rituximab in patients with CLL 
and NHL (NCT01775631), with stereotactic body radiation in 
patients with metastatic breast cancer (NCT01862900), and with 
tremelimumab, an anti-CTLA-4 antibody, in patients with solid 
tumors (NCT02205333).

CD27
In addition to its co-stimulatory role on T cells, the expression 
of CD27, or TNFRSF7, differentiates the NK cell compartment 
into two functionally distinct subsets. Circulating CD27+ NK 
have lower levels of perforin and granzyme B and demonstrate 

lower levels of cytotoxicity relative to CD27- NK cells (104). The 
absence of CD27 expression in combination with the expression 
of CD11b is an indicator of cytolytic effector cells within human 
NK cell subsets. The natural ligand for CD27, CD70, induces 
downregulation of CD27 in a process controlled by the com-
mon γ-chain cytokine IL-15 (105). Signaling via CD27–CD70 
interactions have been shown to accelerate NK-mediated tumor 
clearance while simultaneously stimulating cytokine secretion by 
NK cells that elicits an adaptive immune response (106).

The potential for CD27 ligation to generate an antitumor 
response has been confirmed in preclinical models. In a xenograft 
models of lymphoma, administration of the humanized anti-
CD27 antibody, 1F5, significantly prolonged survival (107). The 
fully human 1F5 cannot bind to mouse CD27, therefore, any 
observed antitumor activity is attributed to effector mechanisms 
such as direct inhibition/apoptosis via CD27 signaling in tumors 
or ADCC. In syngeneic colorectal and lymphoma models with 
little to no expression of CD27, treatment with the 1F5 mAb 
also elicited antitumor activity and increased survival (108). By 
testing an aglycosylated version of the 1F5 mAb, the researchers 
demonstrated that FcR engagement was required for the anti-
tumor effects of 1F5 therapy. An anti-CD27 mAb (Varlilumab 
or CDX-1127, Celldex Therapeutics) is currently being tested 
in a phase I trial in patients with solid tumors and hematologic 
cancers (NCT01460134). Preliminary findings report that of the 
19 treated patients, 3 had stable disease and 1 had a complete 
readmission (109).

CONCLUSiON

In the future, immunotherapeutic agents that directly enhance 
NK cell-mediated tumor eradication will play a leading role in 
cancer treatment strategies. NK cells have novel mechanisms of 
participating in immune defense, making them uniquely appeal-
ing for cancer immunotherapy. Enhancing NK cell tumorlytic 
capacity is also a compelling combinatorial treatment strategy 
and would complement current standard of care treatments 
based on mAb therapy. The potential for NK-targeted agents to 
augment the antitumor effects of T cell checkpoint blockade is 
actively under consideration. As NK cell-based therapies move 
into the clinic, identifying prognostic biomarkers in the treat-
ment populations will be crucial to the rational design of clinical 
studies. Concurrently, a greater effort must be made to profile 
the effects of novel immunotherapeutic agents, like checkpoint 
inhibitors, on NK cell function. The NK cell is now accepted as an 
integral part of the immunologic antitumor response. A number 
of promising NK-targeting therapeutics are in early-phase trials, 
and the results are eagerly awaited.
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