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Chemokines are the key activators of adhesion molecule and also drivers of leukocyte 
migration to inflammatory sites and are therefore mostly considered as proinflammatory 
mediators. Many studies, including ours, imply that targeting the function of several key 
chemokines, but not many others, could effectively suppress inflammatory responses 
and inflammatory autoimmunity. Along with this, a single chemokine named CXCL10 
could be used to induce antitumor immunity, and thereby suppress myeloma. Our 
working hypothesis is that some chemokines differ from others as aside from being che-
moattractants for leukocytes and effective activators of adhesion receptors that possess 
additional biological properties making them “driver chemokines.” We came up with this 
notion when studying the interlay between CXCR4 and CXCL12 and between CXCR3 
and its three ligands: CXCL9, CXCL10, and CXCL11. The current mini-review focuses 
on these ligands and their biological properties. First, we elaborate the role of cytokines 
in directing the polarization of effector and regulatory T cell subset and the plasticity of 
this process. Then, we extend this notion to chemokines while focusing on CXCL 12 
and the CXCR3 ligands. Finally, we elaborate the potential clinical implications of these 
studies for therapy of autoimmunity, graft-versus-host disease, and cancer.

Keywords: chemokines, T cell subsets, eAe, CXCR3, CXCL11, CXCL10, cancer, immunotherapy

inTRODUCTiOn

Chemokines are small (~8–14 kDa), secreted proteins, structurally similar to cytokines that regulate 
cell trafficking through interactions with a subset of seven-transmembrane G protein-coupled 
receptors (GPCRs) (1–3). Aside from attracting leukocytes to sites of inflammation, chemokines are 
tightly involved in the activation of adhesion molecules to allow leukocyte extravasation (4–8). This 
makes them key drivers of inflammation. Studies coming from our laboratory also imply that aside 
from chemoattraction, some of these chemokines are involved in directing the polarization of CD4+ 
T cell subsets. This includes the balance between effector T cells subsets (9–11) as well as directing 
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the polarization of effector TH1/Th17 cells into IL-10 producing 
Tr1-like cells (9–12). The current review focuses on these findings 
and their biological significance.

CYTOKineS THAT ReGULATe THe 
BALAnCe BeTween CD4+ T CeLLS 
SUBSeTS AS DRiveRS AnD 
ReGULATORS OF inFLAMMATiOn

Cytokines are involved in the induction of inflammatory responses 
by two different, yet complementary, mechanisms: the first 
includes a direct effect aimed at destructing invading microbes. 
Two cytokines that posses a major function in this function are 
tumor necrosis factor alpha (TNF-α) and IL-1β. Consequently, 
during inflammatory autoimmunity, they are thought to be key 
mediators of the harmful anti-self distractive response and are, 
therefore, major targets for therapy of these diseases (13–16). The 
other mechanism includes directing the functional development 
(polarization) of CD4+ T cells subsets, and thereby the dynamics 
of the inflammatory process. The notion that the cytokine milieu 
at the site of inflammation drives T-cell polarization came from 
early studies showing that while IL-12 skews the TH1/TH2 bal-
ance into IFN-γhigh IL-4low TNFα producing TH1 cells, IL-4 shifts 
this balance toward IFN-γlow IL-4high TH2 cells, capable of restrain-
ing the inflammatory activities of TH1 cells (17–20). Along with 
this notion, Leonard et  al. showed that blocking IL-12 inhibits 
experimental autoimmune encephalomyelitis (EAE) by shifting 
the TH1/Th2 balance toward TH2 (21). Another cytokine that 
has been associated with shifting the TH1/TH2 balance toward 
TH1 is IL-18 (IGIF) (22). Following this publication, we observed 
that target neutralization of this cytokine suppresses autoimmun-
ity by interfering in the TH1/TH2 balance toward TH2 (23), and 
also that targeted expression of its natural inhibitor, IL-18 binding 
protein (24) at also suppress the disease by the same mechanism 
(25). A major concern in applying therapies aiming at shifting the 
TH1/TH2 balanced toward TH2 is that the last are also a subtype 
of effector T cells that promote IL-4-dependent immunity (26). 
Thus, shifting anti-self immunity from TH1 to TH2 might result 
in an unexpected form of self-destructive immunity (27).

In 2005, IL-17-expressing T cells (TH17 cells) were pro-
posed to be a third, independent TH-cell lineage with a role in 
inflammatory and autoimmune diseases (28). The key cytokines 
that drive the polarization of these cells vary between rodents 
and human. In mice, IL-6 together with transforming growth 
factor-beta (TGF-β) are likely to induce TH17 at early stages of 
its polarization (together with IL-21) followed by stabilization 
by IL-23 (29), whereas in human the combination of IL-1 and 
IL-6, but not TGF-β are key drivers of TH17 polarization (30). 
More recently, it has been proposed that TH17 cells may also 
hold anti-inflammatory properties due to potential expression of 
CD39 and CD73 ectonucleotidases, leading to adenosine release 
and the subsequent suppression of CD4+ and CD8+ T cell effector 
functions (31).

The activity of effector T cells is tightly regulated by regula-
tory T cells that fall into two major subtypes, those expressing 
the master forkhead box protein 3 (FOXP3) that has a major role 

in directing their biological properties (32). They suppress the 
activities of effector T cells and of inflammatory macrophages by 
various mechanisms, thus maintaining self-tolerance (33–36). 
Aside from nTregs, FOXP3-positive T cells could be polarized 
from FOXP3-negative T cells (in vitro) in the presence of trans-
forming growth factor β (TGF-β) (37).

In 1997, Maria Grazia Roncarolo and her coworkers discov-
ered the reciprocal FOXP3-negative IL-10high-producing Tr1 cells 
(38) that also play a major part in maintenance of self-tolerance 
(39). These cells could be polarized in vitro by either IL-10 + IL-2 
(38) or by the combination of IL-10 + Rapamycin (40) and in 
human by IL-10 + IFNα (41).

CYTOKineS AnD THe PLASTiCiTY OF 
CD4+ T CeLL SUBSeTS

First evidence for potential plasticity in CD4+ T cell subsets have 
been demonstrated by Anderson et al. in 2007 showing that dur-
ing chronic cutaneous leishmaniasis TH1 may gain the Tr1-like 
phenotype and largely produce IL-10 (42). It is not known if these 
IL10high cells are indeed Tr1 cells, or just IL10high-producing CD4+ 
T cells, at that time, biomarkers that could distinguish Tr1 cell 
from other IL10high CD4+ T cells were not yet identified (41, 43). 
Later IL-27, together with TGFβ, could repolarize TH1 cells into 
Tr1 (43, 44). As for FOXP3+ Tregs, Chen et al. have shown that 
coculturing with TGFβ may transform FOXP3−CD4+ T cells into 
FOXP3+ Tregs, also known as induced Tregs (iTregs) (37). The 
stability of iTregs in vivo is still questionable.

More recent studies focused on the plasticity between TH17 
cells and FOXP3+ Tregs. It appears that expression of Foxp3 by 
iTreg cells or IL-17 by Th17 cells may not be stable and that there 
is a great degree of flexibility in their differentiation options 
as they emerge from an overlapping developmental program 
(45). Much of the attention has been devoted to exploring the 
transition from TH17 to iTregs, though a very recent study 
showed that the inflammatory environment in autoimmune 
arthritis induces conversion of a subset of Foxp3+ T cells into 
interleukin-17-producing cells that contribute to disease patho-
genesis (46).

These findings should be taken into consideration in designing 
future therapies aiming at redirecting the polarization of T cell 
subsets.

THe ROLe OF CHeMOKineS in DRivinG 
THe FUnCTiOnAL DeveLOPMenT 
(POLARiZATiOn) OF CD4+ T CeLL 
SUBSeT, ARe THeRe “DRiveR” 
CHeMOKineS?

Chemokines are small (~8–14 kDa), structurally related chemo-
tactic cytokines that regulate cell trafficking through interactions 
with specific seven-transmembrane, GPCRs (1–3). One of the 
important features of GPCRs is their ability to transmit diverse 
signaling cascades upon binding different ligands (47–51). 
This large family of related molecules is classified on the basis 
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TABLe 1 | Key chemokine receptors and their ligands.

Receptor Ligands

CXCR and their ligands
CXCR1 CXCL6, CXCL8

CXCR2 CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8, (MIF?)

CXCR3 CXCL9, CXCL10, CXCL11

CXCR4 CXCL12, (MIF?)

CXCR5 CXCL13

CXCR6 CXCL16

CXCR7 CXCL11, CXCL12

CCR

CCR1 CCL3, CCL5, CCL7, CCL14, CCL15, CCL16, CCL23

CCR2 CCL2, CCL7, CCL8, CCL13

CCR3 CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL24, 
CCL26, CCL28

CCR4 CCL17, CCL22

CCR5 CCL3, CCL4, CCL5, CCL7, CCL11, CCL13

CCR6 CCL20

CCR7 CCL19, CCL21

CCR8 CCL1

CCR9 CCL25

CCR10 CCL27, CCL28
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of structural properties, regarding the number and position of 
conserved cysteine residues, to give two major (CXC and CC) 
and two minor (C and CX3C) chemokine subfamilies (1–3) 
(Table 1).

Most of the attention has been drawn to the key role of 
these chemotactic mediators in promoting lymphocyte migra-
tion processes critical for the onset of inflammatory processes 
with a special interest in inflammatory autoimmune diseases. 
Reviewing the results of the very many studies in which single 
chemokines or there receptors were targeted reviles a major para-
dox; even though most of the 50 known chemokines can direct 
the migration of the same leukocytes, targeted neutralization of 
only one chemokine, such as CCL2, CCL3, CCL5, or CXCL10, 
is sufficient to suppress the entire inflammatory process (10, 
52–59). Therefore, the question that begs an answer is why other 
chemokines that also attract the same type of leukocyte to the 
autoimmune site do not compensate for the absence of this single 
chemokine. In addition, it is also not clear why neutralization of 
as few as eight to 10 of the 50 different chemokines can effectively 
suppress the attacks in autoimmune inflammatory diseases (10, 
52–59). Hence, what are the attributes of this limited number of 
chemokines that make them so important in the regulation of 
inflammatory processes?

A partial explanation for this paradigm could be that these 
chemokines might have other biological actions that are asso-
ciated with these autoimmune inflammatory diseases. This 
includes directing the mobilization of various cells types from 
the bone marrow to the blood, and later their colonization at the 
inflammatory site, induction of selective migration to specific 
organs, directing the development cell subtypes (such as CD4+ 
T cell polarization) or potentiation of innate immune cells. The 
current review focuses on the role of chemokines on the balance 
of T cell subsets. CXCL10 is a key driver of TH1 and possibly 
TH17 polarization and has, therefore, been a major target for 

neutralization in different autoimmune diseases (9, 10). More 
recently, we identified two different CXC chemokines that possess 
anti-inflammatory properties (11, 12).

CXCL12 is an important chemokine that participates in the 
regulation of tissue homeostasis, immune surveillance, cancer 
development, and the regulation of inflammatory responses. It is 
believed that under non-inflammatory conditions, the continuing 
expression of CXCL12 in tissues that are partially segregated from 
the immune system, such as the CNS, is important for directing 
the entry of leukocytes to these sites, as part of immune surveil-
lances (60, 61). We have previously shown that aside from this 
activity, which in its nature could be proinflammatory, CXCL12 
also drives the polarization of CXCR4+ macrophages into the 
IL-10high M2c-like macrophages (12) that hold anti-inflammatory 
properties (62) and also of effector CD4+ T cells (CXCR4+) into 
IL-10high Tr1 cells (12). This may explain why its administration 
during late stages of EAE leads to rapid remission (12). Based on 
the above, we thought of generating an Ig-based stabilized protein 
(CXCL12-Ig) for therapy of various inflammatory autoimmune 
diseases. Nevertheless, the major involvement of this chemokine 
in various biological functions, such as homing of stem cells to 
the bone marrow, homeostasis of neutrophils, angiogenesis, and 
others precludes it use as a stabilized chemokine for therapy of 
autoimmune diseases (63).

CXCL11 AS A nOveL DRiveR  
AnTi-inFLAMMATORY CHeMOKine

Is CXCL12 an exception, or are there other chemokine with anti-
inflammatory properties?

One of the important features of GPCRs is their ability to 
transmit diverse signaling cascades upon binding different 
ligands (47–51). The Nobel prizewinner Robert J. Lefkowitz and 
his team have previously raised the concept that different ligands 
binding the same G-coupled receptor may induce diverse sign-
aling cascades resulting in distinct biological activities (50, 64, 
65). Even though the mechanistic basis of this feature is not fully 
understood, its biological and clinical implications are highly 
significant (50).

We have investigated the interplay between CXCR3 and its 
three ligands: CXCL9, CXCL10, and CXCL11 on directing the 
polarization of CD4+ T cells. We observed that while CXCL9 and 
CXCL10 skew T cell polarization into Th1/Th17 effector cells, 
CXCL11 drives CD4+ T cell polarization into IL-10-producing 
Tr-1 (11). We also uncovered the signaling basis of this biased 
response, and learned that it is GαI independent (11). While 
CXCL10/CXCR3 interactions drive effector Th1 polarization via 
STAT1, STAT4, and STAT5 phosphorylation, CXCL11/CXCR3 
binding induces an immunotolerizing state that is characterized 
by IL-10high (Tr1) and IL-4high (Th2) cells and mediated via p70 
kinase/mTOR in STAT-3- and STAT-6-dependent pathways 
(11). CXCL11 binds CXCR3 a higher affinity than CXCL10, 
suggesting that CXCL11 has potential to mediate and restrain 
inflammatory autoimmunity (Figure  1). This may explain, in 
part, why CXCR3-deficient mice develop an extremely severe 
form of EAE and T1DM (66, 67).
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FiGURe 1 | The role of CXC chemokines in driving the polarization and biological function of CD4+ T cell subsets.
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nOveL APPROACH FOR  
CHeMOKine-BASeD THeRAPY OF 
inFLAMMATORY AUTOiMMUniTY GvHD 
AnD CAnCeR DiSeASeS

Thus, far many affords has been spent in studying exploring 
the therapeutic potential of targeting the interaction between 
chemokine and their receptors for treating various autoimmune 
and cancer diseases. This includes antibody-based therapy to single 
chemokines or their receptors (68, 69), targeted DNA vaccines that 
that amplify the natural autoantibody titer to chemokines (9, 10, 55, 
70), soluble chemokine receptor-based therapy (71, 72), and small 
molecule-based antagonists to chemokine receptors (73, 74). Some 
of these studies have been employed in human clinical trials, thus 
far with very limited successes. It is believed that the major limita-
tion of applying anti-chemokine- or chemokine receptor-based 
therapies is the redundancy between chemokines and the enhanced 
in vivo production, once being neutralized (71). The discovery of 
chemokines with anti-inflammatory properties opens the door for 
an alterative approach of using stabilized chemokines for therapy 
of autoimmunity and graft-versus-host disease (GVHD).

Could stabilized chemokines be also used for therapy of cancer 
diseases? Studies that were initiated in experimental models and 
recently extended to patients suffering from melanoma showed 
that blockage of FOXP3+ T cells function by blocking the interac-
tion between immunosuppressive receptor programmed cell 
death-1 (PD-1) largely expressed on FOXp3+ T cells and its target 
coreceptor on antigen presenting cells (PDL-1) using anti-PD1 
mAb (nivolumab) (75) or anti-PDL-1 mAb (76) suppressed the 
function of tumor infiltrating Tregs, and thereby enhanced anti-
tumor immunity to suppress tumor development and progression 
(75, 76). The other successful approach of enhancing antitumor 
immunity against melanoma included the administration of a mAb 
(ipilimumab) which blocks cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4) to potentiate an antitumor T-cell response 

(77). Very recently, combined therapy\ of anti-PD1 (nivolumab) 
and anti-CTLA-4 (ipilimumab) showed improved efficacy in 
treating melanoma (78). The observations that CXCL10 enhances 
effector T cell activities (11) motivated us to explore CXCL10-
Ig-based therapy in cancer diseases. Very recently, we showed 
that indeed administration of CXCL10-Ig in a clinical set-up of 
myeloma that CXCL10-Ig could be used for immunotherapy of 
this disease, and that aside from enhancing antitumor immunity, 
it directly suppresses tumor growth (79). Along with this study, 
very recently, Barreira da Silva et  al. showed that inhibition of 
DPP4 enzymatic activity enhanced tumor rejection by preserving 
biologically active CXCL10 and increasing trafficking into the 
tumor by lymphocytes expressing the counter-receptor CXCR3 
(80). We are now exploring combined therapies of CXCL10-Ig 
with anti-PD1 or anti-CTLA-4 in a melanoma set-up.

Another chemokine that might serve as a target for cancer 
therapy is CCL1. Its CCR8 receptor is highly expressed on FOXP3+ 
Tregs and has been associated in their targeted attraction (81, 82). 
Along with this, Hoelzinger et  al. showed that targeting CCL1 
might enhance antitumor immunity (83). We are now examining 
whether its stabilized form (CCL1-Ig) could be used for therapy 
of inflammatory autoimmunity.

COnCLUSiOn

The current review focuses on exploring the involvement of 
chemokines in directing the polarization and biological function 
of CD4+ T cells. Thus, far most of the attention has been devoted 
to exploring the role of cytokines in this property. From a clini-
cally oriented perspective, the findings that chemokines may also 
polarize Tregs (so far our data shows relevance only for FOXP3-
negative Tregs) opens the window of opportunities for using sta-
bilized chemokines for therapy of inflammatory autoimmunity 
and GVHD, and also for cancer diseases. The basic rational is 
that the stabilized form of chemokines that induce Tr1-like cells, 
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among them CXCL12 and CXCL11, could be used for therapy of 
autoimmunity and GVHD, whereas stabilized CXCL10 would be 
used for cancer therapy.

We find some major differences between CXCL12 and 
CXCL11 as potential tolerizing chemokines. CXCL12 also ren-
ders anti-inflammatory properties in macrophages (12), whereas 
CXCL11 also polarizes IL-4high Th2 cells (11). We assume that 
CXCL11 could be a better candidate for being a potential drug 
since CXCL12 is involved in many biological activities aside from 
being an immunoregulator, such as neutrophil homeostasis or 
stem cell homing (63).
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