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Macrophages as innate immune cells and fast responders to antigens play a central role 
in protecting the body from the luminal content at a huge interface. Chronic inflammation 
in inflammatory bowel diseases massively alters the number and the subset diversity 
of intestinal macrophages. We here address the diversity within the human intestinal 
macrophage compartment at the level of similarities and differences between homeo-
stasis and chronic intestinal inflammation as well as between UC and CD, including the 
potential role of macrophage subsets for intestinal fibrosis. Hallmark of macrophages is 
their enormous plasticity, i.e., their capacity to integrate signals from their environment 
thereby changing their phenotype and functions. Tissue-resident macrophages located 
directly beneath the surface epithelium in gut homeostasis are mostly tolerogenic. The 
total number of macrophages increases with luminal contents entering the mucosa 
through a broken intestinal barrier in ulcerative colitis (UC) as well as in Crohn’s disease 
(CD). Although not fully understood, the resulting mixtures of tissue-resident and tis-
sue-infiltrating macrophages in both entities are diverse with respect to their phenotypes 
and their distribution. Macrophages in UC mainly act within the intestinal mucosa. In 
CD, macrophages can also be found in the muscularis and the mesenteric fat tissue 
compartment. Taken together, the present knowledge on human intestinal macrophages 
so far provides a good starting point to dig deeper into the similarities and differences of 
functional subsets and to finally use their phenotypical diversity as markers for complex 
local milieus in health and disease.
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inTRODUCTiOn

The gastrointestinal tract is the largest immune compartment of the human body. The major function 
of the intestinal immune cells is to maintain the integrity of the body at the huge interface between 
external stimuli that include food components and the intestinal microflora. Chronic inflammation 
in inflammatory bowel diseases (IBD) profoundly alters the composition of all local immune-cell 
compartments. Macrophages are part of the innate immune system and instrumental in control-
ling the barrier function in the small and the large intestine. The macrophages integrate signals 

Abbreviations: ALDH, aldehyde dehydrogenase; CD, Crohn’s disease; CCL, C–C chemokine ligand; CLR, C-type-lectin-like 
receptor; CX3CR1, chemokine (C–X3–C motif) receptor 1; HLA, human leukocyte antigen; IBD, inflammatory bowel disease; 
Ig, immunoglobulin; MMP, matrix metalloproteinase; NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells; 
NOD, nucleotide-binding oligomerization domain; NLR, NOD-like receptor; PRR, pattern recognition receptors; TLR, toll-
like-receptor; TREM, triggering receptor expressed on myeloid cells; UC, ulcerative colitis.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2015.00613&domain=pdf&date_stamp=2015-12-07
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00613
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:britta.siegmund@charite.de
http://dx.doi.org/10.3389/fimmu.2015.00613
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00613/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00613/abstract
http://loop.frontiersin.org/people/292792/overview
http://loop.frontiersin.org/people/291797/overview
http://loop.frontiersin.org/people/163444/overview
http://loop.frontiersin.org/people/105877/overview


FiGURe 1 | Schematic summary of the relative intestinal macrophage-subtype distribution in (A) gut homeostasis or (B) ulcerative colitis and  
(C) Crohn’s disease.
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from their environment, thereby changing their phenotype and 
function. The present knowledge about intestinal macrophages is 
predominantly based on mouse studies. Even the finding of the 
gut as the largest reservoir of tissue-resident macrophages within 
the body (1) remains to be verified for men. This minireview 
deliberately restricts to systematic human studies. Only if such 
data were lacking, we included findings from animal models that 
might be relevant for the human mucosal surface. Differences 
in between mice and men will be highlighted. Non-inflamed 
tissue areas neighboring the inflamed areas in ulcerative colitis 
(UC) and Crohn’s disease (CD), the main forms of IBD, repre-
sent rather homeostatic conditions. Hence, the diversity within 
the human intestinal macrophage compartment at the level of 
similarities and differences between homeostasis and chronic 
intestinal inflammation as well as between UC and CD, including 
the potential role of macrophage subsets for intestinal fibrosis, 
will be discussed.

inTeSTinAL MACROPHAGeS in GUT 
HOMeOSTASiS AnD in iBD

In terms of a first-line defense, tissue-resident intestinal mac-
rophages contribute to the gut homeostasis by eliminating invading 
pathogens without inducing an inflammatory response of the lym-
phocytes within the lamina propria. Positioned directly beneath 
the surface epithelium, the macrophages in intestinal tissues are the 
first immune-cell population encountering foreign material, e.g., 

luminal bacteria or food antigens randomly passing the epithelial 
barrier (Figure  1A). Whether human macrophages are able to 
sample luminal antigen by extending their dendrites between the 
epithelial cells reaching into the gut lumen as shown for mouse 
macrophages (2, 3) is unknown. On the one hand, intestinal mac-
rophages are tolerant toward foreign matter by down-regulation 
of recognition receptors (4). On the other hand, intestinal mac-
rophages that recognize food-derived antigens or commensal 
microbiota present the processed antigens in a tolerizing manner in 
the absence of co-stimulatory signals (5). Also to fulfill the task of 
protecting from unwanted immune responses and different from 
peripheral monocytes, stimulation via pattern recognition recep-
tors (PRR) on resident macrophages results in low cytokine secre-
tion and strong bactericidal activity (6). This increased bacterial 
clearance is associated with increased metallothionein expression, 
which is regulated by nuclear factor kappa-light-chain enhancer of 
activated B cells (NF-κB) and by caspase-1 (7).

Precursors of tissue-resident intestinal macrophages are bone 
marrow-derived monocytes, which circulate through the blood 
before recruitment into the intestinal mucosa by interleukin 
(IL)-8 and transforming growth factor (TGF)β (8). These freshly 
recruited monocytes exhibit an inflammatory phenotype and exert 
inflammatory functions. Signals from the intestinal mucosa sub-
sequently polarize them into inflammation anergic macrophages, 
e.g., by stromal TGFβ-induced inhibition of NF-κB activation (9). 
Additionally, TGFβ and IL-10 induce down-regulation of trigger-
ing receptor expressed on myeloid cells (TREM)-1 on intestinal 
macrophages, a receptor that potently amplifies inflammatory 
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reactions (10). A minority of tissue-resident intestinal mac-
rophages express CD14 as well as CD11c involved in sensing 
of bacterial lipopolysaccharides (LPS) and are considered to be 
differentiation intermediaries (11). Blood monocytes have a life 
span of 3–4 days, while the life span of intestinal macrophages is 
unknown. In mice, intestinal macrophages lost upon senescence 
or apoptosis are constantly replenished by newly recruited blood 
monocytes and by cell division in situ (12). While mouse mac-
rophages replenish in the intestine by recruitment of circulating 
cells and proliferation (12, 13), human intestinal macrophages 
fail to do so (8). Again in mice, mucosal tolerance is mediated by 
intestinal macrophages secreting IL-10, thereby expanding regula-
tory T cells (Tregs) (14). By contrast, human macrophages isolated 
from healthy jejunum and stimulated, e.g., with LPS, Helicobacter 
pylori urease, heat-killed Staphylococcus aureus, interferon (IFN)γ 
or phorbol myristate acetate in vitro did not produce IL-10 (6).

A hallmark of macrophages is their plasticity as well as the abil-
ity to change phenotype and function according to the immediate 
environment. This has been demonstrated systemically by recent 
work from Xue and colleagues who defined a core transcriptome 
network for human and murine macrophages (15).

Hence, it is not surprising that small intestinal macrophages are 
different from large intestinal macrophages. These two organs have 
a distinct architecture, exert different functions, and host diverse 
microbiota. For example, macrophages from healthy jejunum show 
high expression of human leukocyte antigen (HLA)-DR and very 
low expression of CD14 and the low-affinity human immunoglob-
ulin (Ig)G receptor CD16 (6), whereas in colonic macrophages low 
levels of CD14 and CD16 are accompanied by moderately expressed 
HLA-DR (16). Very early work, e.g., uses the activities of acid 
phosphatase and nonspecific esterase to distinguish macrophage 
subtypes (17). Here, tissue-resident intestinal macrophages directly 
underneath the epithelium differ from macrophages positioned 
deeper in the lamina propria with no implication that these cells 
abandon their tolerogenic potential (17).

Following the M1–M2 paradigm, which mirrors the 
polarization of T helper cells, macrophages are classified as 
pro-inflammatory M1 macrophages and anti-inflammatory 
M2 macrophages (18). Adhering to this model, tissue-resident 
macrophages are  considered to be M2 macrophages (19, 20). In 
IBD, macrophages massively infiltrate the intestinal mucosa and 
present phenotypes and distribution distinct from tissue-resident 
macrophages in homeostasis. In CD patients, macrophages also 
infiltrate the muscular layer and the mesenteric fat (17, 21). At first 
sight, large numbers of CD68+ macrophages massively infiltrate 
the intestinal mucosa in IBD and diffusely spread throughout 
the thickened mucosa and submucosa but differ with regard to 
the subset composition and function in UC (Figure 1B) and CD 
(Figure  1C). Analyses of blood monocytes derived from CD 
patients reveal a reduction of classical monocytes (CD14hiCD16−), 
while intermediate monocytes (CD14hiCD16+) were increased 
(22, 23). Extensive migration of classical  monocytes toward the 
C-C chemokine ligand (CCL)2 in vitro and massively enhanced 
CD14hi macrophages in the ileal and the colonic mucosa of the CD 
patients led to the conclusion that peripheral classical monocytes 
immigrated into the intestinal mucosa (23). These newly recruited 
macrophages express high levels of CD33, of the high-affinity 

human IgG receptor CD64 and of the G-protein-coupled frac-
talkine receptor CX3CR1 but were HLA-DRdim (23). Infiltrating 
intestinal macrophages are distinct in phenotype and function 
from their resident counterparts. For example,  tissue-infiltrating 
intestinal macrophages strongly express CD14 (24), TREM-1 
and the human myeloid IgA Fc receptor CD89 (25) as well as 
activated NF-κB (26). Additionally, tissue-infiltrating intestinal 
macrophages secrete pro-inflammatory cytokines such as TNF, 
IL-6, IL-8, IL-23, IL-1β, and IFNγ as well as the chemokine 
CCL2 attracting monocytes (25, 27). This pro-inflammatory 
macrophage phenotype might result from polarization of any 
monocytic cell entering the pro-inflammatory environment of 
the inflamed intestinal mucosa. In line with this, the conditioning 
of newly recruited monocytes toward inflammation anergic M2 
macrophages might be disturbed in IBD patients due to defective 
TGFβ signaling (28). In IBD, a broken epithelial barrier allows 
luminal content to enter the lamina propria, thereby triggering the 
inflammatory response of the lamina propria leukocytes. For rec-
ognition of microbiota, macrophages up-regulate PRR, including 
membrane-bound toll-like-receptors (TLR) and C-type-lectin-
like receptors (CLR) as well as cytoplasmic nucleotide-binding 
oligomerization domain-containing protein (NOD)-like receptors 
(NLR) and retinoic acid-inducible gene- I-like receptors. Human 
PRR show less variants than those in mice; 10 TLR and 22 NLR 
are known in men compared to 13 TLR and 34 NLR in mice. 
Tissue-infiltrating macrophages in the inflamed colon mucosa 
predominantly express TLR2, TLR4, and TLR5 responding to 
bacterial peptidoglycans, LPS, and bacterial flagella (29). CLR 
bind a variety of carbohydrate ligands but only collectins function 
in terms of PRR (30). NOD2 recognizing muramyl dipeptide on 
Gram-positive and -negative bacteria is expressed in monocytes 
and Paneth cells but not in intestinal macrophages (31). In vitro 
studies showed that NOD2 level declined during differentiation 
of monocytes into macrophages (31). CARD15 coding for the 
caspase-recruitment domain of NOD proteins is highly up-
regulated in colonic macrophages of CD patients (32). So far it 
is not clear whether in chronic inflammation in CD the down-
regulation of NOD2 in monocytes infiltrating the colon mucosa 
is affected or whether resident macrophages up-regulated NOD2 
expression. A missense mutation in the coding sequence of NOD2 
was found in 17% of CD patients and in 4% of UC patients (33). 
As over 200 genes have been linked to IBD (34) and many of them 
are associated with macrophage functions (35–39), these immune 
cells present one cell population contributing to the pathogenesis 
of UC and CD.

DiveRSiTY wiTHin inTeSTinAL 
MACROPHAGe COMPARTMenTS in 
ULCeRATive COLiTiS AnD CROHn’S 
DiSeASe

Above, we highlighted differences in the macrophage compart-
ments and differentiated between tissue-resident and tissue-infil-
trating macrophages in gut homeostasis and IBD. Additionally, the 
composition and functions of intestinal macrophages also differ in 
the inflamed gut of UC and CD patients, while overall macrophage 
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numbers are comparable. So the question arises whether distinct 
macrophage subpopulations and distributions of these subtypes 
within the inflamed tissue areas might explain the overall different 
outcome in CD and UC. As for similarities in the local distribution, 
monocytes and M1 macrophages directly contribute to the defect 
of the barrier in IBD and large numbers of pro-inflammatory 
macrophages reside in the inflamed mucosa (40).

Over a decade ago, CD has even been referred to as a mac-
rophage primary immunodeficiency (41). While this statement 
might simplify the overall interaction of immune cells in the 
mucosa, several facts add to this hypothesis. Thus, impaired bac-
terial clearance in CD has been attributed to defective cytokine 
secretion by macrophages (42). E. coli is commonly found within 
intestinal macrophages in CD (43), a dysfunction not reported 
for UC. On the contrary, macrophages of UC patients exuberantly 
and protractedly respond toward bacteria (44). This difference in 
bacterial clearance is also reflected by the formation of granulo-
mas in CD but not UC (45, 46). Granulomas are formed when the 
effective eradication of invading pathogens fails.

Tissue-resident intestinal macrophages express the scavenger 
receptor CD163 that also recognizes Gram-positive and -nega-
tive bacteria (47, 48). While CD163 was initially thought to be 
exclusively expressed on noninflammatory M2 macrophages (49, 
50), CD163 is expressed on resident macrophages of all normal 
tissues except on splenic white pulp macrophages and on germi-
nal center macrophages (51). CD163+ macrophages are enriched 
in the peripheral blood as well as in the colonic mucosa of IBD 
patients (52–54). As CD163 is cleaved by metalloproteinases 
(MMPs) and shed from macrophages upon activation, soluble 
CD163 is an appropriate marker for macrophage activation (55). 
Compared to healthy controls, sCD163 is increased in UC and 
CD patients (56). In line with comparable numbers of mac-
rophages in the intestinal mucosa in CD and UC, sCD163 levels 
are comparable in both entities (56). Upon successful treatment 
with glucocorticoids or TNFα-antibodies, histomorphologically 
reflected by reduced macrophages in colon biopsies (57), serum 
sCD163 levels are reduced (56, 58).

No differences were found regarding the numbers of TREM-1+ 
macrophages triggered to high production of pro-inflammatory 
cytokines (25) or in the expression of the co-stimulatory mol-
ecules CD80 and CD86 (5).

Aldehyde dehydrogenase (ALDH) is involved in the release 
of retinoic acid, which has immunomodulatory properties and 
is mandatory in the induction of forkhead-box protein 3+ Tregs 
(59, 60). Directly relating to Treg numbers in the colonic mucosa, 
ALDH+ macrophages are reduced in the intestinal mucosa of UC 
but not of CD patients (61). While Treg numbers are generally 
increased in intestinal tissues from IBD patients compared to 
those of healthy controls, the numbers are lower in UC compared 
to CD (62, 63). Taking into account that the composition of 
macrophage subpopulations might mirror the local environ-
ment, these findings suggest rather pro- than anti-inflammatory 
macrophage subpopulations involved in UC.

Specific for CD and relying on the presence of numerous M2 
macrophages, the hyperplastic mesenteric fat tissue beyond the 
transmural inflammation could be defined as a second protec-
tive barrier from invading luminal contents (21). In the liver, 

macrophages are the master regulators of fibrosis (64). Large num-
bers of macrophages are found in fibrotic lesions of CD patients 
(65). Gene polymorphisms associated with the fibrostenotic 
phenotype in IBD like the V249I polymorphism of CX3CR1 and 
the T300A mutation in the autophagy-related ATG16L1 link to 
macrophage functions (66, 67). An indication for the involvement 
of distinct macrophage subpopulations in IBD is the development 
of fibrosis that is more pronounced in CD than in UC (68–70). 
Fibrosis and subsequent fibrotic strictures result from excessive 
wound-healing processes. Intestinal wound healing involves 
various steps with macrophages involved in all of these steps. In 
the early phase, inflammatory macrophages clear the wound from 
bacteria and cellular debris; in later phases, wound-healing M2 
macrophages promote tissue remodeling. Tissue-resident intes-
tinal macrophages express matrix MMP-2 (71) that takes part in 
the breakdown of extracellular matrix. In fibrotic CD, MMP2 is 
increased in the mucosa compared to that of healthy persons (72). 
The tyrosine-protein kinase Hck, a master regulator for human 
M2 macrophages (73) regulates myeloproliferation in mice 
(74). Other studies in mice showed that noninflammatory mac-
rophages are involved at many levels in the whole wound-healing 
process, i.e., in wound closure, in formation of granulation tissue, 
in angiogenesis, in collagen synthesis, and in the production 
of growth factors (75). The pleiotropic cytokine IL-13 was also 
identified as a pro-fibrotic factor in CD (72). In combination with 
TNFα, IL-13 induces TGFβ production in macrophages (76).

Macrophages carrying the mannose receptor CD206 and 
considered wound-healing macrophages (77) are increased in the 
injured mucosa of UC patients (78). The expression of the proto-
oncogene protein Wnt1 by CD206+ macrophages enhanced the 
proliferation of stem cells in response to the epithelial injury in 
UC (78). Relating to the increased risk of cancer development 
upon long-standing IBD, large numbers of CD206+ macrophages 
are found in colorectal cancer (79).

Taken together, many open questions remain with regard to 
specifics of the involvement of different subpopulations of human 
macrophages in the pathogenesis and the chronicity of UC and 
CD. Further dissecting the diversity and the local distribution of 
functional macrophages in human gut tissues will help to define 
the clinical relevance of the macrophage subset.
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