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Immune cell infiltration in (white) adipose tissue (AT) during obesity is associated with 
the development of insulin resistance. In AT, the main population of leukocytes are mac-
rophages. Macrophages can be classified into two major populations: M1, classically 
activated macrophages, and M2, alternatively activated macrophages, although recent 
studies have identified a broad range of macrophage subsets. During obesity, AT M1 
macrophage numbers increase and correlate with AT inflammation and insulin resis-
tance. Upon activation, pro-inflammatory M1 macrophages induce aerobic glycolysis. 
By contrast, in lean humans and mice, the number of M2 macrophages predominates. 
M2 macrophages secrete anti-inflammatory cytokines and utilize oxidative metabolism 
to maintain AT homeostasis. Here, we review the immunologic and metabolic functions 
of AT macrophages and their different facets in obesity and the metabolic syndrome.

Keywords: obesity, adipose tissue, insulin resistance, macrophage, adipokines, macrophage polarization, adipose 
tissue inflammation

iNTRODUCTiON

Obesity is a prevalent metabolic disease characterized by excess accumulation of white adipose tissue 
(AT) due to increased food intake and changes in lifestyle (1, 2). Obesity leads to the development of 
a low-grade systemic chronic inflammatory state (3–6). According to the World Health Organization 
(WHO), 39% of adults over 18 years of age are overweight and 13% are clinically obese, translating 
to approximately 2 billion overweight adults where more than half a billion are obese (7).

A major player in systemic low-grade chronic inflammation in obesity is the increased numbers 
of AT pro-inflammatory macrophages and deregulated production and function of AT hormones 
and cytokines (2, 4). Besides its role in storing energy, AT is an important endocrine organ (8, 9), 
such that its dysfunction strongly contributes to the initiation and exacerbation of type 2 diabetes 
(T2D) (8, 10).

Insulin resistance is defined as a reduced response to insulin in liver, muscle, and AT. This 
impairment is due to the inhibition of the insulin-signaling pathway, leading to hyperglycemia. 
Insulin resistance is commonly associated with obesity and may precede the onset of T2D (11–13). 
One hypothesized reason for impaired insulin signaling has been thought to be due to the chronic 
systemic low-grade inflammation in obesity (14).

The finding that infiltration of monocytes, which differentiate into macrophages, is augmented 
in obesity is fundamental (15, 16). This results in pro-inflammatory macrophage and polarization 
leading to AT inflammation and insulin resistance (15, 17). Importantly, macrophages are crucial 
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for regulating the immune system, specifically by restoring and 
maintaining AT homeostasis (18, 19).

In this review, we highlight the different functions of AT 
macrophages (ATMs) in the maintenance AT tissue homeostasis 
during lean, obese, and insulin resistant states.

ADiPOSe TiSSUe MACROPHAGeS

The mechanisms by which inflammation increases during 
obesity are not fully understood. Increased pro-inflammatory 
cytokine secretion contributes to insulin resistance in obesity. 
Among these cytokines, tumor necrosis factor-α (TNF-α) was 
the first cytokine identified to be capable of inducing insulin 
resistance in adipocytes in vitro. In AT, the secretion of TNF-
α is primarily derived from macrophages (20–22), and the 
accumulation of these immune cells in obesity contributes to 
the development of insulin resistance (23). This supports a key 
role for inflammation in the regulation of systemic metabolic 
homeostasis.

Macrophages make up to 40% of all AT cells in obese mice 
compared to 10% in lean mice (23). These cells are increased in 
AT during obesity due to increased amounts of several factors, 
including free fatty acids (FFAs), cholesterol, and lipopolysac-
charide (LPS). Serum levels of LPS are elevated in obesity and, 
this cell wall component from Gram-negative bacteria, is linked 
to changes in the gut microbiota (metabolic endotoxemia) 
(24). LPS binds to and activates toll-like receptor 4 (TLR4) and 
its downstream signaling pathways in AT resident cells. These 
activated macrophages secrete cytokines and chemokines, such 
as monocyte chemoattractant protein-1 (MCP-1), and express 
C–C motif chemokine receptor-2 (CCR2) and CCR5, which in 
turn augment the recruitment of more monocytes and other 
leukocytes into AT (25–27). Macrophages share the same dif-
ferentiation and recruitment molecules with other myeloid cells 
in many inflammatory conditions (28). As observed during 
bacterial inflammation (29), in obesity, macrophage activation 
is dependent on I kappa B kinase-β (IKK-β) (30). Arkan et al. 
showed that IKK-β activation in macrophages is sufficient for 
the development of insulin resistance, and mice with loss of 
IKK-β function only in myeloid cells are protected from obesity 
development and insulin resistance (30). These findings demon-
strate the importance of macrophages in the context of insulin 
resistance development.

In addition to the activation and inflammatory profile of 
macrophages in the obese state, ATMs are highly adaptive to its 
lipid-rich environment. To maintain AT homeostasis in this lipid-
rich microenvironment, macrophages increase their adiposity 
by activating lysosomal lipid metabolism (31). This may be a 
physiological response to buffer the increase in lipid concentra-
tions released by adipocytes during obesity. This process does 
not classically activate ATMs, but it activates an immune cell 
differentiation program where high concentrations of lipids and 
FFAs induce a macrophage phenotype distinct from differenti-
ated bone marrow macrophages (BMDM) (31). This phenotype 
is characterized by lipid accumulation in ATMs and increased 
expression of fatty acids transporters, such as CD36 and the lipid 
scavenger receptor Msr1 (31).

Several immune cells regulate AT inflammation, insulin resist-
ance (32), and macrophage recruitment and differentiation (19, 
33–35). There are two distinct macrophage populations found 
in AT. In healthy/lean AT, alternatively activated macrophages 
(M2) that express CD206 and CD301 on their surface and secrete 
anti-inflammatory cytokines predominates. On the other hand, 
obesity triggers the accumulation of classically activated mac-
rophages (M1) characterized by CD11c surface expression, and 
expression of pro-inflammatory cytokines (17, 36), although this 
pan-classification spans a broad range of macrophage subtypes.

However, Kratz et al. recently described a different subtype of 
macrophage (37). They observed that treating macrophages with 
a mix of glucose, palmitate, and insulin (“metabolic activation”) 
generates a unique macrophage pro-inflammatory phenotype 
that is different from M1. This type of macrophage secretes 
pro-inflammatory cytokines, such as interleukin-1β (IL-1β) 
and TNF-α, whereby the secretion is dependent on peroxisome 
proliferator-activated receptor gamma (PPAR-γ) and p62 expres-
sion. In vivo, this phenotype is due to continuous and excessive 
exposure of ATMs to FFAs, such as palmitate, in a microenvi-
ronment that is saturated with glucose and insulin. In obesity, 
this differentiated macrophage subtype indicates the importance 
and the necessity to identify differentiated profiles of immune 
cells. Since there is a large spectrum of ATMs that have different 
immune profiles, we choose to focus on M1 and M2 subtypes of 
ATMs to better understand how metabolic alterations in ATMs 
impact obesity and insulin resistance.

M1 MACROPHAGeS: AN OveRview

M1 macrophages are associated with a pro-inflammatory profile. 
These macrophages are generally stimulated by T-helper 1 (Th1) 
type of cytokines, such as interferon-γ (IFN-γ), or by pathogen-
associated molecular patterns (PAMPs), such as LPS (38). In turn, 
M1 macrophages secrete cytokines, including IL-6, TNF-α, IL-1β 
(39), IL-12, and IL-23 (40). M1 macrophages can also induce Th1 
responses (41, 42). In general, these cells express high levels of 
major histocompatibility complex class II (MHC-II), CD80 and 
CD86 costimulatory molecules and CD68 (43). Moreover, M1 
macrophages express Th1 cell-attracting chemokines, including 
CXCL9 and CXCL10 (44).

In addition to IFN-γ and LPS, there are several other molecules 
involved in M1 macrophage polarization, such as interferon 
regulatory factor (IRF), signal transducers and activators of tran-
scription (STAT), and suppressor of cytokine signaling (SOCS). 
IRF5 is involved in M1 polarization by inducing the transcrip-
tion of interleukin-12 subunit p40 (IL-12p40), IL-12p35, and 
IL-23p19, and by repressing the transcription of IL-10 (45). M1 
macrophages express SOCS3, which promotes nitric oxide (NO) 
production (46). SOCS3 controls nuclear factor-κB (NF-κB) and 
phosphatidylinositol 3-kinase (PI3K) activity, favoring NO pro-
duction in macrophages (46). The induction of inducible nitric 
oxide synthase (iNOS), another important molecule induced 
in M1 macrophages is dependent on TLR ligands, such as LPS, 
and activation of NF-κB, PI3K, and IFN-γ secretion (47, 48) 
(Table 1). Furthermore, myeloid differentiation primary response 
gene 88 (MyD88)-dependent pathway is also important for M1 
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TABLe 1 | Differential requirement for stimuli and differential expression of transcription factors, cytokines, chemokines, and other molecules by M1 
and M2 macrophages.

M1 M2

Classical stimuli LPS/GM-CSF/IFN-γ/TNF-α PPAR-γ agonists/IL-4/IL-10/IL-13
Membrane markers MHCII/CD80/CD86/CD11c/CCR7/Ly6Chigh/CD11b/CD62L/

CCR2high/CX3CR1low/CCR5
Dectin-1/CD206/Scavenger receptor/CD163/CCR2low/CXCR1/
CXCR2/Ly6Clow/CD11b/CX3CR1high

Classical transcription factors STAT1/IRF5 STAT6/FIZZ1/Ym1/PPARα/β/γ

Cytokines and chemokines IL-6/TNF-α/IL-1β/IL-12/Il-23/IFN-γ/CXCL9,10,11,13/CCL8,  
15, 19, 20

TGF-β/IL-10/CCL17, 18, 22, 24

Other classical molecules SOCS3/iNOS Arg1
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polarization (49). The expression of TLR4/TLR2 is significantly 
higher in M1 when compared to M2 macrophages (50). The 
absence of TLR4 drives macrophages toward an M2 phenotype 
(51), indicating that activation and polarization of macrophages 
is, at least, in part dependent on TLRs.

In contrast to M1 macrophages generated in vitro, which do 
not express CD11c, M1 ATMs express CD11c concomitant with 
F4/80 and CD11b (17, 52–54). Interestingly, the expression of 
CD11c in  vitro by BMDM can be induced if BMDMs are dif-
ferentiated in the presence of adipocytes (31, 37). This indicates 
the importance and requirement of adipocytes in orchestrating 
the functional phenotype of ATMs.

The recruitment of monocytes, which in AT gives rise to 
CD11c+ ATMs, is dependent on CCR2, CCR5, and MCP-1 (55, 
56). Nagareddy et  al. demonstrated that ATM-derived IL-1β 
promotes monocyte release from the bone marrow (57) and 
MCP-1 induces M1 ATM proliferation in AT (58). These pro-
cesses are important to promote macrophage accumulation in 
the AT during obesity and sustain AT inflammation and insulin 
resistance (58).

POLARiZiNG M1 ATMs: HOw THeY 
iNDUCe iNSULiN ReSiSTANCe

Obesity-associated insulin resistance correlates with elevated 
levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, and 
IL-6 (42, 59–62). These cytokines are secreted by both adipocytes 
and ATMs due to increased levels of pro-inflammatory factors 
released during obesity development. These factors include FFA, 
triglycerides, resistin, leptin, retinol-binding protein 4 (RBP4), 
IL-6, TNF-α, and IL-1β, among others (31, 63, 64).

Secretion of these factors activates several inflammatory 
signal transduction pathways in macrophages and adipocytes, 
which are required for obesity-induced insulin resistance. The 
stress-responsive c-Jun NH2-terminal kinase (JNK 1 and 2) (65), 
inhibitor of κB kinase (IKK) (66), extracellular signal-regulated 
kinase 1 and 2 (ERK 1 and 2) (67), and mitogen-activated pro-
tein kinase p38 (p38 MAPK) are responsible for alterations in 
the insulin receptor signaling pathway (68). These alterations 
lead to decreased tyrosine phosphorylation of insulin receptor 
substrate (IRS-1 and -2), PI3K activation followed by a decreased 
serine phosphorylation of Akt and consequently insulin resist-
ance (66, 68–72). There is a crosstalk between the two isoforms 

of JNK (JNK1 and JNK2) that contributes to obesity-induced 
insulin resistance development. The balance between these 
two molecules determines the total activity of JNK in fat tis-
sues (73). Hematopoietic activation of JNK1 is a major player 
in obesity-induced inflammation and insulin resistance (74). 
Corroborating this, Han et al. verified that knockdown of both 
JNK 1 and 2 in macrophages protect mice from HFD-induced 
insulin resistance and AT inflammation (65). Similarly, Vallerie 
et  al. showed that myeloid JNK1 is a regulator of cytokine 
expression in AT during the late, but not early states of obesity 
development (75).

Toll-like receptors and inflammasomes are activated in 
obesity by damage-associated molecular pattern molecules 
(DAMPs), such as high-mobility group box 1 (HMGB1) and 
oxidized low-density lipoprotein (Ox-LDL), RBP4 or PAMPs, 
such as LPS (24, 76–80). TLRs and inflammasomes modulate 
macrophage polarization due to activation of NF-κB, STAT1, and 
caspase-1 to induce IL-1β production (81, 82). Upon activation, 
these receptors contribute to low-grade chronic inflammation in 
obesity, leading to M1 polarization of ATMs. Importantly, TLR4 
expression is increased in ATMs during obesity (83). Thus, many 
studies have investigated the role of TLR4 and nod-like receptor 
protein 3 (NLRP3) in knockout mouse models in HFD-induced 
obesity (17, 23, 51, 84).

Toll-like receptor 4 deficiency in HFD-fed mice ameliorates 
AT inflammation, insulin resistance, and adiposity (83, 85, 86). 
The reduction in inflammation is due to decreased macrophage 
infiltration and a switch from M1 to M2 macrophage profile (51, 
83, 85, 87).

Nod-like receptor protein 3 inflammasome also plays a key 
role in the development of AT inflammation and insulin resist-
ance (88, 89). Expression of NLRP3, apoptosis-associated speck-
like protein containing CARD (ASC), caspase-1, and IL-1β are 
all upregulated in AT of obese mice, as well as the mature form 
of IL-1β (82, 90). The secreted IL-1β binds to IL-1R and activates 
NF-κB and MAPK pathways, thereby impairing insulin signaling 
through the activation of IRS-1 in adipocytes leading to insulin 
resistance (82, 91).

Functional deletion of NLRP3 and caspase-1 ameliorate HFD-
induced insulin resistance and AT inflammation (82, 90, 92). 
Moreover, weight loss and insulin sensitivity in patients with T2D 
is associated with decreased AT expression of NLRP3 and IL-1β 
(82). Protection from insulin resistance and inflammation follow-
ing loss of functional NLRP3 may be due to a shift in macrophage 
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polarization, since NLRP3-knockout mice have decreased M1 
and increased M2 gene expression profiles in AT (84).

In addition to these important signaling pathways, the mam-
malian target of rapamycin (TOR) has an important function 
in insulin resistance. It is able to sense nutrients and respond 
by altering the cellular metabolism in different kind of cells, 
including ATMs (93). Insulin, glucose, leptin, and other growth 
factors and cytokines activate mTOR pathway via PI3K–Akt 
signaling pathway (94). The protein kinase Akt phosphoryl-
ates and inhibits TSC2 and, consequently, activates mTORC1 
(95, 96). Activation of these metabolic sensors, mainly PI3Kγ, 
is important for immune cell functions. PI3Kγ activation in 
hematopoietic cells contributes to the development of obesity 
and insulin resistance. PI3Kγ activity in the non-hematopoietic 
compartment is critical during obesity (97). Moreover, the cata-
lytic subunit of PI3Kγ, p110γ, was shown to be activated during 
obesity. Absence of functional p110 improved insulin sensitivity 
with reduced infiltration of pro-inflammatory macrophages and 
inflammatory marker expression in AT. In addition, specific 
depletion of PI3Kγ in bone marrow cells as well as pharmaco-
logical blockade also inhibited macrophage infiltration during 
obesity and insulin resistance (98). Together, these data indicate 
that activation of metabolic sensors in immune cells during 
obesity is essential for inflammation and insulin resistance 
development.

Defects in mTORC1 regulation can lead to metabolic 
dysfunction, including T2D (93). Deletion of mTORC1 in 
macrophages diminishes AT inflammation and protects mice 
against HFD-induced insulin resistance (99, 100). mTORC1 
disruption suppresses HK1-dependent glycolysis, caspase-1 
activation, IL-1β, and IL-18 secretion in vitro and in vivo and 
induces M2 polarization (100). In accordance, Jiang et  al. 
showed that mTORC1 depletion in macrophages protects 
mice against HFD-induced AT inflammation and insulin 
resistance through the inhibition of IRE1α/JNK/NF-κB 
pathways (99).

In 2013, Horng et al. demonstrated in vitro and in vivo that 
TSC1 deletion (Tsc1 deficiency, thereby mTORC1 is constitutively 
active) in macrophages leads to a marked defect in M2 polariza-
tion in response to IL-4, although LPS stimulation induced 
inflammatory responses in an mTOR-dependent manner (101). 
Moreover, in obesity, nutrient sensing by mTORC1 regulates the 
switch of ATMs from M2 to M1 (12).

More recently, Zhu et  al. proposed that TSC1 deletion in 
macrophages intensifies the M1 polarization (102). TSC1 inhib-
its M1 polarization by suppressing the Ras GTPase/Raf1/MEK/
ERK signaling pathway in an mTOR-independent manner, 
whereas TSC1 promotes M2 properties by mTOR-dependent 
CCAAT/enhancer-binding protein-β pathway (102). These 
findings indicate a critical role for TSC1 in orchestrating mac-
rophage polarization via mTOR-dependent and -independent 
pathways (102) (Figure 1).

Increased M1 activation in AT is involved in activation of 
the adaptive immune response through the recruitment and 
activation of T cells. Increased recruitment of CD4+ T cells cor-
relates with increased M1 polarization. Also, M1 polarization 
appears to be dependent on AT Th1 polarization (42, 103–106). 

In addition, during obesity, the activation of Th1 responses in 
AT are mediated by mTORC1, since this molecule is necessary 
for polarization of T lymphocytes toward a Th1 phenotype 
(107). Moreover, circulating leptin, which is elevated dur-
ing obesity, activates mTOR pathway, and also induces Th1 
responses (108, 109). Thus, Th1 polarization is dependent on 
M1 polarization, and it is critical for the development of insulin 
resistance (104).

Together, several pathways mediate the induction/activation 
of ATMs to maintain AT homeostasis, which can also be affected 
by changes in systemic and cellular metabolism.

M2 MACROPHAGe: AN OveRview

M2 macrophages are associated with tissue remodeling and 
inflammation resolution (110). M2 macrophages have immuno-
suppressive properties, have high phagocytic capacity, and secrete 
extracellular matrix components, angiogenic and chemotactic 
factors, anti-inflammatory cytokines, and growth factors, such 
as IL-10 and transforming growth factor β (TGF-β) (111, 112). 
M2 macrophages are characterized by upregulated expression of 
Dectin-1, CD206, scavenger receptor A, scavenger receptor B-1, 
CD163, CCR2, CXCR1, CXCR2, and MgL 1/2 (36). Moreover, 
the expression of arginase-1 (Arg1), PPAR-γ, and transcription 
factor found in inflammatory zone 1 (FIZZ1), which is specific 
of murine M2 macrophages, are necessary for collagen synthesis, 
further supporting the role of these cells in tissue remodeling (44) 
(Table 1).

In vitro, M2 macrophages appear to be a heterogeneous popu-
lation induced by a variety of stimuli. M2a is induced by IL-4 or 
IL-13 express high levels of CD206 and has immunoregulatory 
functions (38, 113–115). M2b is induced by immune complexes 
and TLRs or IL-1R agonists. Both M2a and M2b have an immu-
noregulatory role through down-regulation of IL-12, IL-6, and 
TNF (116). M2c is induced by IL-10 and glucocorticoids. It has an 
immunosuppressive phenotype and participates in tissue remod-
eling. M2c secretes pro-fibrotic factors, such as TGF-β, CCL17, 
and CCL22 (38, 116). In addition, expansion of M2c macrophages 
is negatively regulated by PPAR-γ, which is expressed in M2 ATM 
(117). Although significant progress has been made in character-
izing M2 subpopulations, it still not completely understood how 
these cells behave in vivo.

M2 ATMs AND iNSULiN SeNSiTiviTY

The microenvironment in a lean AT is composed of a 4:1 M2:M1 
ratio (118). The presence of eosinophils and regulatory T cells 
(Tregs), which secrete the cytokines IL-4/IL-13 and IL-10, respec-
tively, polarizes ATMs toward an anti-inflammatory phenotype 
(119–121). In lean AT, adipocytes secrete higher levels adiponec-
tin compared with obese AT. Adiponectin enhances insulin 
sensitivity and increases M2 macrophage polarization (121). 
These cells and their secretome maintain the positive balance of 
M2 macrophages in lean AT.

Obesity inversely correlates with AT Tregs (122, 123). 
Moreover, Tregs can induce M2 macrophage differentiation in 
mice through IL-10 and TGF-β (124). In lean AT, these cells 
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FiGURe 1 | Macrophages are central players in lean and obese states. Lean adipose tissue is abundant in immune cells, such as eosinophils, Th2 T cells, 
ILC2, regulatory T cells (Treg), and M2 (anti-inflammatory) macrophages. These cells are known to secrete anti-inflammatory cytokines, such as IL-10, IL-4, IL-13, 
and IL-33, to maintain AT homeostasis and controlling insulin sensitivity. M2 macrophages use oxidative metabolism through PPARγ/β/δ, CARKL, STAT6, and 
PGC-1β. These events are central to maintain a healthy environment in adipose tissue. In the other hand, during obesity, AT is characterized by infiltration of several 
immune cells, such as monocytes, neutrophils, Th1 and Th17 lymphocytes, and M1 (pro-inflammatory) macrophages. The increased secretion of FFA, SFA, Ox-LDL, 
and LPS in obesity activates resident macrophages and adipocytes leading to secretion of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and chemokines 
MCP-1, CCR2, and CCR5. This process will instigate the recruitment of monocytes and differentiation of M1 macrophages in AT. Besides, activation of pro-
inflammatory signaling pathways downstream to TLRs, such as JNK, ERK, p38, IκB, IKKβ, and Pi3Kγ, inhibit insulin receptor signaling, leading to insulin resistance. 
Moreover, in obese AT, M1 macrophages use glycolytic metabolism and require activation of intracellular molecules, such as NLRP3, TLR2/4, STAT1, GLUT-1, 
HIF-1α, mTORC1, PFK2, and PKM2, and conversion of pyruvate to lactate by LDH. Activation of glycolysis in macrophages is central to maintain their pro-
inflammatory profile.
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are involved in the regulation of tissue homeostasis and help to 
maintain the M2 macrophage population (122).

Recently, new regulatory players in AT homeostasis have been 
identified: innate lymphoid type 2 cells (ILC2s) and IL-33. ILC2s 
are a regulatory subtype of ILCs. These cells were divided into 
three distinct populations, ILCs 1, 2, and 3 (125–127). These 
subpopulations of ILCs are analogous to the largely known CD4+ 
T helper subsets: Th1, Th2, and Th17, respectively, with respect 
to cytokine profile expression (128). However, ILCs do not have 
T-cell receptors and respond to antigenic signals in the absence 
of antigen specificity (128). ILCs are activated by the cytokine 
IL-33 and produce large amounts of the type 2 cytokines: IL-5 
and IL-13 (129).

Interleukin-33 is constitutively present in humans and mice, 
mainly in specialized populations of epithelial and endothelial 
cells (130, 131). Its receptor (ST2) is highly expressed in ILC2s 
and Th2 lymphocytes, and it is also found in eosinophils, mast 
cells, dendritic cells, basophils, myeloid-derived suppressor cells, 
and Tregs (132).

Interleukin-33, as well as ILC2s, has been in the spotlight 
due to their putative contributions in the improvement of 
obesity-induced insulin resistance. Upon binding to its recep-
tor, IL-33 induces the production of large amounts of anti-
inflammatory cytokines by AT ILC2s and also the polarization 
of ATMs toward an M2 phenotype (133). This results in AT 
mass reduction and improves insulin resistance (133, 134). Han 
and colleagues investigated ST2 expression in murine Tregs in 
lean and obese visceral AT. AT Tregs from lean mice express 
higher levels of ST2 compared to AT Tregs from obese mice. 
Moreover, treatment with IL-33 restored the ST2-positive Treg 
population, reduced AT inflammation, and improved insulin 
resistance (133).

In this context, Brestoff et al. demonstrated that IL-33 plays 
an important role in the maintenance of ILC2s in AT, promoting 
energy expenditure, and reducing adiposity in mice (135). This 
decrease in adiposity was due to caloric expenditure upon the 
induction of uncoupling protein 1 (UCP1) expression in AT, a 
process called “beiging” or “browning” (136, 137). UCP1 protein 
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is limited to beige and brown adipocytes and regulates caloric 
expenditure (135). In agreement with Artis et al., Chalwa’s et al. 
found that IL-33 promoted the accumulation and activation of 
ILC2s in mouse AT, leading to the biogenesis of beige fat, which 
is crucial for AT metabolic homeostasis (138) (Figure 1).

Taken together, these studies demonstrate the importance 
of alternatively activated macrophages to maintain the tissue 
homeostasis, especially in AT. Moreover, the discovery of new 
alternative pathways for the polarization of ATMs toward an 
M2 phenotype is necessary to better understand the mechanisms 
by which insulin sensitivity in obesity.

MACROPHAGe MeTABOLiSM AND iTS 
ROLe iN iNSULiN SeNSiTiviTY

In addition to cytokines, the availability of substrates in tissues 
orchestrates macrophage function. Cellular metabolism is not 
static but is rather a dynamic process that allows cells to adapt 
to the microenvironment (139). The type of nutrient substrate is 
critical for ATM function. Saturated fatty acids (SFAs) are pro-
inflammatory and induce M1-like phenotype, while certain types 
of unsaturated fatty acids (UFAs), such as omega-3 and branched 
fatty acid esters of hydroxy fatty acids (FAHFA) (140), are anti-
inflammatory and induce an M2-like phenotype (141).

M1 macrophages preferentially metabolize glucose as an 
energy substrate (142). During activation, macrophages alter 
its metabolism to support survival and cellular functions. The 
metabolism of M1 macrophages upon activation is characterized 
by induced aerobic glycolysis with increased glucose uptake and 
the conversion of pyruvate to lactate by lactate dehydrogenase 
(LDH) (143). This activation in aerobic glycolysis decreases 
respiratory chain activity due to increased ROS levels (144). This 
metabolic switch is necessary for NO production, an important 
effector of immune microbicidal activity and pro-inflammatory 
M1 macrophage responses (144).

In addition, the expression of glucose transporter-1 (GLUT-
1) drives the pro-inflammatory phenotype of M1 macrophages, 
increases glucose uptake, and, subsequently, augments glucose 
metabolism (145).

One important molecule regulating glycolysis and mac-
rophage activation is hypoxia inducible factor-1α (Hif-1α). 
Hif-1α induces a pro-inflammatory phenotype in macrophages 
(146) via TLR4 activation, which involves the PI3K/Akt signal-
ing pathway (147). Low oxygen (O2) tension and inflammatory 
responses increase TLR4 expression in macrophages (148). 
Moreover, M1 macrophages co-localize with AT hypoxic areas 
in obese mice and are associated with increased inflammatory 
responses (147–149). Because these macrophages need to adapt 
to the obesity-induced hypoxic tissue environment, activating 
anaerobic glycolysis under these circumstances best serves these 
immune cells to support their rapid and demanding energy 
requirements (143).

Activation of macrophages with LPS also results in increased 
levels of succinate and malate (150). Succinate, in particular, 
drives IL-1β production, which is dependent on Hif-1α activation 

(150). In addition, pyruvate kinase M2 (PKM2), a critical deter-
minant of macrophage activation by LPS, promotes inflammatory 
responses (151). Activation of PKM2 plays a key role in stabilizing 
Hif-1α and Hif-1α-dependent genes, such as IL-1β expression. 
LPS induces dimerization of PKM2 that in turn complexes with 
Hif-1α. This complex directly binds to the IL-1β promoter, an 
event that is inhibited by the activation of tetrameric PKM2, 
which induces M2 macrophage differentiation and attenuates 
LPS-induced M1 macrophages (151). Thus, PKM2 in its dimeric 
form is required for glycolytic reprograming in response to LPS. 
The dimeric form of PKM2 plays role in Hif-1α function, whereas 
the tetrameric form of PKM2 impairs the ability of PKM2 to pro-
mote transcriptional activity of Hif-1α and LPS-induced IL-1β 
expression (151).

Nonetheless, the microenvironment rich in LPS and 
IFN-γ also enhances M1 macrophage polarization and 
glycolysis activation independently of Hif-1α. This occurs 
upon 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 
(PFK2) induction (152).

In contrast to M1 glycolytic metabolism, M2 macrophages 
utilize oxidative metabolism (142). The induction of oxidative 
metabolism in M1 macrophages shifts their phenotype toward an 
M2 profile (152). Moreover, the overexpression of carbohydrate 
kinase-like protein (CARKL), which regulates the production of 
sedoheptulose-7-phosphate (S7P), an intermediate of the pentose 
phosphate pathway (PPP) (153) results in decreased production 
of pro-inflammatory cytokines, which suggests a shift toward an 
M2 macrophages phenotype (154).

Besides CARKL, the coactivator protein PPAR-γ-coactivator-
1β (PGC1-β) induces mitochondrial respiration as well as mito-
chondrial biogenesis. This is a key player in the metabolic switch 
of macrophages from M1 to M2 phenotype (142, 144). Blocking 
PGC1-β results in impaired M2 macrophage metabolism and 
function (142). Thus, identifying mechanisms that modulate the 
metabolism of macrophages may dampen the onset and exacer-
bation of inflammatory processes.

Adipose tissue-derived IL-4 and IL-13 signals through IRF/
STAT to activate STAT6 in M2 macrophages (44, 113). STAT6 
induces the expression of transcriptional regulators, such as 
PPAR-γ (44). PPAR-γ maintains the metabolic switch toward 
oxidative metabolism and promotes M2 gene expression (Arg1) 
to amplify the effector phenotype of M2 macrophages (collagen 
synthesis) (31, 155, 156). Other members of the PPAR family, 
PPARβ/δ, appears to differentially influence macrophage activa-
tion, along with IL-4 and IL-13, and promotes an alternative 
M2 macrophage phenotype (156). Myeloid deletion of PPARβ/δ 
leads to glucose intolerance and insulin resistance (27), indicat-
ing that expression of PPARs transcription factors is crucial 
to maintain the M2 phenotype through the secretion of Th2 
cytokines (Figure 1).

Hypoxia inducible factor-2α has been shown to regulate the 
transcription of Arg1, which is expressed by M2 macrophages 
(157). However, Hif-2α also controls IL-1β production and 
NF-κB activity, which is associated with an M1 phenotype (150, 
157). Thus, although Hif-2α appears to have a role in macrophage 
polarization, more studies are needed to better understand the 
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importance of this transcription factor for macrophage pheno-
type, metabolism, and function.

It is still unclear how M2 macrophages metabolism is regulated 
during obesity and the role of M2 macrophage metabolism for 
the development of insulin resistance. Nevertheless, in lean state, 
they have an oxidative metabolism, which may shift to glycolytic 
metabolism, during obesity, due to a pro-inflammatory environ-
ment and further studies are needed to better understand their 
role in obesity.

CONCLUSiON

Macrophages are central mediators of obesity-induced AT inflam-
mation and insulin resistance. They also are key cells for mainte-
nance of AT homeostasis. Recently, several reports described the 
importance of these cells as regulators of insulin sensitivity, which 
involves the activation of innate immune receptors, transcription 
factors, and intracellular metabolism to support the either pro- or 
anti-inflammatory AT phenotype. Thus, macrophages have a dual 
role, changing their status to support immune responses, obesity 
development, and related diseases.
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