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T-helper 17 (Th17) and T-regulatory (Treg) cells are frequently found at barrier surfaces, 
particularly within the intestinal mucosa, where they function to protect the host from 
pathogenic microorganisms and to restrain excessive effector T-cell responses, respec-
tively. Despite their differing functional properties, Th17 cells and Tregs share similar 
developmental requirements. In fact, the fate of antigen-naïve T-cells to either Th17 or 
Treg lineages is finely regulated by key mediators, including TGFβ, IL-6, and all-trans 
retinoic acid. Importantly, the intestinal microbiome also provides immunostimulatory 
signals, which can activate innate and downstream adaptive immune responses. 
Specific components of the gut microbiome have been implicated in the production of 
proinflammatory cytokines by innate immune cells, such as IL-6, IL-23, IL-1β, and the 
subsequent generation and expansion of Th17 cells. Similarly, commensal bacteria and 
their metabolites can also promote the generation of intestinal Tregs that can actively 
induce mucosal tolerance. As such, dysbiosis of the gut microbiome may not solely rep-
resent a consequence of gut inflammation, but rather shape the Treg/Th17 commitment 
and influence susceptibility to inflammatory bowel disease. In this review, we discuss 
Treg and Th17 cell plasticity, its dynamic regulation by the microbiome, and highlight its 
impact on intestinal homeostasis and disease.

Keywords: T-regulatory cells, T-helper 17 cells, intestinal homeostasis, gut microbiome, inflammatory bowel 
disease

inTRODUCTiOn

The gastrointestinal tract represents the largest surface area of the human body that comes into 
direct contact with the external environment. Consequently, the gut mucosa is exposed to a massive 
amount and diverse range of foreign antigens. Host detection of pathogenic microbes by antigen-
presenting cells (APCs) results in cytokine production, as well as recruitment and differentiation 
of T-helper (Th) cells. The nature of the offending organisms is crucial for the differentiation into  

Abbreviations: AhR, aryl hydrocarbon receptor; AMPK, adenosine monophosphate-activated kinase; APC, antigen-presenting 
cell; ATP, adenosine triphosphate; BFT, Bacteroides fragilis toxin; DC, dendritic cell; GF, germ-free; GPR, G-protein receptor; 
HIF1α, hypoxia-inducible factor 1α; IBD, inflammatory bowel disease; IL-23R, IL-23 receptor; Ig, immunoglobulin; iTreg, 
induced Treg; LP, lamina propria; mTOR, mammalian target of rapamycin; nTreg, natural Treg; PSA, polysaccharide A; RA, 
retinoic acid; SCFA, short-chain fatty acid; SFB, segmented filamentous bacteria; SI, small intestine; TCR, T-cell receptor; Th, 
T-helper; Treg, T-regulatory cell; Tr1, T-regulatory type I cell.
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Th cells, and once contained, effector responses are counterbal-
anced by Tregs that limit collateral damage. In peripheral organs, 
such as the gut, the balance between Treg/effector cells is normally 
achieved by in  situ induction of these cells from naïve T-cells, 
recruitment of differentiated Treg/effector cells into the tissue, 
and reprogramming of already differentiated Treg/effector cells 
towards other lineages in peripheral tissues (1, 2).

Treg/Th17 AXiS in HeALTH AnD DiSeASe

Treg and Th17 Cells: Similarities Beyond 
Functional Opposites
Th17 cells have only recently been identified as a unique CD4+ 
T-helper subset, characterized by IL-17 production that promotes 
tissue inflammation (3, 4). Understanding their function during 
homeostatic and inflammatory conditions is continuously evolv-
ing; however, it is increasingly clear that Th17 cells are critical in 
protecting mucosal surfaces against microbial pathogens, includ-
ing bacteria, fungi, and viruses (5, 6), particularly in the lamina 
propria (LP) of the small intestine (SI), where they are abundantly 
present (7). Notoriety of Th17 cells initially emerged with the 
report that IL-17-producing T-cells, driven by IL-23, were major 
contributors to autoimmune inflammation (8). Indeed, the initial 
discovery that IL-23, rather than IL-12, was required to develop 
disease in experimental models of inflammation (9, 10) led to the 
reevaluation of T-cells that drive IL-23-dependent inflammation.

Over the last two decades, Tregs have been identified as dedi-
cated suppressors of diverse immune responses and inflammation, 
and central keepers of peripheral tolerance. Tregs are generated 
in both the thymus (natural Tregs and nTregs) and the periphery 
(iTregs). While iTregs resemble nTregs in phenotype and func-
tion, there are also differences, most prominently regarding their 
epigenetic and transcriptional status, as well as their inherent 
stability (11–13). Indeed, when naïve CD4+ T-cells recognize 
antigen presented as self, in the absence of any inflammatory 
stimuli, tolerance is induced and these cells, at least partially, 
differentiate into Tregs. Accordingly, organs exposed to a wide 
repertoire of foreign antigens, such as the gut, may be dominated 
by Tregs arising from peripheral conversion, rather than thymic-
cell differentiation. The peripheral antigenic landscape may also 
affect selective expansion of Treg T-cell receptor (TCR) clonotype 
(14) that is presumably dependent on a peripheral antigenic niche 
(15). According to this scenario, iTregs represent an essential, 
non-redundant regulatory subset that supplements nTregs, in 
part by expanding TCR diversity (16).

Although Tregs and Th17 cells fundamentally differ in func-
tion, they also display many common features. Both populations 
are abundantly found in the periphery, particularly in the intes-
tine (7, 17), and are composed of heterogeneous subpopulations 
that are able to change effector or suppressor capabilities under 
different conditions (2). Moreover, shared mechanisms and key 
mediators (e.g., lineage-specific transcription factors, cytokines) 
regulate Th17 cells and Tregs, similar to other T-helper subsets. 
The pleiotropic cytokine, TGFβ, for example, is essential for differ-
entiation of both cell types. TGFβ is non-redundantly required for 
the generation of Tregs (18) but dispensable for the development 

of Th17 cells (19). IL-1β can substitute TGFβ in IL-6-mediated 
generation of Th17 cells (20). Thus, in the absence of proinflam-
matory signals, such as IL-6 produced by microbial-activated 
dendritic cells (DCs) or IL-21 produced by IL-6-stimulated 
T-cells (21–23), priming of naïve CD4+ T-cells by antigen in an 
environment rich in TGFβ promotes the development of iTregs 
(24, 25). Conversely, activation in an environment wherein both 
TGFβ and IL-6 are available promotes Th17 development, at least 
at mucosal sites (26).

Nonetheless, it is perplexing how the same cytokine can regu-
late differentiation of T-cells with opposing functions. The answer 
likely lies in TGFβ’s concentration-dependent function. At low 
concentrations, TGFβ synergizes with IL-6 and IL-21 to promote 
IL-23 receptor (IL-23R) expression, favoring Th17 differentiation 
(21–23), whereas at high concentrations, TGFβ represses IL-23R 
and favors Foxp3+ Tregs, which in turn inhibits RORγt function 
(27). Conversely, IL-21 and IL-23 can relieve Foxp3-mediated 
inhibition of RORγt, thereby promoting Th17 differentiation (27). 
Therefore, the decision of antigen-stimulated cells to differentiate 
into either Th17 or Tregs depends upon the cytokine-regulated 
balance of the two master regulators of these cells, RORγt and 
Foxp3, respectively. Several other mediators can also influence 
the balance between Th17 and Tregs. RA, a metabolite of vitamin 
A, preferentially induces Tregs over Th17 cells by enhancing 
TGFβ signaling while blocking IL-6R expression (28). Moreover, 
aryl hydrocarbon receptor (AhR), highly expressed on Th17 and 
Tregs, can promote the induction of both cell types by integrating 
environmental stimuli (29, 30). Environmental stimuli affecting 
gastrointestinal immunity via AhR can consist of both dietary- 
and bacteria-produced ligands, which can interact directly with 
AhR (31, 32). Interestingly, the loss of bacteria-producing AhR 
ligands may influence gut immunity and increase the risk of 
colitis (33).

Treg/Th17 Plasticity
Several studies have established that differentiation of Foxp3+ 
Tregs is not static and that Tregs can differentiate into Th17 
cells. This phenomenon was first reported in mice, wherein IL-6 
was shown to convert Foxp3+ cells to Th17 cells in the absence 
of TGFβ (34–36), which was confirmed in humans (37, 38). In 
contrast to “Th1-like” Tregs, IL-17-secreting Tregs are suppres-
sive in vitro but lose this capacity upon stimulation with IL-1β 
and IL-6 (38). Accordingly, among RORγt+Tαβ cells derived 
from different murine tissues, the presence of Foxp3+cells 
that function as Tregs has been reported that coexist with 
IL-17-producing RORγt+Tαβ cells (39). In this study, the ratio 
of Foxp3+ to IL-17-producing RORγt+Tαβ cells is skewed in 
favor of IL-10 production by Foxp3 and CCL20 and in favor 
of IL-17 by IL-6 and IL-23. It is unclear why only some IL-17+ 
cells express Foxp3, and how this is biological relevant. It is pos-
sible that Foxp3 activation occurs during Th17 programming, 
or alternatively, that Foxp3 expression may signify a distinct 
differentiation pathway. A recent report showed that under 
arthritic conditions, CD25loFoxp3+CD4+ T-cells lose Foxp3 
expression and undergo IL-6-dependent transdifferentiation 
into Th17 cells, which accumulate in inflamed joints. Once 
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adoptively transferred into mice, these cells are able to acceler-
ate the onset, and increase severity, of arthritis and associate 
with loss of Foxp3 expression in the majority of transferred 
T-cells (40). Interestingly, IL-17-producing Foxp3+CD4+ 
lymphocytes are also observed in inflammatory bowel disease 
(IBD) patients (41). These cells share phenotypic characteristics 
with both Th17 and Tregs and show potent in  vitro suppres-
sor activity (42) and increased sensitivity to Th17-generating 
cytokines in IBD patients versus controls (41). Although Tregs 
are not sufficient at controlling inflammation in IBD, it is 
unclear whether or not they retain their suppressive function. 
Increasing, albeit confounding, evidence points to the different 
cell origins responsible for this discrepancy (43, 44), adding 
further complexity to the biological relevance of the functional 
and phenotypic overlap between Treg and Th17 cells observed 
in IBD (41, 42).

Whether Th17 cells represent a terminally differentiated 
lineage or a metastable state is still an area of debate. Multiple 
studies have identified a Th17 subset that coproduces IFNγ, 
such as in the inflamed intestine, where they display develop-
mental plasticity (45, 46). Generally, Th17 cells can retain an 
IL-17A+ phenotype, or lose IL-17 and acquire expression of 
IFNγ, in a process driven by IL-12 and IL-23 via a STAT4- and 
T-bet-dependent manner (47), thus giving rise to Th1-like cells. 
The latter Th17 subset does not possess colitogenic potential, 
whereas the former, derived from a Th17 precursor, can medi-
ate experimental colitis via STAT-4 and T-bet, but not through 
IL-2 or IFNγ receptors (48). One reason that Th17 cells display 
considerable developmental plasticity may be that RORγt does 
not participate in stabilizing positive feedback toward transcrip-
tion factor activation, thus rendering its expression sensitive to 
environmental signals (49).

Until recently, the conversion between Treg and Th17 was 
thought to be a one-way street, wherein Tregs can unidirectionally 
convert into Th17 cells (34). Although coexpression of Th17 and 
Treg signature genes has been reported in the same cells (38, 39), 
it is unclear whether Th17 cells can undergo a global reprogram-
ming that drives conversion to another Th-type or that they sim-
ply display phenotypic plasticity. Gagliani et al. made the seminal 
discovery that under homeostatic conditions, intestinal Th17 
cells can lose IL-17 expression and a fraction of these “exTh17” 
cells acquire regulatory features resembling CD4+Foxp3− Type 1 
Tregs (Tr1) (50). This conversion is determined by reprogram-
ming of the Th17-relevant transcriptional profile, referred to as 
“transdifferentiation” (51, 52). The functional reprogramming 
experienced by exTh17 into Tr1 is irreversible; indeed, these 
cells display anti-inflammatory properties by preventing Th17-
mediated colitis (50). While Th17 cells generated with TGFβ1/
IL-6/IL-23 are able to promote colitis, exTh17 Tr1 cells gener-
ated under the same conditions fail to induce disease. In fact, 
although TGFβ1 is important for exTh17 Tr1 cell development, 
Th17 cells remain colitogenic, despite the presence of TGFβ1, as 
long as they do not convert into Tr1 cells (50). While the main 
cytokines orchestrating Treg/Th17 plasticity have been identified 
(Figure  1), the fine balance of environmental stimuli required 
for directing T-helper cells toward one lineage versus another is 
still known.

ReGULATiOn OF THe Treg/Th17 AXiS BY 
THe GUT MiCROBiOMe

Metabolic Control of Th17 and Tregs
Environmental signals and microbiome sensors can profoundly 
affect T-cell differentiation and response to immune stimuli. 
Generally, activated effector T-cells are anabolic, primarily 
employing glucose as their carbon source and utilizing glycolysis 
for fast access to adenosine triphosphate (ATP). Memory and 
resting T-cells are instead catabolic with the ability to metabolize 
fatty and amino acids, in addition to glucose, and depend on oxi-
dative phosphorylation to generate ATP (53). Two key mediators 
of the glycolytic and lipogenic pathways in T-cells are mammalian 
target of rapamycin (mTOR) and adenosine monophosphate-
activated kinase (AMPK), which promote de  novo fatty acid 
synthesis and fatty acid oxidation, consequently inducing either 
energy production or storage, respectively (54). Both mTOR and 
AMPK act as crucial cellular energy sensors and are regulated 
by the availability of nutrients (55, 56). Th17 cells depend on 
acetyl-CoA carboxylase 1-mediated de novo fatty acid synthesis 
and the underlying glycolytic-lipogenic metabolic pathway for 
their development, whereas Tregs rely on oxidative phospho-
rylation and consume their required fatty acids exogenously 
(57). Upregulation of the glycolic pathway in Th17 cells can also 
be activated by the transcription factor, hypoxia-inducible factor 
1α (HIF1α) (58) that binds to the locus encoding RORγt and 
enhances its expression while inhibiting Foxp3. Together, this 
promotes T-cell differentiation toward Th17 and prevents Treg 
commitment under both normoxic and hypoxic conditions (59). 
Differently from Foxp3+ Tregs, Tr1 metabolism is supported by 
glycolysis via HIF1α in early metabolic reprogramming and by 
AhR at later stages, which then promotes HIF1α degradation 
(60). Both hypoxia and extracellular ATP increased at inflam-
matory sites (61, 62), triggered AhR inactivation, and inhibited 
Tr1 differentiation (60). Therefore, metabolic factors present in 
the microenvironment have immune-modifying potential, which 
can skew the balance between inflammation and immune toler-
ance by biasing the decision of T-cell fate toward either Th17 or 
Treg lineages.

Regulation of Th17 and Treg by the 
Commensal Flora
The importance of the gut microbiome in regulating the Treg/
Th17 axis became widely appreciated when different groups 
reported that germ-free (GF) mice demonstrate a decreased 
frequency of SI Th17 cells and colonic Tregs (63, 64). One of 
the most widely investigated commensal bacteria in the context 
of Th17 immunity is segmented filamentous bacteria (SFB), a 
Clostridia-related species (65) that displays features between an 
obligate and facultative symbiont (66), suggesting that these bac-
teria obtain nutritional requirements from their host (65). Interest 
peaked when SFB was reported to specifically induce Th17 cells 
in the SI (67, 68) and in extraintestinal sites during autoimmune 
inflammation (69, 70). SFB antigen is presented to CD4+ T-cells 
by DCs in a major histocompatibility complex-dependent man-
ner, which is required for the induction of SFB-specific intestinal 
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FiGURe 1 | Cytokine milieu orchestrates Treg and Th17 cell plasticity. Th17 cells lose stability in the absence of TGFβ and presence of IL-12, IL-23, and 
IL-1β, favoring IFNγ expression and differentiation into Th1/Th17 cells that produce both Th1 (e.g., IFNγ) and Th17 (e.g., IL-17, IL-22) cytokines. Further 
augmentation of IL-12 can fully convert Th1/Th17 cells into Th1 cells, whereas this process can be reverted by either TGFβ and IL-6 or in the absence of retinoic 
acid (RA) in favor of Th1/Th17 or Th17 cells, respectively. Alternatively, the abundance of TGFβ in the absence of IL-6 drives Th17 cells toward regulatory 
phenotypes, such as either RORγt+Foxp3+ Treg/Th17 cells or Foxp3− Tr1 cells. If proinflammatory cytokines are present, including either IL-6 or IL-1β and IL-6, 
Foxp3+ Tregs have the ability to transdifferentiate into either Th17 or Treg/Th17 cells, respectively.
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Th17 cells (71, 72). SFB colonization of GF mice activates a wide 
range of antimicrobial defenses, including immunoglobulin (Ig)
A secretion and LP production of antimicrobial peptides and 
proinflammatory cytokines (63, 67, 68). SFB colonization is 
potentially beneficial since it attenuates bacteria-induced colitis 
(68), but it can also induce colitis in genetically susceptible mice 
(73), suggesting that while SFB can normally enhance immune 
control of infection, its presence can also result in inflammation. 
The abundance of SFB, together with gut barrier function, is 
regulated by the IL-23R/IL-22 pathway (74). When the intestinal 
barrier is disrupted, systemic dissemination of microbial prod-
ucts occurs, which invokes the IL-23 pathway and initiates barrier 
repair, as well as Th17 responses aimed to neutralize invading 
commensal microbes (74). Moreover, SFB-induced-IL-23 results 
in production of IL-22 by type 3 innate lymphoid cells, which is 
critical for the production of serum amyloid A proteins 1 and 2 
by epithelial cells (75). This circuit promotes IL-17 expression in 
RORγt+ T cells, especially in the terminal ileum, which is the site 
of SFB attachment to the epithelium, the essential condition for 
Th17 induction by SFB (75, 76). SFB-induced activation may also 
result in the generation of autoreactive Th17 cells in response to 
presentation of autoantigen in the setting of a breached intestinal 
barrier. SFB-mediated induction of Th17 immune responses can 
also occur indirectly via other cell types. Indeed, Treg-specific 
MyD88 deficiency is sufficient to impair intestinal IgA responses 
to SFB and results in the expansion of Th17 cells (77).

Another resident of the human gut microbiome influencing 
T-cell homeostasis is the symbiont, Bacteroides fragilis. Bacteroides 
species are normal constituents of the intestinal microbiome; 
however, under certain circumstances, these microbes can 
become pathogens. Polysaccharide A (PSA), the most abun-
dant capsular polysaccharide expressed by B. fragilis, mediates 

conversion of CD4+ T-cells into IL-10-producing Foxp3+ Tregs 
via TLR2 and suppresses Th17 responses, thus facilitating 
colonization of B. fragilis (78). Consistently, PSA is able to both 
prevent and ameliorate experimental colitis (79), suggesting that 
B. fragilis facilitates Treg differentiation in the gut and induces 
mucosal tolerance. Nevertheless, strains of B. fragilis secreting the 
zinc metalloprotease, B. fragilis toxin (BFT), have been implicated 
in IBD (80, 81) and in IL-17-dependent inflammation-associated 
colon cancer (82). Indeed, BFT can alter the function of intestinal 
epithelial tight junctions, resulting in increased permeability and 
diarrhea (83).

Other bacterial strains, such as Clostridia, are able to induce 
Tregs within the gut. Most Clostridia maintain a commensal 
relationship with the host, with a few exceptions, including 
Clostridia perfringens, Clostridia difficile, and Clostridia tetani, 
which produce toxins and are pathogenic. Colonization of GF 
mice with a defined mixture of 46 Clostridium strains belonging 
to clusters XIVa and IV induces the differentiation of colonic 
Helios-negative Tregs in a MyD88-independent manner (64). 
Additionally, a mixture of 17 strains from Clostridiales clusters 
VI, XIVa, and XVIII isolated from human feces also exhibits Treg-
inducing activity (84) and suggests that Clostridium-dependent 
induction of Tregs may contribute to the maintenance of intesti-
nal immune homeostasis. Similarly, colonization of GF mice with 
altered Schaedler flora, a standardized cocktail of benign intestinal 
commensal microbiota, results in the de novo generation of Tregs 
and downregulation of Th1 and Th17 immunity (85). A summary 
of bacterial strains influencing Treg and Th17 intestinal immune 
responses are depicted in Figure 2.

The precise mechanism(s) underlying colonic Treg induction 
by the gut microbiome remains unclear, although several reports 
suggest that commensal, microbe-derived short-chain fatty acids 
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(SCFAs), particularly those from Clostridiales, may be involved 
(86–88). SCFAs, together with organic acids and alcohols, are 
metabolic end products generated in the lower gastrointestinal 
tract from fermentative growth of carbohydrates and proteins 
that cannot be degraded (89). Specifically, locally produced 
butyrate participates in colonic de novo Treg development, 
whereas oral administration of acetate and propionate contrib-
utes to Treg migration into the colon by upregulating G-protein 
receptor (GPR)15 (90). Indeed, in vivo administration of butyrate 
suppresses proinflammatory cytokines from macrophages and 
DCs, likely through inhibition of histone deacetylases (87, 91), 
and ameliorates experimental colitis (88). Butyrate participates 
in Treg differentiation by facilitating histone H3 acetylation in 
the promoter and conserved non-coding sequence regions 1 and 
3 of the Foxp3-encoding locus (88) or by activating its receptor, 
GPR109a, that promotes RA production in DCs and leads to 

induction of Treg differentiation (92). Interestingly, T-cell regula-
tion by SCFAs is dependent on the cytokine milieu and immu-
nological context. Indeed, acetate promotes IL-10-producing 
T-cells during steady-state conditions and effector Th1 and Th17 
cells during active immune responses (93). Other dietary-related 
factors, such as fat-enriched diets, have been implicated in gut 
microbial regulation of intestinal immunity. In fact, high-fat-
diet-derived microbiota decreases Th17 cell frequency and the 
ability of intestinal APCs to generate Th17 cells in  vitro, thus 
contributing to low-grade inflammation (94).

Dysbiosis Affecting the Th17/Treg Axis in 
iBD
Dysbiosis is considered an alteration of the resident commensal 
microenvironment compared to commensal communities found 
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in healthy individuals and has been reported in many diseases, 
including IBD (95). Dysbiosis can be classified into three dif-
ferent, non-mutually exclusive, categories: loss of beneficial 
microbial organisms, expansion of pathobionts, and loss of 
overall microbial diversity (96). Interestingly, reduced abundance 
of butyrate-producing bacteria, i.e., Clostridiales cluster IV and 
XIVa, has been found in IBD patient fecal samples (95), support-
ing the hypothesis that presence of beneficial bacteria inducing 
Treg differentiation is important to prevent IBD. Although there 
is no single organism capable of inducing IBD, a few pathogens 
have been implicated. Two colitogenic proteobacteria, Proteus 
mirabilis and Klebsiella pneumonia, have been identified in 
ulcerative colitis-like T-bet−/−Rag2−/− mice that spontaneously 
develop dysbiosis and colitis (97, 98). However, maternally 
transmitted endogenous microbes are also required to maxi-
mize inflammation in these mice (98), suggesting that microbe 
interaction may determine whether a pathobiont will display a 
pathogenic profile. Similarly, IBD patients display an increased 
number of Actinobacteria and Proteobacteria (95). Intestinal 
T-cell homeostasis appears to be dependent not only on the type 
of bacteria present but also on overall microbial diversity. Indeed, 
the transfer of over 30 different human Clostridia strains into GF 
mice induced a threefold expansion of Tregs compared to uncolo-
nized controls, whereas transfer of a single strain from the same 

Clostridia collection induced a more modest Treg response (64, 
84), suggesting that greater microbial diversity maximizes 
host immune responses and its reduction may contribute to 
inflammatory processes, such as in IBD (99).

COnCLUSiOn

Although progress has been made in clarifying the role of the 
microbiome in Treg and Th17 mucosal immunity, its impact on 
disease, such as IBD, remains controversial. A better understand-
ing of the mechanisms regulating these processes may aid in the 
development of therapeutic agents aimed to maintain appropri-
ate Treg/Th17 balance and restore homeostatic function during 
disease states.
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