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The etiology of multiple sclerosis (MS) is still unknown, but there is strong evidence that
genetic predisposition associated with environmental factors can trigger the disease. An
estimated 30 million years ago, exogenous retroviruses are thought to have integrated
themselves into human germ line cells, becoming part of human DNA and being
transmitted over generations. Usually such human endogenous retroviruses (HERVs) are
silenced or expressed at low levels, but in some pathological conditions, such as MS,
their expression is higher than that in the healthy population. Three HERV families have
been associated with MS: HERV-H, HERV-K, and HERV-W. The envelope protein of
MS-associated retrovirus (MSRV) from the HERV-W family currently has the strongest
evidence as a potential trigger for MS. In addition to expression in peripheral immune
cells, MSRYV is expressed in monocytes and microglia in central nervous system lesions
of people with MS and, through the activation of toll-like receptor 4, it has been shown to
drive the production of proinflammatory cytokines, reduction of myelin protein expression,
and death of oligodendrocyte precursors. In conclusion, the association between HERVs
and MS is well documented and a pathological role for MSRV in MS is plausible. Further
studies are required to determine whether the presence of these HERVs is a cause or an
effect of immune dysregulation in MS.

Keywords: multiple sclerosis, human endogenous retrovirus, monocytes, macrophages, microglia, MS-associated
retrovirus, Epstein-Barr virus, environmental factors

INTRODUCTION

Multiple sclerosis (MS) is one of the most common causes of neurological disability in young adults
between the ages of 20 and 40 years. It is a chronic demyelinating disease of the central nervous
system (CNS) characterized by inflammatory and degenerative changes in the brain and spinal
cord. Pathological examinations of brains of patients with MS show characteristic perivascular
inflammatory infiltrates, in particular T cells and macrophages, together with myelin breakdown
and degeneration of axons (1). The etiology of MS is still unknown, but there is strong evidence
that genetic predisposition associated with environmental factors can trigger the disease. Human
endogenous retroviruses (HERVs) are integrated in the human genome and have been transmitted
over generations. Usually HERVs are silenced or expressed at low levels, but in some pathological
conditions, such as MS, their expression is higher than that in the healthy population.
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In this review, we examine the expression of HERVs in mono-
cytes/macrophages and their possible role in the pathogenesis
of MS.

MONOCYTES AND MACROPHAGES IN MS

In the bone marrow, myeloid progenitor cells generate com-
mon monocyte-dendritic cell progenitors, which, in turn, yield
blood monocytes and dendritic cell progenitors. Monocytes are
blood mononuclear cells and are renewed continually from bone
marrow hematopoietic stem cells throughout their life. Mono-
cytes have the ability to mobilize and traffic to where they are
needed through chemokines and leukocyte adhesion and traffick-
ing molecules. The recognition of different chemokines is central
for their function (2). Indeed during inflammation, monocytes
migrate from the bloodstream into affected tissues, including
the CNS, where they differentiate into “infiltrating” macrophages
that are maintained either by local self-renewal signals or by
interaction with the adaptive and innate immune system, such as
toll-like receptors (TLRs) (3). Based on different environmental
signals, macrophages can direct their phenotype into a num-
ber of functional phenotypes, including M1, proinflammatory
macrophages (induced in vitro from monocytes by IFN-y) and
M2, quiescent/anti-inflammatory macrophages (induced by IL-4
orIL-13) (4). M1 have been involved in antigen presentation, cyto-
toxicity, also tissue remodeling, tumor destruction, and poten-
tially tissue damage in neurodegeneration. By contrast, M2 par-
ticipate in immune regulation, phagocytosis, cell survival signals,
and tumor promotion (4). In reality, M1 and M2 are only two of
many “poles” of macrophage differentiation, which encompasses
a much broader transcriptional repertoire, encompassing at least
nine distinct programs. These are influenced by a wide array of
environmental signals (5).

Microglia have often been referred to as resident macrophages
in the CNS; and only in the past few years, it has been possible
to differentiate between monocyte-derived macrophages (MDM)
and microglia. True microglia are resident mononuclear phago-
cytes of the brain parenchyma that originate during embryoge-
nesis from the yolk sac and are maintained independently of
hematopoietic stem cells. When the CNS is inflamed, microglia
can differentiate into macrophages, whose functions are dis-
tinct from those of infiltrating monocytes. In the healthy brain,
microglia physically contribute to brain development and home-
ostasis, including regulation of cell death, synapse pruning and
elimination, neurogenesis, and neuronal surveillance (3).

In MS pathogenesis, which is helpfully modeled, with
limitations, by the animal model experimental autoimmune
encephalomyelitis (EAE), the destruction of myelin and axons as
well as oligodendrocyte cell death are directly related to inflam-
mation and the presence of monocytes/macrophages (6). Even
though EAE is thought to be induced by T cells in most rodent
and non-human primate models, the majority of CNS-infiltrating
immune cells in such models are of myeloid origin. In the mouse,
two main types of monocytes exist, including the infiltrating
inflammatory monocytes (Ly6ChiCCR2 + CX3CR1lo) and the
CNS resident monocytes (Ly6CloCCR2 — CX3CR1hi) (7). In
EAE, only infiltrating CCR2+ Ly6Chi monocytes are rapidly

recruited to the inflamed CNS prior to the disease onset and play
a crucial role in the effector phase of the disease (8). Moreover,
MHC class II-expressing macrophages are involved in the
reactivation of pathogenic T cells in the subarachnoid spaces of
the meninges and in the perivascular spaces of the blood-brain
barrier (7). Again in EAE, the inhibition of macrophage
inflammatory protein (MIP)-1co (CCL3), a ligand for CCR1 and
CCR5, prevents the infiltration of macrophages into the CNS
and the development of both acute and relapsing symptoms
(9). Similarly in humans, active MS lesions are characterized by
CCR1+/CCR5+ monocytes that are found in perivascular cell
cuffs and in demyelinating lesions. Mononuclear phagocytes in
early demyelinating stages comprise CCR1+/CCR5+ monocytes
and CCR1—/CCR5— resident microglial cells that in later
stages differentiate uniformly into CCR1—/CCR5+ phagocytic
macrophages (10). Although macrophages in active MS lesions
predominantly display M1 characteristics, a major subset of these
cells also co-express M2 markers (11). Indeed, current pieces
of evidence suggest that phenotypically similar macrophages
in the CNS not only can contribute to the generation of
inflammatory lesions and perform a pathogenic role in the
demyelination process, but also can contribute to regenerative
repair mechanisms to resolve inflammation (7).
Monocytes/macrophages have been implicated in inducing
neural pathology in MS by secretion of toxic molecules, anti-
gen presentation to cytotoxic T lymphocytes, and degradation
of synapses (6). An additional proposed mechanism is by the
expression of HERV, as will be discussed in this review.

HUMAN ENDOGENOUS RETROVIRUSES
IN MS

Retroviruses are enveloped viruses with single-strand positive
RNA genomes. After the infection of the target cell, they reverse
transcribe their RNA and integrate the resulting DNA product
into the cellular chromosomes, forming a provirus. Occasionally,
some types of retroviruses can infect germ line cells and colonize
the host’s germ line by forming endogenous retroviruses. From 70
to 30 million years ago, various groups of retroviruses integrated
into human germ line cells, becoming part of the human DNA and
being transmitted through a Mendelian pattern over generations.
Indeed up to 8% of the human genome is constituted of groups
of HERVSs ranging in copy number from one to many thousands.
They are part of our history and evolution and although usually
they retain only a passive role in the genome, in some cases, they
have been associated with diseases (12).

There is no universally recognized standard nomenclature for
HERVs. They are classified into three categories on the basis
of their sequence similarity with known infectious retroviruses:
class I, II, and III, respectively, similar to gamma-retroviruses,
beta-retroviruses, or spumaviruses. These classes are divided into
several families in which the letter added to HERV (HERV-W,
HERV-K, HERV-H, etc.) corresponds to the tRNA specificity of
the primer binding site in the viral long terminal repeat (LTR). To
date, according to this classification, 31 HERV families have been
identified (12). HERVSs have the same gene structure as exogenous
retroviruses. Two LTR regions bound the genome that encodes the
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four major viral proteins: gag, the matrix and retroviral core; pol,
the reverse transcriptase and integrase; pro, the protease; and env,
the envelope (Figure 1A). HERV expression is regulated by the
promoter and enhancer regions in the LTR.

Probably HERV's had initially the capacity of retrotransposition
or reinfection, but over time, in the passage from one generation
to the next, endogenous retroviruses have accumulated mutations
or recombination events inactivating them and evolution may
have selected only integrations that are harmless to humans (12).
Although infectious ERV's have been identified in some mammals,
such as cats, mice, and koalas, no HERVs have been shown to
date to produce infectious virions. Some ERVs are indeed capa-
ble of initiating an infection into human cells, but they cannot
complete their replication cycle due to mutations in their pol and
gag genes (13). Even though mutations and control mechanisms
that prevent their expression exist within human cells, such as
epigenetic silencing and retrovirus restriction factors (APOBEC,
Trim, and others), some HERVs maintain the ability to reverse
transcribe, express proteins, and produce non-infectious viral par-
ticles. Between 7 and 30% of all HERV sequences in the genome
may be transcriptionally active in normal tissues and cultured
cells. However, the extent of expression varies from tissue to tissue
and also between individuals. Nevertheless, their activity seems
to be modulated in pathological conditions, such as cancer and
autoimmune diseases (14).

Three main HERV families have been associated with MS. The
first endogenous retrovirus found in MS samples in the 1980s
was MS-associated retrovirus (MSRV) belonging to the HERV-
W family (15). Most studies have since focused on this retroviral

family. The majority reports an association between MSRV and
MS. MSRVenv and MSRVpol RNA and protein have been found
expressed at higher levels in serum (16-21), PBMC (21-26), and
CSF (19, 27) of MS patients compared to healthy controls (HC)
and other neurological disease (OND) patients. Some articles
have also reported the presence of this retrovirus in the brain
of MS patients, in particular within lesions (21, 24, 28), and the
expression of these retroviruses correlated with disease progres-
sion (29, 30). On the other hand, a smaller number of studies have
not reproduced the same association, finding similar expression
levels of HERV-W in MS patients and control groups (31-33).
This could be due to the use of different techniques or to genetic
variation between different populations.

HERV-H (in particular the SNP rs391745 on HERV-Fcl)
(34), HERV-K (in particular the polymorphism HERV-K18) (35),
and HERES (Human T cell leukemia virus-related endogenous
sequence) haplotype (36) have also been associated with MS in
different studies.

The literature suggests a strong association between MS and
HERVs, but are HERVSs really involved in disease pathogenesis?

INVOLVEMENT OF HERVs IN MS
PATHOGENESIS - THE IMPORTANCE OF
MONOCYTES/MACROPHAGES

HERV-W has been studied by immunohistochemistry in
healthy and MS human brains and the proteins pol, gag, and
env were found to be upregulated, in particular in activated
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FIGURE 1 | Human endogenous retrovirus. (A) HERV gene structure. (B) Possible mechanism of action of HERV-W/MSRV in monocytes that could be
pathogenic in MS. (1) Environmental triggering factors, such as EBV infection, induce the expression of HERV-W in monocytes. (2) The differentiation of monocytes in
macrophages and microglia increases the presence of HERV-W. (3) HERV-W activates TLR4-induced inflammation in the blood and further increases HERV-W
expression. (4) TLR4 inhibits the maturation of OPC in oligodendrocytes in the brain with consequent lack of remyelination.
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macrophages/microglia, astrocytes, and endothelial cells
(21, 24, 28, 37). At a time when no clear discrimination
between macrophages and microglia was possible, physiological
expression of HERV-W/MSRVenv protein was detected in
macrophages/microglia of both CNS gray and white matter and
in certain blood vessel endothelial cells, whereas expression
of HERV-W Gag antigens was observed in neurons (28). In
particular, env antigen was found in macrophages in areas
of recent demyelinating activity, but not in inactive lesions
(28). According to a more recent study, these cells have a
phenotype consistent with perivascular macrophages that express
HLA-DR (21).

In peripheral mononuclear cells, HERV-W/MSRV RNA and
proteins have been found expressed in monocytes/macrophages,
NK, and B cells, and its expression is higher in MS patients; while
in T cells, the presence of the retrovirus is undetectable at the RNA
and protein level in both HC and MS (38). Similarly, HERV-H has
been detected in B cells and monocytes, but not in T cells, with
higher levels expressed in patients with active MS than stable MS
and control groups (25).

Activation of primary human macrophages or differentiation of
U937 monocytoid cells to induce a macrophage phenotype in vitro
increases HERV expression in these cells (31, 38, 39). Monocyte
differentiation leads to increased HERV-W, -H, and -K intracel-
lular RNA expression, cell-free HERV sequences, and HERV RT
activity in culture supernatants. Concurrent with elevated TNFou
expression, altered expression of several HERV families has been
observed in post-mortem brain tissue from patients diagnosed
with MS (39).

Monocytes isolated from the peripheral blood of patients with
active MS and stimulated in vitro with either PMA or LPS pro-
duced significant levels of gliotoxic activity, which correlated
with increased HERV RNA and retrotranscriptase activity. This
suggested a role for HERV expression in mediating gliotoxicity
in MS monocytes/macrophages (40). The corresponding culture
supernatants from these cells induced both astrocyte and oligo-
dendrocyte cell death in primary mouse cortical cultures (40).
Supernatant-induced cell death was also observed in immor-
talized astrocytes and oligodendrocytes and was concentration
dependent (40).

Subsequently, using a vector expressing HERV-Wenv, one
research group was able to infect human fetal astrocytes and
monocytes/induced macrophages, but not oligodendrocytes, with
HERV-W pseudoviruses. After infection, this group found pro-
duction of the proinflammatory cytokine IL-1f from both astro-
cytes and macrophages and production of iNOS only from astro-
cytes (37). Conditioned medium from infected astrocytes induced
cytotoxicity and death in human oligodendrocytes, but not neu-
rons. Interestingly, antioxidants prevented this injury (37). A
further study in human astrocytes showed binding of HERV-
Wenv to the neutral amino acid transporter type 1 (ASCT-1). This
interaction, in turn, induced the expression of an endoplasmic
reticulum stress sensor and that of iNOS (41).

Another research group also found secretion of high amounts
of TNFa, IL-1B, and IL-6 by monocytes from HC treated for
24h with HERV-W/MSRVenv (42). Interestingly, the secretion
of TNFo. was blocked by anti-TLR4 and anti-CD14 ab, but not

by anti-TLR2, suggesting that TLR4 could be involved in the
proinflammatory effects of HERV-Wenv (42). Consistent with
these observations, in chronic active MS brain lesions HERV-
W/MSRVenv was detected in microglia/macrophages in proxim-
ity to TLR4-positive oligodendroglial precursor cells (OPC). The
recombinant HERV-Wenv induced the production of iNOS and
proinflammatory cytokines, such as TNFo., IL-1f, and IL-6 in
cultured rat OPC, with associated reduction in myelin protein
production and differentiation capacity (43). Moreover, HERV-
W/MSRVenv was able to induce phenotypic and functional matu-
ration of DC and confer them the potential to support the develop-
ment of Th1-like effector lymphocytes (42). This pathogenic role
of MSRV has also been demonstrated in MOGss_s5-induced EAE
in C57-BL/6 mice, where MSRVenv could substitute for mycobac-
terial lysate as a component of complete Freund’s adjuvant
(CFA), and thereby inducing full-blown CNS disease (44). In this
model, MSRVenv could also activate cells of the innate immune
system, leading to a proinflammatory cytokine production
through pattern recognition receptors TLR4 in association with
CD14 (44).

The expression of HERV-W in monocytes could be a cause
or a consequence of their activation and differentiation to
macrophages. The trigger factor for HERV reactivation is still not
clear, but there is evidence to suggest that other viral infections can
act as co-factors. In culture, the expression of MSRV/HERV-W
genes/proteins is activated by some viruses, such as Epstein-Barr
virus (EBV), herpes simplex virus type 1, or by influenza virus
(45). Interestingly, EBV is epidemiologically strongly associated
with MS (46). This virus infects B cells and epithelial cells in
over 90% of adult individuals. Primary infection usually occurs
through contact with infected saliva and is usually asymptomatic
during the acute phase in children; whereas in adolescents and
adults, it is often symptomatic and can be present as infectious
mononucleosis (IM). IM is usually a self-limiting disease resulting
from a marked increase in circulating EBV-specific cytotoxic T
lymphocytes and release of inflammatory cytokines. Interestingly,
MS risk is two-to threefold higher among individuals with a
history of IM (47). One recent study showed that binding of the
EBV surface glycoprotein gp350 can activate the expression of
MSRV/HERV-W in cells from blood and brain (U-87MG astro-
cytes) (38). In PBMC exposed to EBV gp350, HERV-Wenv is
also expressed at higher levels in B cells and particularly in the
monocyte/macrophage (M/M) cell compartment. The latter cells,
particularly after differentiation to macrophages, are the most
responsive to EBVgp350, expressing higher levels of HERV-Wenv
than B cells (38). In another study, this group measured the
expression of HERV-Wenv in EBV-uninfected healthy individu-
als, patients with IM, and individuals with high anti-EBNA-1 IgG
titers, suggesting a past infection (48). Compared with uninfected
individuals, IM patients had twofold higher frequency of HERV-
W-positive B cells, and fourfold and 5.5-fold increase in NK cells
and monocytes, respectively. In patients with past EBV infection,
B cells showed similar percentages of HERV-W-positive B cells as
those with IM (twofold higher than seronegative, uninfected indi-
viduals), intermediate percentages HERV-W-positive monocytes
(2.6-fold higher than uninfected individuals), whereas NK cells
were mostly HERV-W-negative (48).
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CONCLUSION

The etiology of MS is still unclear. Here, we briefly reviewed
evidence supporting the hypothesis that HERVs could be the
pathogenic factor linking an individual’s genetic makeup (and,
therefore, their susceptibility to CNS autoimmunity) and infec-
tions as triggers of disease. Indeed, although HERVSs are retro-
viruses, they are transmitted through generations and their inte-
gration loci differ between individuals, creating genetic variabil-
ity. During the course of MS, there is high HERV-W/MSRV
expression that increases at the time of relapses and through
disease progression, confirming an association between HERV-
W/MSRV and MS. In the peripheral blood, these retroviruses
are mainly expressed by B cells and monocytes, particularly after
differentiation of monocytes into macrophages. In MS lesions as
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