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Mesenchymal stem cells (MSC) are under development as an immunomodulatory ther-
apy. The anticipated immunomodulatory effects of MSC are broad, from direct inhibition 
of lymphocyte proliferation, induction of regulatory T and B cells, to resetting the immune 
system via a hit-and-run principle. There are endless flavors of MSC. Differences between 
MSC are originating from donors variation, differences in tissue of origin, the effects of 
culture conditions, and expansion time. Even standard culture conditions change the 
properties of MSC dramatically and generate MSC that only remotely resemble their 
in vivo counterparts. Adjustments in culture protocols can further emphasize properties 
of interest in MSC, thereby generating cells fitted for specific purposes. Culture improved 
immunomodulatory MSC can be designed to target particular immune disorders. In this 
review, we describe the observed and the desired immunomodulatory effects of MSC 
and propose approaches how MSC with optimal immunomodulatory properties can be 
developed.
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ReGULATiON OF iMMUNe CeLLS BY MeSeNCHYMAL  
STeM CeLLS

Mesenchymal stem cells (MSC) are stromal cells present in connective tissues throughout the body. 
Their name refers to their ability to differentiate into cells of the mesenchymal lineages, which may be 
their primary function. Then why would we like to use these cells for immunomodulatory therapy?

Mesenchymal stem cells play an important role in the regulation of the immune system. They 
are furthermore relatively easy to isolate and can be expanded manifold in culture. Although MSC 
themselves are not part of the immune system according to the established definitions (1), they 
interact with all immune cell types. They secrete a large range of anti-inflammatory as well as 
pro-inflammatory factors, among them cytokines, chemokines, and prostaglandins, which target 
immune cells and affect their function (2). Among the most highly secreted immune regulatory 
factors are TGF-β and IL-6, via which MSC direct the induction of regulatory T cells and also Th17 
cells (3), the chemo-attractants IL-8, CCL2 (MCP1), CCL8 (MCP2), and prostaglandins E2 and F1 
(4). In particular, PGE2 appears to play a central role in the immunoregulatory activity of MSC in 
several disease models by reprograming macrophages to anti-inflammatory cells and shifting Th1/
Th17 responses to Th2 responses (5, 6).

In addition to regulating immune responses via their secretome, MSC express cell surface mole-
cules that undergo interaction with immune cells. For instance, the co-stimulatory and co-inhibitory 
molecules CD40 and programed death ligand 1 (PD-L1), respectively, are expressed on MSC via 
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which they modulate immune cell activity and proliferation (7, 
8). MSC also express immune cell adhesion molecules ICAM-1 
and VCAM-1. The expression of these adhesion molecules allows 
recruitment of activated immune cells to close proximity of MSC, 
thereby increasing their exposure to anti-inflammatory signals 
from MSC (9).

In addition to targeting immune cells via soluble and cell 
membrane signaling pathways, regulation of metabolic path-
ways takes a central place in the control of immune responses 
by MSC. MSC are involved in tryptophan metabolism via the 
expression of indoleamine 2,3-dioxygenase (IDO). IDO depletes 
tryptophan from the milieu, which results in the inhibition of 
lymphocyte proliferation (10). Furthermore, MSC catabolize 
immune-activating ATP to immune-inhibiting adenosine via 
ecto-5′-nucleotidase (CD73), which is abundantly expressed 
on MSC (11), thereby regulating the ability of immune cells to 
build up immune responses. In contrast to human MSC, mouse 
MSC employ iNOS instead of IDO as a key molecule for immune 
regulation (12). There are additional differences between species 
in immune regulatory mechanisms that are involved in the effects 
of MSC (13). This stresses the fact that there are discrepancies 
between human and laboratory animal MSC.

eFFeCTS OF THe iMMUNe 
eNviRONMeNT ON MeSeNCHYMAL 
STeM CeLLS

Mesenchymal stem cells do not express unique markers and 
are difficult to identify in tissues. The majority of MSC research 
is therefore performed on cells in culture. Culture conditions 
themselves have a large effect on MSC phenotype and function. 
MSC in culture gain manifolds in size and show shifts in cell 
surface marker expression (14). Furthermore, culture conditions 
are supporting a high proliferation rate of MSC, whereas MSC 
in vivo are quiescent, except in situations of repair and growth. 
Most of what we know about the effect of the immune environ-
ment on MSC comes from studies on in vitro expanded MSC. It 
has been demonstrated that the immunomodulatory properties 
of MSC are strictly regulated by local conditions. Proteins, such 
as PD-L1, IDO, and IL-6, are strongly upregulated under inflam-
matory conditions (15). The biological function of this is likely 
to counterbalance ongoing immune responses and preventing 
them getting out of hand. In the absence of inflammatory signals, 
MSC have a mostly supporting function for the immune system 
(16). MSC support the survival of B cells via yet undetermined 
factors (17) and prevent T cells from undergoing apoptosis via 
the secretion of IL-7 (18).

Next to their immune regulatory properties, MSC themselves 
may become targets of the immune system. While MSC express 
low levels of HLA and co-stimulatory molecules under standard 
culture conditions, expression levels are increased by inflamma-
tory stimuli. When allogeneic MSC are used for therapy, this may 
potentially lead to anti-MSC responses. This has indeed been 
demonstrated in in vitro assays where CD8+ T cell responses can 
be evoked by allogeneic MSC (19). In vivo experiments have dem-
onstrated that antibody responses can be detected after repeated 

injections of allogeneic MSC (20). This indicates that under 
particular conditions care has to be taken when using MSC 
of allogeneic origin for therapy.

Mesenchymal stem cells are not only targets of the adaptive 
immune system but also of the innate immune system. There is 
clear evidence that autologous culture expanded MSC are lysed 
by activated NK cells (21, 22). The cause of this may be properties 
acquired by MSC during culture expansion that trigger cytotoxic 
responses of NK cells. NK cells may in part be responsible for 
the short survival time of MSC after intravenous administration 
(23). They are, however, not solely responsible for the quick 
disappearance of MSC after infusion as MSC administered to 
immune deficient mice that lack T, B, and NK cells also have a 
short survival time (23), indicating other cell types contribute to 
the clearance of MSC.

Thus, MSC have a broad immune regulatory function, which 
makes them suitable for immune therapy. The properties of MSC 
are modified by culture conditions and environmental factors. 
This can be exploited to generate MSC that have optimal immu-
noregulatory properties accompanied by a low immunogenicity. 
Below we discuss which properties of MSC would be desirable for 
effective and safe therapy and how such MSC can be generated.

CONSiDeRATiONS FOR THe USe OF  
MSC FOR iMMUNOTHeRAPY

When generating MSC for clinical therapy, there are lots of 
flavors to choose from. Therapeutic MSC are so far mostly 
isolated from bone marrow or adipose tissue, but recently 
umbilical cord has been identified as a rich source of highly 
proliferative MSC. There have been different approaches to 
the generation of MSC batches. The approach that is used 
for several university initiated studies is to generate a small 
number of low passage MSC doses, whereas the approach that 
is generally employed by industry-driven studies is to generate 
large amounts of doses per donor (24). Furthermore, there is 
the option to cryopreserve MSC before usage, which is the 
most practical and most widely used option, and there is the 
option to use MSC directly from culture. Studies have indicated 
that MSC undergo changes in proliferation rate, adhesion, and 
bio-distribution after infusion in response to cryopreservation 
(25, 26), suggesting that cryopreservation may hamper the 
therapeutic effect of MSC (27).

The route of administration is another aspect that greatly affects 
the distribution and, thereby, the therapeutic effect of MSC. While 
MSC express multiple chemokine receptors (28), it is now well 
established that intravenously infused MSC end up in the lungs 
due to size restrictions and that there is limited migration of MSC 
from the lungs to other sites (23, 29). It is therefore questionable 
whether chemokine receptors play a role in the distribution of 
MSC after intravenous infusion. This may be different when MSC 
are administered via different routes, for instance, locally when 
they may migrate over short distances through tissues to sites 
of inflammation. There is evidence that endogenous MSC can 
migrate via the lymphatic system (30) but whether exogenously 
administered MSC can follow the same path is not known. For 
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the intravenous route of administration, the size of MSC may be 
determining for the localization of the cells.

The immunogenicity of MSC is also likely to impact the effect 
of MSC. The first thought may be that non-immunogenic MSC 
that have a long survival time will have the best immunomodula-
tory effects and that a rapid disappearance of MSC after admin-
istration will impair efficacy. However, the immunogenicity of 
MSC may also contribute to the immunodulatory effects. We 
have previously demonstrated that MSC infusion leads to a mild 
inflammatory response, which is followed by immunosuppres-
sion (31). Furthermore, phagocytosis of MSC has been shown to 
lead to the development of tissue-supportive macrophages (32). 
There may thus be a balance between the immunogenicity of 
MSC and their therapeutic effects.

All clinical studies performed with MSC up to date have shown 
that MSC therapy is safe. There is no evidence for transformation 
of human MSC and only mild infusion-related adverse effects 
have been reported (33). The real challenge for MSC immuno-
therapy is therefore to prove efficacy and one-way to do this is 
to use MSC with improved immunomodulatory properties. The 
period of expansion of MSC offers an opportunity to steer MSC 
to a desired phenotype.

iMPROviNG MSC THeRAPY

There is growing interest in the development of protocols for 
the generation of optimized immunomodulatory MSC (iMSC), 
which can be used to target specific immune disorders. These 
protocols include modifications of the culture medium, changes 
in culture conditions, or selection of immunomodulatory subsets 
of MSC. A frequently used approach to boost the immunomodu-
latory properties of MSC is the addition of pro-inflammatory 
cytokines or toll-like receptor (TLR) activators to the MSC 
culture medium. Modification of culture conditions can include 
the use of bioreactors and altering oxygen concentrations. Some 
of these MSC optimizing approaches are discussed below.

PRO-iNFLAMMATORY STiMULATiON  
OF MSC

iFNγ
IFNγ is identified as one of the most potent activators of the 
immunomodulatory properties MSC. IFNγ was first sug-
gested to be a key player in activating the immunosuppressive 
capacity of MSC in 2006 by Krampera et al. (15). IFNγ-treated 
MSC demonstrated improved capability of suppressing the 
proliferation of CD4+ and CD8+ T lymphocytes and NK cells, 
in a contact-independent manner. Studies have shown that 
IFNγ induces IDO expression in MSC (10), and increases PGE2, 
hepatocyte growth factor (HGF), and TGFβ production (34, 35). 
PGE2 inhibits T-cell proliferation, induces IL-10 production, and 
reduces TNFα, IL-12, IL-1β, and IL-8 expression in macrophages 
(36). The inhibitory co-stimulatory molecule PD-L1 is strongly 
upregulated in a dose-dependent matter by IFNγ, which leads to 
the suppression of T-cell proliferation (37). Rafei et al. showed 
that IFNγ stimulation of MSC also induced CCL2 secretion and 

that this cytokine has a direct involvement in the inhibition of 
lymphocyte activation (38).

The efficacy of IFNγ-treated MSC has been investigated in 
several pre-clinical models. Importance of IFNγ to the immuno-
suppressive capacity of MSC is highlighted by the fact that MSC 
from IFNγR1−/− mice are unable to prevent graft versus host 
disease (GVHD) in contrast to MSC from WT mice (39). Survival 
of GVHD was 100% when infusing IFNγ-treated MSC compared 
to the 45% with untreated MSC (40). In addition, IFNγ treatment 
of MSC enhances their therapeutic activity when they are used in 
induced colitis models (41).

The immunogenicity of MSC is differentially affected by IFNγ 
stimulation. Co-stimulatory molecule CD40 and the adhesion 
molecule CD54 (ICAM-1) are strongly upregulated as well as 
major histocompatibility complex-I and -II (MHC-I and -II) (9, 34, 
37, 38, 42, 43). The upregulation of MHC may result in increased 
recognition of allogeneic MSC by CD4+ and CD8+ T lympho-
cytes, which will result into increased susceptibility of MSC to be 
lysed by CD8+ T lymphocytes. As such, the consequences of IFNγ 
stimulation on the immunogenicity of MSC could be a reason 
why in some in vivo studies less or no immunosuppressive effects 
of MSC are seen after IFNγ stimulation, as MSC might already be 
cleared before they can exert their actions (38). On the contrary, 
the upregulation of MHC-I reduces lysis of MSC by NK cells (21). 
Interaction of MHC-I on MSC with receptors on NK cells leads to 
the activation of inhibitory signals in NK, resulting in decreased 
release of granules containing perforin and granzymes.

TNFα
While the effects of IFNγ on MSC have been studied most abun-
dantly, other pro-inflammatory cytokines have potent effects on 
MSC as well. TNFα has similar, but less pronounced, effects on 
MSC as IFNγ, such as upregulation of PGE2, IDO, HGF, CD54, 
and MHC class-I (34, 42, 44). In addition, TNFα upregulates 
the production of several paracrine factors, including vascular 
endothelial growth factor (VEGF), fibroblast growth factor 2 
(FGF2), and insulin-like growth factor 1 (IGF1) (45). Stimulation 
with TNFα alone, however, does not influence the immunosup-
pressive capacity of MSC in a mixed lymphocyte reaction (MLR) 
(34, 42). Ren et al. showed that IFNγ alone did not suppress T-cell 
proliferation, but in combination with TNFα, there was a signifi-
cant suppression (39). Furthermore, IFNγ acted in concert with 
IL-1α and IL-1β to suppress T cell proliferation. Combinations 
of these pro-inflammatory factors lead to high expression of 
CD106 (VCAM-1) and iNOS in MSC and thus the production 
of NO, resulting in STAT5 phosphorylation in T-cells and sup-
pression of T-cell responses (9, 39, 46). In addition, cocktails of 
these pro-inflammatory cytokines upregulate several chemokines 
(CXCL9 and CXCL10), which may bring T-cells, B-cells, and DC 
into close proximity to the MSC so that MSC can more efficiently 
exert their immunosuppressive effect (39).

iL-17A
High expression levels of the IL-17A receptor on the MSC cell 
surface suggest that IL-17A could be a promising stimulator 
of MSC immunomodulatory activity. Stimulation with IL-17A 
increases the proliferation of MSC and has no effects on the 
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MSC morphology or MSC surface marker expressions, includ-
ing PD-L1 expression. In addition, it has no effect on MHC 
class I and MHC class II expression; therefore, it appears that 
MSC maintain their hypo-immunogenicity upon exposure 
to IL-17 (43). In addition, treatment of MSC with IL-17A 
enhanced their T-cell suppression capacity to levels observed 
after IFNγ-treatment (47). Furthermore, IL-17-treated MSC 
increased IL-6 production and regulatory T cell induction 
from activated CD3+ T lymphocytes, downregulated CD25 
expression by CD4+ T lymphocytes, and inhibited Th1 
cytokine secretion (IFNγ, TNFα, IL-2, and IL-10) (43). These 
results suggest that IL-17 stimulation improves the therapeutic 
properties of MSC.

Activation of Toll-Like Receptors
Activation of TLR on MSC has been touched upon in a number 
of studies. MSC express high levels of TLR3 and TLR4 and their 
activation changes the phenotype and immunomodulatory prop-
erties of MSC. There are data that indicate that TLR activation 
stimulates the expression of immunosuppressive factors (IDO 
and PGE2) by MSC and enhances the inhibitory effects of MSC 
on immune cells (48). Other studies demonstrate that stimulation 
of TLR4 on MSC induces a more pro-inflammatory phenotype of 
MSC with high expression of pro-inflammatory factors (CXCL1, 
IL-6, IL-8, and CCL2) and adhesion molecules (VCAM-1 and 
ICAM-1) and a reduced ability to suppress leukocyte activation 
(49–51). By contrast, upon activation of TLR3 MSC exhibit a 
milder pro-inflammatory phenotype and show increased leu-
kocyte affinity and maintain their ability to suppress leukocyte 
activation (49–51). TLR3-stimulated MSC are furthermore better 
protected against the cytotoxic effects of NK cells (52). It is sug-
gested that TLR activation may represent an effective mechanism 
to restore immune responses in the case of infection by inhibiting 
the immunosuppressive effect of MSC (51). Thus, TLR-activated 
MSC may potentially find applicability as antagonists for regular 
of enhanced immunosuppressive MSC.

Other Pro-inflammatory Factors
Stimulation by pro-inflammatory factors IFNγ, TNFα, IL-17A, 
and the activation of TLR3 and TLR4 have shown to have a 
strong effect on the immunomodulatory properties of MSC. The 
effectiveness of these factors can partially be linked to the high 
cell surface expression levels of receptors for these factors. Next to 
the expression of these receptors, MSC also express various other 
receptors for pro-inflammatory factors on their cell surface, such 
as for IL-1α, IL-1β, and IL-6 as well as for prostaglandins, sug-
gesting that these factors might as well be effective in modifying 
the properties of MSC. Studies on the presence of other receptors 
on MSC will possibly lead to the identification of additional fac-
tors that have effects on the properties of MSC. Furthermore, the 
expression of some of these receptors may be regulated by stimu-
lation with pro-inflammatory factors. This implies that MSC that 
are encountering a pro-inflammatory environment become more 
susceptible to other factors, for example, to TGFβ, IL-15, TNFα, 
and TLR3 and TLR4 activators. The use of cocktails of several 
pro-inflammatory factors might therefore also be of interest into 
further improving the immunomodulatory properties of MSC.

OPTiMiZiNG CULTURe CONDiTiONS

Hypoxia
Culture conditions are far from comparable to the in vivo condi-
tions. Oxygen concentration is a crucial factor influencing the 
properties of cells. Standard culture conditions are set at an 
oxygen concentration of 20%, but in MSC niches in the bone 
marrow and adipose tissue, depending on the blood flow, this 
can vary between 3 and 11% (53). Decreasing the oxygen con-
centration, creating a hypoxic environment, has been shown to 
increase MSC proliferation and enhance their secretion of VEGF 
and basic fibroblast growth factor (bFGF) (45, 54). Under hypoxic 
conditions, MSC are forced to switch to anaerobic metabolism 
and therefore produce more lactate (44). There is evidence that 
lactate polarizes macrophages to an anti-inflammatory pheno-
type (55). Therefore, lactate production may contribute to the 
immune regulatory function of MSC under hypoxic conditions. 
Under hypoxia, no signs of MSC toxicity, differences in colony 
forming unit (CFU) capacity, and other phenotypical changes are 
observed (44). However, in contrast to what Liu et al. reported, 
Roemeling et al. saw no changes in the MSC proliferation under 
hypoxic conditions (44). Nevertheless, during hypoxia, MSC 
maintained the capacity to induce expression of IDO, PD-L1, 
and CXCL10 in response to IFNγ and TNF-α (44). In addition, 
while T cell proliferation is impaired under hypoxic conditions, 
T-cell inhibition by MSC under hypoxia is maintained and there-
fore relatively more prominent than under normoxia (44). The 
absence of oxygen thus appears to enhance the immunomodula-
tory properties of MSC in biological systems.

Bioreactors
Next to the conventional static monolayer culture of MSC, biore-
actors are a novel way of expanding MSC. In bioreactors, culture 
conditions can be accurately controlled and strains and stresses 
can be exerted on the MSC due to the media flow (56, 57). In these 
bioreactors, MSC can be seeded on polymer-specific scaffolds and 
the dynamic media flow (due to the two- or three-dimensional 
rotation of the bioreactor) applies a mechanical stimulus to the 
MSC. It was seen that the proliferation and the distribution of 
the MSC in the scaffolds increased when the MSC were in the 
bioreactor. No changes in their immunogenicity were observed 
as MHC-I and -II expression was unaffected (56, 57). Mechanical 
vibrations are used to stimulate the differentiation of MSC into 
various lineages. In addition to affecting the differentiation 
potential of MSC, vibrations influenced the immunomodulatory 
properties of MSC by increasing expression of IL-1, TGFβ1, and 
TNFα (58). It has yet to be investigated what the effects of cultur-
ing in bioreactors are on the immunomodulatory properties of 
MSC.

Scaffolds
Scaffolds provide a surface for MSC in culture and help to retain 
and deliver MSC. Scaffolds made from type-I collagen, hydrogels, 
sponges, and membranes provide different microenvironments 
for MSC (59). MHC class-I and -II expression increases gradually 
on MSC seeded on these scaffolds, with the least increase seen 
in hydrogel seeded MSC. Presence of IFNγ further increases the 
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expression of MHC class-II. In a one-way MLR, MSC seeded in 
a hydrogel evoked a low lymphocyte response, whereas MSC in 
a sponge and membrane enhanced lymphocyte proliferation, 
compared to MSC which were not on any scaffold (59). The use 
of these different scaffolds, made from the same material, has a 
differential effect on MSC’s immunological properties.

engineering
Currently, innovative techniques for engineering MSC are under 
development. Of interest for the development of iMSC is the use 
of intracellular agent-loaded microparticles (60). The technique 
enables the loading of MSC with particles containing agents con-
trolling the cell’s phenotype and secretome. Agents that improve 
the immunogenicity and immunomodulatory properties of MSC 
can be incorporated in the particles, which can subsequently tar-
get the intrinsic properties of MSC. This could be useful in cases, 
where in the different phases of cell therapy, changes in the MSC’s 
phenotype are required. For example, during the initial phase of 
injection, a specific MSC phenotype with a low immunogenicity 
might be required, followed by localization of MSC at the site 
of interest, where the microparticles release their agents and 
inducing a change in secretome or immunogenicity, which could 
be necessary for the MSC to fulfill their purpose. This technique 
will enable the generation of iMSC, which can be customized in 
a time-dependent manner.

SUBSeTS OF MSC wiTH eNHANCeD 
iMMUNOMODULATORY PROPeRTieS

Freshly isolated MSC are a heterogeneous population consisting 
of various subsets, each with different surface marker expres-
sions, differentiation capacity, gene expression, and secretome as 
well as immunomodulatory capacity (61). Among these subsets, 
specific subsets are identified as being immunoprivileged and/
or possess superior immunomodulatory capacity. Protocols have 
been developed for the isolation of these specific MSC subsets. 
Selection based on surface marker expression results in a more 
homogeneous and defined MSC subset with potentially enhanced 
immunomodulatory efficacy. Positive selection on CD271 (low-
affinity nerve growth factor receptor, LNGFR) expression gener-
ates a CD271+ MSC subset with a greater immunosuppressive 
capacity compared to non-selected MSC (62). A subset of Stro-1+ 
MSC shows enhanced support for human hematopoietic stem 
cell engraftment and has a greater immunosuppressive capac-
ity, while Stro-1− MSC have a broad distribution after infusion 
into tissues (63, 64). Other molecules such as CD73 and CD90 
are suggested to be important markers to identify MSC subsets 
with enhanced immunosuppressive capacity (65, 66). Recently, 
a CD362+ (Syndecan-2) subset of MSC has been identified, 
representing a more homogeneous population of MSC (patent 
number WO 2013117761 A1). Pre-selected subsets of MSC 
might be more susceptible to the protocols used to optimize their 
immunomodulatory properties. Hence, selection of a specific 
MSC subset may also be another way to generate iMSC.

A summary of the above described effects of manipulation of 
MSC is depicted in Figure 1.

wHAT ARe THe DeSiReD 
CHARACTeRiSTiCS OF AN iMSC?

Immunomodulatory effects of MSC are broad and depending 
on the disorder, iMSC will be required to possess fitted and 
specific immunomodulatory properties. Immunological disor-
ders occur in a wide spectrum, with various pathophysiologi-
cal properties. The design of iMSC is therefore a differential 
matter where several considerations have to be taken into 
account. First, immunological diseases can be mediated by one 
or various immune cells. Specific targeting of T-cell prolifera-
tion and activation or manipulation of NK cells, which play a 
central role in the innate immune response, will be essential in 
T-cell-mediated diseases or innate immune diseases, respec-
tively. In other conditions, an overall inhibition of an immune 
response by iMSC might be essential. Second, when infused 
intravenously MSC are prone to get trapped in the small capil-
laries of the lungs, due to their size (23, 29). When iMSC are 
required to have a local effect, manipulation of their size and 
the presence of tissue-specific chemokine receptors will enable 
the cells to travel further into the body and to the designated 
tissue where iMSC can exert their immunomodulatory effect. 
On the other hand, when a systemic effect is desired, iMSC 
might be required to be in the circulation, or in any arbitrary 
location where they are trapped, and able to exert a systemic 
immunomodulatory effect. However, it is known that MSC 
are short-lived when infused intravenously (23). Within 24 h 
they die and are cleared from the body. It is possible that MSC 
become apoptotic after administration. The clearance of apop-
totic cells is known to exert immunomodulatory properties 
(67) and proposed to be used as immunomodulatory therapy 
in transplantation (68).

Although MSC have short-term effects, long-term effects 
have also been observed. It is suggested that their short-term 
effects are mediated by their secretome, whereas their long-
term effects are due to interaction and activation of other cell 
types in a probable hit-and-run way of action. Several studies 
have reported that the modulation of T-cell responses occur 
indirectly via MSC-mediated induction of regulatory T-cells 
(Tregs) (69). These cells are known to play a role in the mainte-
nance of self-tolerance and immune homeostasis. In addition, 
the induction of regulatory macrophages (Mregs) and regula-
tory B-cells (Bregs) is also interesting as these cells also play an 
important role in the regulation of autoimmune and inflamma-
tory diseases. Improved induction of these cells by iMSC may 
therefore improve the long-term effect of the iMSC therapy 
when used to treat autoimmune and inflammatory diseases (17, 
70, 71). Depending on therapeutic purposes, iMSC might be 
required to have a short- or long-term effect. Manipulation of 
the iMSC’s immunogenicity and immunomodulatory proper-
ties, including their secretome, may increase their longevity as 
well as their immunomodulatory effect. As mentioned before, 
MSC therapy is proven to be safe with no transformations of 
the MSC with mild side effects observed (33). So therefore, 
focusing on the manipulation of MSC, thereby acquiring a 
customized phenotype will be the next step into optimized cell 
therapy.
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effects of stimulated MSC on cellular level are depicted.
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CONCLUSiON

The diversity of immunological disorders demands the gen-
eration of differential designs of iMSC. However, currently no 
clinical trials have been published where iMSC are used as an 
immunomodulatory therapy. This mainly comes down to the fact 
that the safety aspects of iMSC are not yet sufficiently explored, 
and there is still a lot to be done to generate clinical grade iMSC 
with desired functional characteristics. Furthermore, for many 
immunological disorders, targets for intervention have yet to 
be identified, and as a result the desired properties of optimized 

MSC are not yet known. When more information come in, the 
current procedure of one MSC therapy for all diseases will 
be refined and optimized into a customized iMSC treatment, 
which will be specific and cater to the needs of the targeted 
disorder.
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