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Natural killer (NK) cells participate in the early immune response against melanoma and 
also contribute to the development of an adequate adaptive immune response by their 
crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conven-
tional therapies together with its high immunogenicity justifies the development of novel 
therapies aimed to stimulate effective immune responses against melanoma. However, 
melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of 
major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells 
emerge as potential candidates for melanoma immunotherapy due to their capacity to 
recognize and destroy melanoma cells expressing low levels of MHC class I molecules. 
In addition, the possibility to combine immune checkpoint blockade with other NK cell 
potentiating strategies (e.g., cytokine induction of activating receptors) has opened new 
perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma.
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iNTRODUCTiON

Melanoma is largely resistant to current therapies as chemotherapy and radiotherapy (1) and con-
sequently remains as an important cause of mortality mainly in Caucasians. Metastatic melanoma 
is highly aggressive constituting the most lethal skin cancer (2). Despite the different approaches 
developed for primary prevention of melanoma, its incidence rate continues increasing in many 
countries (3).

It has been postulated that melanoma ability of inducing an immune response contributes to 
patient survival. Thus, melanoma is usually highly immunogenic and induces cytotoxic T cell 
(CTL)-mediated immune responses. Tumor infiltrating lymphocytes (TILs) have been identified in 
melanoma lesions usually associated with spontaneous tumor regression and favorable prognostic 
in primary melanoma (4).

Innate immune responses against melanoma have also been described. Natural killer (NK) cells 
constitute the first line of defense against transformed cells as tumors or virus-infected cells. In vitro 
experiments have established that NK cells can recognize and destroy melanoma cell lines (5–7). The 
role of NK cells against melanoma in vivo has been demonstrated in murine models (8), and it is also 
supported by the observation of NK cell alterations (e.g., down-regulation of activating receptors or 
NK cell exhaustion) in melanoma patients (9, 10) suggesting the development of escape mechanisms 
to evade NK cell-mediated destruction of melanoma cells.
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FiGURe 1 | Bidirectional interaction of NK cells with melanoma cells. 
(A) NK cell recognition of targets depends on the balance between activating 
(KAR) and inhibitory signals (KIR). (B) Activated NK cells secrete perforin (Pfn) 
and granzymes (Gz) that are involved in (C) NK cell-mediated killing of 
susceptible targets. (D) Melanoma cells became resistant to NK cell-
mediated killing by increasing the expression of HLA class I molecules. At the 
same time, NK cells reduce the expression of activating receptors further 
contributing to melanoma escape.
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It is well known that age affects both adaptive and innate 
immune responses against tumors (11–14). The hypothesis of 
immunosurveillance against melanoma is further sustained 
by the recent finding that elderly melanoma patients had a 
higher incidence of melanoma-related mortality than younger 
patients in spite of the lower incidence of sentinel lymph node 
metastasis (15).

Altogether, these characteristics of melanoma reinforce the 
previous consideration of melanoma as a suitable model for 
studying tumor immunity. Here, we review the current state 
of knowledge on NK cell-mediated recognition and lysis of 
melanoma cells and the up to date immunotherapeutic strategies 
against melanoma based on NK cells.

NK Cell-Mediated Anti-Melanoma 
Responses
The key role played by NK cells as a first line of defense against 
tumors has been established in hematological malignancies based 
on the graft-versus-leukemia effect (16–18). However, their role 
against solid tumors such as melanoma is less recognized. It has 
been reported that NK cells contribute to melanoma surveillance 
in  vivo (19–21). NK cells can actively participate in the initial 
phase of tumor development and may control metastasis, but the 
direct action of NK cells against tumor tissue is not well known. 
NK cells may contribute to cancer elimination not only by the 
lysis of tumor cells but also by the secretion of cytokines and the 
promotion of antigen-presenting cell maturation contributing to 
the adaptive immune response (22–24).

Natural killer cells express several activating receptors that 
after cross-linking with their respective ligands trigger NK cell 
degranulation releasing their cytotoxic granule content leading to 
target cell apoptosis (Figure 1A). Research during the last decade 
has highlighted that several activating receptors are involved in 
NK cell recognition of tumor cells (6, 25). The existence of diverse 
ligand–receptor interactions is relevant in melanoma recognition 
since it has been demonstrated that melanoma cells express a 
variety of ligands for different NK cell-activating receptors (7). 
It has been postulated that the integration of multiple activating 
signals may overcome the inhibitory signals mediated by major 
histocompatibility complex (MHC) class I-specific inhibitory 
receptors (25, 26). In addition, different ligands may interact 
with the same activating receptor as occur for NKG2D ligands 
(MICA/B and ULBPs) (27) and DNAM-1 ligands [CD112, also 
named Nectin-2, and CD155 that is considered the poliovirus 
receptor (PVR)] contributing together to NK cell activation (28). 
Recently, the family of receptors that bind nectin and nectin-like 
proteins has expanded. It has been described that some of these 
activating receptors have an inhibitory counterpart that compete 
for the same ligands. For instance, the activating DNAM-1 and 
the inhibitory T cell immunoreceptor with immunoglobulin and 
ITIM domains (TIGIT) compete for the same ligand (CD155) on 
the target cells, regulating NK cell activation (29). The receptor 
TACTILE (CD96) also binds CD155 and may inhibit cytokine 
secretion in mice (30, 31), although its role in human NK cell 
function remains unclear. Other receptor for nectin-like proteins 
is CRTAM that is expressed on NK cells and CD8 T cells upon 

activation and binds nectin-like 2 promoting adhesion to target 
cells (32).

A characteristic that makes melanoma a prototype for the 
study of NK cell-mediated tumor destruction is the fact that 
melanoma cells frequently show altered expression of MHC class I 
molecules (33). Diminished expression of MHC class I molecules 
makes melanoma cells unaffected by CTLs but facilitate NK cell 
killing (34). The altered MHC class I phenotypes on tumor cells 
can be classified as reversible (“soft lesions”) when the MHC class 
I expression can be recovered or upregulated after cytokine treat-
ment or irreversible (“hard lesions”) when the molecular defect is 
structural and cannot be recovered such as loss of heterozygosity 
due to mutations on β2 microglobulin (34). Thus, the molecular 
mechanisms involved in the down-regulation or loss of MHC 
class I molecules in tumor cells have an impact on tumor develop-
ment and in CTL-based immunotherapy efficacy. In experimental 
and clinical models, tumor regression has been associated with 
reversible MHC class I alterations whereas irreversible alterations 
were linked with tumor progression (34–36).

Mature NK cells express CD16 (FcγR-III) that mediates 
antibody-dependent cell cytotoxicity (ADCC) representing 
an effective mechanism of lysis of antibody-coated target 
cells. However, it has been described that NK cell activation is 
associated with metalloproteinase-mediated cleavage of CD16 
molecules. The treatment with metalloproteinase inhibitors 
prevented CD16 down-regulation and increased NK cell poly-
functionality (cytokine production and degranulation). The use 
of metalloproteinase inhibitors in monoclonal antibody (mAb)-
based immunotherapy is proposed to benefit cancer patients (37).
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Melanoma Cells express Ligands for  
NK Cell-Activating Receptors
We have previously analyzed a large panel of melanoma cell lines 
from the “European Searchable Tumor Cell Line and Data Bank” 
(ESTDAB, http://www.ebi.ac.uk/ipd/estdab/) and “Outcome and 
impact of specific treatment in European research on melanoma” 
(OISTER, QLG1-CT-2002-00668) projects demonstrating a high 
expression of ligands for NK-cell activating receptors on these cell 
lines. A high percentage of melanoma cell lines expressed ligands 
for NKG2D (85%) and DNAM-1 (95%)-activating receptors. The 
expression of MICA/B on melanoma cell lines prevailed over 
ULBP expression (7). Several studies have analyzed the expres-
sion of NKG2D ligands on melanoma specimens by immunohis-
tochemistry showing a high heterogeneity. MICA/B expression 
was observed at a higher frequency than ULBP2 on melanoma 
metastasis (38). The analysis of MICA expression on melanoma 
lesions revealed a higher expression in primary melanoma than 
in metastatic melanoma (39, 40). The pattern of expression was 
not homogeneous, and interestingly, in some patients, a prefer-
ential staining was observed at the invasive front (38). Regarding 
DNAM-1 ligands, CD155 was found to be expressed in the 
majority of melanoma cell lines analyzed in contrast with the 26% 
of melanoma cell lines expressing CD112 (7). The expression of 
CD155 on melanoma specimens and melanoma cell lines also 
showed a stronger expression on metastatic melanoma compared 
to primary melanoma (41).

The identification of cellular ligands for the natural cytotoxic-
ity receptors (NCRs) NKp30, NKp44, and NKp46 has remained 
elusive until recently. The use of chimera proteins constructed 
using the extracellular domain of NKp30, NKp44, or NKp46 
fused to the Fc immunoglobulin domain (NCR-Fc) or to an 
amino-terminal isoleucine zipper (NCR-ILZ) allowed to analyze 
the expression of NCR ligands on tumor cells. A high variability 
in the binding of NCR chimeras to melanoma cells was observed 
with melanoma cell lines expressing ligands for NKp30 and 
NKp44 but not for NKp46 (6, 42) and other cell lines express-
ing ligands for NKp46 (43). The study of melanoma lesions in 
patients with metastatic tumors identified NKp44 ligands in all 
melanoma samples analyzed and NKp30 ligands in the major-
ity of samples, whereas the expression of NKp46 ligands was 
null (44). The expression of NCR ligands was also analyzed on 
melanoma cells from lymph nodes and paired samples obtained 
from skin metastasis. Melanoma cells from lymph nodes showed 
staining with NKp44-Fc and NKp46-Fc chimeras and were more 
susceptible to NK cell-mediated lysis than melanoma cells from 
skin metastasis that had low or negative staining with NCR-Fc 
(6). These differences probably represent different stages of the 
disease. Thus, it has been proposed that in early stages, melanoma 
cells overexpress NCR ligands and during melanoma progression 
NCR ligand expression is down-regulated (6, 43) representing an 
immunoescape mechanism used by melanoma.

Recently, several cellular ligands for NCRs have been identi-
fied. NKp30 recognizes B7-H6 that has been found expressed on 
melanoma cell lines (45), human leukocyte antigen (HLA)-B-
associated transcript 3 (BAT3) (46), and CMV pp65 tegument 
protein (47). The proliferating cell nuclear antigen (PCNA) has 

been recognized as a NKp44 ligand (48, 49). In contrast, cellular 
ligands for NKp46 remain elusive. The characteristics of NCR 
ligands identified so far suggest that these receptors may recognize 
damage-associated molecular patterns related to cellular stress 
(e.g., tumor transformation or infection) (50). In vitro receptor 
blocking experiments showing NCR-mediated lysis of melanoma 
cell lines further support the role of this receptor family in the 
control of melanoma (5, 6, 51).

NK Cell–Melanoma interaction
Natural killer cell recognition and lysis of melanoma cells involve 
different receptor–ligand interactions including NKG2D-, 
DNAM-1-, and NCRs-activating receptors. The expression pat-
tern of ligands for activating receptors on melanoma and the 
expression of MHC class I molecules recognized by inhibitory 
receptors will determine the activation of NK cells (Figures 1A–
C). As indicated before, NK cell lysis of melanoma cells may 
depend on the disease stage and the anatomical location due to 
the differential expression of ligands (6, 52). Antibody blocking 
experiments have demonstrated that usually melanoma cell lysis 
requires signaling through several activating receptors (25, 52).

The role of NKG2D in NK cell recognition and lysis of mela-
noma cells has been extensively discussed. Whereas, NKG2D is 
clearly involved in the lysis of melanoma cells expressing high 
levels of NKG2D ligands, and NCRs and DNAM-1 are the 
receptors involved in the elimination of melanoma cells with low 
expression of ligands for NKG2D. Thus, it has been described that 
NCRs and DNAM-1 cooperation is frequently involved in the 
lysis of melanoma cells both in humans and in mice (6, 53). The 
participation of several activating receptors in the activation of 
NK cells against melanoma contributes to the effective NK cell-
mediated lysis of these cells (Figure 1).

The majority of studies analyzing effector–target interac-
tions in melanoma are performed using cell lines cultured as 
monolayer or in suspension testing ligand expression correlation 
with CTL- or NK cell-susceptibility to lysis. Recently, the use of 
three-dimensional (3D) cell culture systems has been proposed 
for the analysis of melanoma interaction with lymphocytes. Thus, 
melanoma cells grown in 3D architecture showed lower recogni-
tion by melanoma-specific CTLs compared to those melanoma 
cells growing in 2D monolayers. It has been proposed that culture 
in 3D affects the expression of molecules involved in melanoma 
recognition by CTLs (54, 55). We can speculate that 3D culture 
also alter the expression of ligands for NK-cell activating recep-
tors increasing melanoma resistance to NK cell lysis in a similar 
way as occurs in melanoma tissue.

An expansion of highly cytotoxic CD57+ NK cells has been 
found in tumor-infiltrating lymph nodes in melanoma patients. 
Their potential use as a source of cytotoxic NK cells for adop-
tive immunotherapy is discussed (56). The expansion of highly 
mature CD57+ NK cells has been observed in CMV-seropositive 
individuals, and it is further increased by age (11, 12). These cells 
represent highly differentiated NK cells with low proliferative 
capacity and high cytotoxicity. Although these cells have a lower 
expression of NKp30 and NKp46 (57–59), the expression of 
the activating receptors DNAM-1 and NKG2C is increased on 
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the CD57+ subpopulation of CD56dimCD16+ NK cells in CMV-
seropositive young donors, but it is reduced in the old individuals 
(59). These changes in the expression of cytotoxicity activating 
receptors may have functional relevance not only against CMV 
infection but also against other age-associated diseases as cancer. 
Thus, the potential use of CD57+ NK cells in melanoma immuno-
therapy requires a detailed analysis of their cytotoxic capacity and 
the expression of activating receptors since it depends on other 
factors as CMV latent infection and age (11, 12, 59).

Checkpoints in NK Cell Activation
Natural killer cell activation depends on a tune balance medi-
ated by inhibitory and activating signals transmitted through 
surface receptors upon contact with their respective ligands. In 
this process, the interaction between MHC class I molecules on 
target cells and MHC class I-specific inhibitory receptors on NK 
cells represents a major checkpoint regulating NK cell functions 
(60). Killer cell immunoglobulin-like receptors (KIR) are a fam-
ily of highly polymorphic receptors that recognize MHC class I 
molecules. Inhibitory and activating KIRs have been described. 
KIRs govern NK cell education and function and inhibitory KIR–
HLA interactions may be associated with failed tumor immuno-
surveillance mediated by NK cells (61). NKG2A, an inhibitory 
C-type lectin-like receptor, forms heterodimers with CD94 and 
recognizes HLA-E molecules (62–64). The immunoglobulin-like 
transcript-2 (ILT-2) specific for HLA-G is also expressed by NK 
cells. It has been observed an inverse correlation between ILT-2 
expression on T cells and clinical response in melanoma patients 
treated with oncolytic virus immunotherapy (65).

The discovery of inhibitory receptor-recognizing ligands other 
than MHC class I molecules such as TIGIT or the programed cell 
death-1 (PD-1) molecules constitute novel checkpoints in NK cell 
activation that requires further consideration (22, 31, 66–68). The 
PD-1/PD-L1 axis has been described as a checkpoint that regu-
lates NK cell functions in tumor-bearing mice. Thus, blockade 
of PD-1/PD-L1 in nude mice resulted in anti-metastatic effect 
supporting the role of PD-1 on NK cell function (69).

Together with the expression level of MHC class I molecules 
on melanoma cells and the expression of MHC class I-specific 
inhibitory receptors on autologous NK cells, the expression of 
activating receptors on NK cells, and their ligands on melanoma 
are key actors in the final balance leading to an effective NK cell 
activation (9, 25).

MeLANOMA eSCAPe MeCHANiSMS TO 
AvOiD NK CeLL CYTOTOXiCiTY

Immune evasion by tumor cells through the down-regulation of 
MHC class I molecules to avoid CD8 T cell recognition constitutes 
a well-known mechanism used by melanoma (33). Melanoma 
loss of MHC class I expression increases its susceptibility to NK 
cells. As indicated above, the altered expression of HLA class 
I antigens is frequently found in melanoma (33), and several 
studies have shown that melanoma cells evolve down-regulating 
class I antigens to avoid being recognized by CD8+ T cells (34, 
36). However, the analysis of the HLA class I antigen alterations 
in melanoma cell lines from ESTDAB showed that the most 

frequently observed phenotype is the down-regulation of HLA-B 
locus that is reversible after treatment with IFN-γ whereas the 
total lack of expression as a consequence of gene mutations or 
deletions leading to HLA heavy chain or β2m deficiency is only 
found in a minor group of samples (33). The bidirectional interac-
tion between NK cells and melanoma cells induces changes in 
both effector and target cells (Figure 1D). It has been shown that 
melanoma immunoediting by NK cells make melanoma cells 
resistant to NK cell-mediated killing by increasing the expression 
of HLA class I molecules (70) and that blockade of HLA antigens 
with mAbs results in increased NK cell-mediated killing, indicat-
ing that HLA antigens expressed on melanoma cells interact with 
NK-inhibitory receptors avoiding NK cytotoxicity (71).

It has been also proposed that NK cell-mediated immuno-
surveillance against melanoma can generate immunoselection 
of melanoma cell variants with low expression of ligands for 
activating receptors that are resistant to NK cells (72). Thus, 
MICA and NCR ligand expression is lower in metastatic mela-
noma compared to primary melanoma lesions (6, 43). Shedding 
of soluble ligands for activating receptors constitutes another 
mechanism used frequently by melanoma cells to escape to the 
action of effector cells (25). Soluble NKG2D ligands MICA and 
ULBP2 are released by melanoma cells and can down-regulate 
the expression of NKG2D on effector cells. Thus, soluble ULBP2 
was associated with lower survival in melanoma patients (38). 
NKG2D ligands can be released by ADAM protease-mediated 
shedding or secreted in exosomes with different functional out-
comes (73). Shedding of B7-H6, a ligand for NKp30, by tumor 
cells has been recently described (74) also contributing to tumor 
escape from NK cells.

The down-regulation of NK cell-activating receptors has been 
described as an additional mechanism that contributes to tumor 
escape in cancer patients (25, 75–77). Thus, the decreased expres-
sion of NKp30 on NK cells from metastatic melanoma patients 
was associated with a reduced ability to kill melanoma cells (44). 
NK cells in stage IV melanoma patients displayed low levels of 
activating receptors that correlated with lower survival (20). 
IFN-γ released by NK cells induces indoleamine 2,3-dioxygenase 
(IDO) expression and prostaglandin E2 (PGE2) production by 
melanoma cells that inhibit NK cell function by down-regulating 
the expression of NKp30- and NKG2D-activating receptors 
further contributing to melanoma escape (78, 79).

T cell immunoreceptor with immunoglobulin and ITIM 
domains signaling after interaction with its ligands suppresses NK 
cell production of IFN-γ (67). In advanced melanoma patients, 
CD112 and CD155 were found upregulated in melanoma cells. 
In these patients, the expression of TIGIT either on CD8+ T cells 
or NK cells did not show significant differences compared with 
healthy donors whereas the expression of DNAM-1 on CD8+ T 
cells was down-regulated (66). These results suggest that inhibi-
tory signaling through TIGIT can contribute to immune escape 
in melanoma.

Finally, suppression of NK cells by factors or cytokines 
secreted either by tumor cells or other cells in the tumor microen-
vironment such as myeloid derived suppressor cells (MDSCs) or 
macrophages can also contribute to immunoescape of cytotoxic 
cells (22).
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TABLe 1 | NK cell-based immunotherapeutic strategies for melanoma.

Category Strategy Start date–
completion date

Melanoma patients Phase/status identifier/reference

Autologous NK 
cells

LAK cells in combination with.IL-2 (i.v.) 1985 Seven metastatic melanoma Phase I 
completed

Rosenberg et al. (92)

Autologous NK cells combined with IL-2 
(i.v.) and chemotherapy

2006–2009 Seven metastatic melanoma Phase II 
completed

NCT00328861 
Parkhurst et al. (93)

Autologous NK cells and bortezomib 
(proteasome inhibitor)

2015 recruiting 
participants

Hematological and solid tumors 
including metastatic melanoma

Phase I NCT00720785

Allogeneic NK 
cells

Allogeneic haploidentical NK cells 2004 10 metastatic melanoma Phase I 
completed

Miller et al. (95)

Allogeneic haploidentical NK cells (from 
PBMC) combined with chemotherapy

2009–2012 Refractory or relapsed melanoma Phase I/II 
completed

NCT00846833

Mismatched LAK followed by IL-2 (i.v.) 2009–2014 Malignant melanoma Phase II 
completed

NCT00855452

NK cell line NK92 cells One metastatic melanoma Phase I 
completed

Arai et al. (100)

Checkpoints/
immune 
modulators

anti-KIR and anti-CTLA-4
anti-KIR and anti-PD-1

2012–2015
2015 recruiting 
participants

Advanced solid tumors
Advanced solid tumors

Safety study
Phase I

NCT01750580
NCT01714739
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All these mechanism together may contribute to the alterations 
of NK cell phenotype and function described in cancer patients.

NK CeLL-BASeD iMMUNOTHeRAPY iN 
MeLANOMA

Different strategies of melanoma immunotherapy developed dur-
ing the last decade focused on the use of checkpoints inhibitors 
or immune modulators, oncolytic virus therapy, cancer vaccines, 
adoptive T cell, and NK cell therapies and the use of cytokines (80). 
Many of those clinical trials are currently underway and include 
combined therapies. Here, we described those strategies focused 
on NK cell-mediated activation against melanoma or those 
immunotherapies that, although are not specifically directed to 
enhance NK cell function, may favor NK cell activation (Table 1).

Modulation of NK Cell Responses
There are different strategies to exploit the possibility to modulate 
NK cells in melanoma immunotherapy. The use of new forms of 
cytokine therapies or mAbs against tumor antigens can directly 
contribute to enhance NK cytotoxicity whereas immune check-
points regulators constitute a novel immunotherapy strategy 
to modulate immune responses through their interaction with 
inhibitory receptors on immune cells.

Cytokines
Different cytokines have demonstrated a role in tumor immu-
nity. Two cytokines have been approved by the Food and Drug 
Administration (FDA) for melanoma treatment as single agent: 
high doses of IL-2 for metastatic melanoma and IFN-α for the 
adjuvant therapy of Stage III melanoma based on the results 
obtained in clinical trials using high doses of IL-2 in metastatic 
melanoma patients (81) and IFN-α that demonstrated a sig-
nificant benefit in relapse-free and overall survival of high-risk 
melanoma patients (82). Novel strategies have been developed 

such as bifunctional molecules consisting in cytokines fused to 
antibodies that allow the targeted delivery of the cytokines or the 
expression of cytokines in viral vectors or irradiated tumor cells 
for their use as vaccines. In addition, cytokines such as IL-2 or 
IL-15 are also used for the in vitro expansion of NK cells and T 
cells for adoptive transfer (83).

Checkpoint Blockade
As indicated before, one of the major checkpoints in NK cell 
activation is mediated by MHC class I-specific inhibitory recep-
tors interacting with their ligands on target cells. Thus, blockade 
of this checkpoint constitutes an emerging area of research. Two 
NK cell checkpoint inhibitors lirilumab (anti-KIR mAb) and 
IPH2201 (anti-NKG2A mAb) are currently under revision. A 
safety study to analyze anti-KIR mAb in combination with ipili-
mumab (anti-CTLA4) (NCT01750580) is completed and a Phase 
I clinical trial of anti-KIR mAb in combination with anti-PD-1 
is still recruiting patients (NCT01714739). IL-18 secretion by 
tumor cells upregulates PD-1 on NK cells (84). It has been shown 
that IL-18 secreted by tumor cells could elicits an expansion of 
NK cells overexpressing PD-L1 with immunoablative functions 
by reducing the number of mature NK cells and dendritic cells 
(DC) in a PD-L1-mediated manner, at least in the B16F10 
melanoma model in mice (85). It has been suggested that the 
use of anti-IL-18 neutralizing antibodies in combination with 
anti-PD-1 mAb (nivolumimab) may bypass NK cell inhibition 
by PD-1 (22). Blocking several immune checkpoints can achieve 
synergistic anti-tumor effect with therapeutic benefits.

The clinical efficacy and pharmacological activity of anti-
NKG2A mAb IPH2201 are going to be analyzed in clinical trials 
currently recruiting patients with squamous cell carcinoma 
of the oral cavity for an efficacy study of pre-operative use of 
IPH2201 (NCT02331875) or for a dose-ranging study of patients 
with high grade serious carcinoma of ovarian, fallopian tubes, 
or peritoneal origin (NCT02459301). The results of these trials 
may open new perspectives for melanoma treatment.
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Increased tumor sensitivity to NK cells has been observed 
after treatment with proteasome inhibitors, doxorubicin or 
histone deacetylase inhibitors that upregulates the expression 
of NKG2D ligands, the secretion of proinflammatory cytokines, 
or the expression of TNF receptors. However, when combining 
these therapies with NK cell adoptive transfer, a strict control of 
NK cell function should be taken into account (22). In addition 
to the checkpoint blockade exerted by mAbs directed to receptors 
on cytotoxic cells or their ligands on tumors, mAbs may also act 
through ADCC or by redirected lysis of target cells.

Bispecific Killer Engagers
Novel strategies are in progress aimed to redirect NK cell 
cytotoxicity by CD16-directed bispecific and trispecific killer 
engagers (BiKEs and TriKEs respectively) constructed using one 
(BiKEs) or two (TriKEs) variable single-chain fragments against 
tumor-associated antigens. BiKEs and TriKEs trigger NK cell 
activation through CD16 (86). When combined with an inhibitor 
of ADAM17 to prevent CD16 shedding after NK cell activation, 
an enhancement of tumor cell lysis was observed (37, 87). The 
use of CD16-directed BiKEs has been limited so far to malignant 
hematological diseases.

Adoptive NK Cell Therapy in Melanoma 
Patients
Optimal adoptive cancer immunotherapy should link both innate 
and adaptive immune responses. NK cells may contribute to the 
adaptive immune responses by favoring DC maturation and 
priming of T cells. The bidirectional crosstalk between NK cells 
and DC was demonstrated for the first time by Gerosa et al. in 
2002 (88). NK cells activated by IL-2 or by mature DC directly 
induced DC maturation and enhanced DC ability to stimulate 
naïve CD4+ T cells. These effects were cell contact dependent, 
and IFN-γ and TNF secreted by NK cells also contributed to 
DC maturation (88). The interaction of NK cells and DC in the 
tumor microenvironment has shown to play a pivotal role in 
the induction of tumor-specific immune responses. However, 
tumor-induced immunosuppressive environment can deregulate 
the interactions of NK cells with DC (89, 90). Co-culture of DCs 
and lymphokine-activated killer (LAK) cells resulted in NK cell 
activation associated with enhanced inflammatory cytokine 
production and lysis of melanoma cells. LAK cell-mediated 
induction of DCs maturation has a significant effect on priming 
of anti-tumor CTLs (91).

Autologous NK Cells
Lymphokine-activated killer cells were used for the first time in 
melanoma patients by Roserberg et  al. (92) showing complete 
remission in one patient with metastatic melanoma that lasted at 
least 10 months after combined therapy (LAK and IL-2).

Clinical trials of adoptive NK cell-based immuno-
therapy against melanoma are very limited. A Phase II trial 
(NCT00328861) completed in 2009 combined autologous NK 
cells with intravenous (i.v.) IL-2 and chemotherapy. Although 
no clinical effect was observed, the transferred NK cells 

persisted in the peripheral blood from 14  weeks to several 
months suggesting that combined therapy with antibodies 
could be beneficial (93).

Another trial using autologous NK cells combined with the 
proteasome inhibitor bortezomib is ongoing (NCT00720785). 
The use of bortezomib has been related to the upregulation of 
NKG2D ligands on tumor cells that may promote NK cell recog-
nition and lysis of tumor cells (22).

Because, the expression of activating receptors on NK cells 
from tumor-bearing patients is frequently found down-regulated, 
the efficacy of autologous NK cells expanded in vitro is limited 
by the activating receptor phenotype of expanded NK cells that 
should be taken into consideration.

Allogeneic NK Cells
Few clinical trials using allogeneic NK cells for melanoma treat-
ment have been reported usually combined with chemotherapy. 
It has been shown that NK cell activation of activating receptors 
together with administration of anti-tumor antibodies have 
substantial anti-cancer effects supporting that the combination 
of allogeneic NK cells and antibody therapy can be an efficient 
strategy in clinical trials (94). A phase I trial using allogeneic 
NK cells in 10 metastatic melanoma patients showed successful 
engraftment of NK cells. Four melanoma patients demonstrated 
stable disease after the first cell infusion but the disease progressed 
few weeks after a second infusion of NK cells. In the same trial, 
5 of 19 poor prognosis AML patients achieved complete remis-
sion after NK cell infusion showing best results when KIR ligand 
mismatched donors were used (95). The role of haploidentical 
NK cell transfer was analyzed in a clinical trial (NCT00846833) 
in patients with refractory or relapsed malignant melanoma. 
A recent study analyzed the adoptive transfer of mismatched 
lymphocytes activated in  vitro with recombinant human IL-2 
(NCT00855452) for the induction of graft-versus-tumor effect in 
metastatic solid tumors including melanoma. The results of these 
trials have not yet been published.

Adoptive Transfer of NK Cell Lines
The difficulties of expanding large numbers of clinical grade NK 
cells (96) together with the lower transduction efficacy of primary 
NK cells are major limiting factors for their clinical application 
compared to NK cell lines. Further developments of viral vectors 
such as the alpharetroviral platform are required to fully exploit 
NK cells in cancer immunotherapy (97). It has been postulated 
that the use of NK cell lines that can be easily expanded in vitro 
could facilitate the development and standardization of protocols 
for the use of NK cells in therapy. The human NK cell line NK-92 
(98) represents an alternative to donor-derived peripheral NK 
cells since it can be maintained in vitro and expanded to large 
numbers under good manufacturing practice (GMP) conditions 
for immunotherapy (99). The NK-92 cell line was evaluated in a 
Phase I trial in one metastatic melanoma patient that showed a 
minor response (100). The toxicity was low and this cell line was 
approved by the FDA for the treatment of melanoma. The pos-
sibility of engineered NK cell lines to express chimeric receptors 
has been also considered (101).
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Chimeric Antigen Receptor-Modified NK Cells
A strategy to redirect NK cell cytotoxicity against melanoma is 
the use of chimeric antigen receptor (CAR)-modified NK cells. 
CARs consist of an external domain that specifically recognizes 
a given tumor antigen, linked with one or more intracellular 
signaling domains that trigger cytotoxic cell activation. NK 
cell lines, peripheral blood NK cells, and NK cells derived from 
human pluripotent stem cells can be engineered to express CARs. 
These CAR-transduced NK cells can specifically recognize and 
kill a variety of tumor targets expressing the surface target 
antigen [for review in Ref. (101, 102)]. It has been shown that 
the CAR-transduced NK92 cell line, NK-92MI-GPA7-zeta can 
recognize the melanoma-associated gp100 peptide in the context 
of HLA-A2, showing redirected killing of melanoma cell lines and 
primary melanoma (103). These results support the use of CAR 
engineering to redirect the specificity of NK cells to augment their 
cytotoxicity against tumors including refractory melanoma cells.

CONCLUSiON

Stimulation of the immune system has been considered a possible 
therapy for melanoma for many years. Experimental and clinical 
efforts have focused in exploring possibilities to use different 
elements of the adaptive and innate immune responses to control 
and eliminate melanoma cells. However, the heterogeneity of 
these tumors makes necessary a detailed analysis of the possible 
interactions between the melanoma and the immune system cells. 
NK cells are undoubted components within the anti-melanoma 
immunotherapy arsenal. The potential efficacy of NK cell-based 
immunotherapy in melanoma patients will rely on melanoma 
phenotype (expression of ligands for activating receptors and low 
expression of MHC class I molecules for the use of autologous 
NK cells), NK cell status (no exhausted, no senescent), NK cell 

phenotype (high level of NKG2D, NCRs and DNAM-1; CD16 
expression for ADCC), microenvironment (proinflammatory 
versus inhibitory), NK cell crosstalk with other cell types (e.g., 
DCs, macrophages, MDSCs). The better understanding of the 
interactions between NK cells and melanoma will open the pos-
sibility to use combined strategies of checkpoints blockade and 
cytokine or activating receptor stimulation to enhance autolo-
gous NK cell cytotoxic capacity. These strategies should also be 
considered to modulate NK cell functionality in protocols of 
adoptive therapy against melanoma using autologous, allogeneic, 
or engineered ex vivo-expanded NK cells.
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