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Regulatory T cells (Tregs) control unwanted immune responses, including those that 
mediate tolerance to self as well as to foreign antigens. Their mechanisms of action 
include direct and indirect effects on effector T cells and important functions in tissue 
repair and homeostasis. Tregs express a number of cell surface markers and tran-
scriptional factors that have been instrumental in defining their origins and potentially 
their function. A number of immune therapies, such as rapamycin, IL-2, and anti-T cell 
antibodies, are able to induce Tregs and are being tested for their efficacy in diverse 
clinical settings with exciting preliminary results. However, a balance exists with the 
use of some, such as IL-2, that may have effects on unwanted populations as well as 
promoting expansion and survival of Tregs requiring careful selection of dose for clinical 
use. The use of cell surface markers has enabled investigators to isolate and expand ex 
vivo Tregs more than 500-fold routinely. Clinical trials have begun, administering these 
expanded Tregs to patients as a means of suppressing autoimmune and alloimmune 
responses and potentially inducing immune tolerance. Studies in the future are likely to 
build on these initial technical achievements and use combinations of agents to improve 
the survival and functional capacity of Tregs.
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iNTRODUCTiON

In order to maintain sufficient diversity needed to eliminate foreign antigens, the immune system 
needs mechanisms to avoid responses to self and to maintain tolerance. Inadequate immune 
responses can result in life-threatening infections and tumor growth but left unchecked, activation 
of the immune system can result in autoimmunity, allergy, and organ transplant rejection. T cell-
mediated self-tolerance is sustained via a number of checkpoints in the thymus and the periphery 
(1). Immune regulation mediated by dedicated subsets of T lymphocytes, termed regulatory T 
cells (Tregs), is one major mechanisms of peripheral tolerance. Autoimmune diseases, including 
insulin-dependent type 1 diabetes (T1DM), systemic lupus erythematosus, rheumatoid arthritis, 
multiple sclerosis, result from a breakdown in self-tolerance. The development of autoimmunity in 
patients with malignancies treated with agents blocking costimulation highlights the critical role of 
the balance between Treg and effector T cell responses to prevent or halt the progression of autoim-
mune diseases (2–4). The major goal of immune therapies in autoimmune disease is to re-establish 
this balance.
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This explains the ever growing interest over the last decade for 
strategies potentiating the functional capacity of Tregs and for T 
cell therapy approaches using ex vivo expanded Tregs.

Regulatory T cells include distinct subsets of T lymphocytes 
derived as a distinct lineage from the thymus, initially termed 
natural Treg, expressing the FOXP3 transcription factor and 
also from the periphery, initially termed adaptive Treg and 
encompassing both FOXP3+ and FOXP3− cells. One may, thus, 
distinguish FOXP3+ Tregs, FOXP3− IL-10-dependent Tr1, and 
LAP+TGF-β-dependent Th3 cells (1). Th3 cells play an important 
role in oral tolerance primarily through secretion of TGF-β and 
suppression of Th1 and Th2 cells (5). T regulatory type 1 (Tr1) 
cells develop from conventional T cells when exposed to regula-
tory dendritic cells (DCs) and have been shown to suppress T 
cell and antigen-presenting cell (APC) responses mainly via an 
IL-10 and TGF-β dependent mechanism (6). However, the bulk 
of critical Treg data has been generated based on the activity 
and specificity of the FOXP3+ Treg subset that develops within 
the thymic environment and in some circumstances, following 
peripheral exposure to self-antigens. This review will focus on 
the biology of FOXP3+ Tregs, therapeutic efforts to enhance their 
function in vivo and cell therapy strategies using ex vivo expanded 
FOXP3+ Tregs.

BiOLOGY OF ReGULATORY T CeLLS

Regulatory T cells play a critical role in immune homeostasis 
and self-tolerance. They modulate immune responses by inhibit-
ing effector T cells but they also serve an important function 
in the development and regulation of other lymphocyte and 
APC subsets. Tregs are found in both primary and secondary 
lymphoid organs as well as non-lymphoid tissues where they are 
thought to play a role in protection against immune damage as 
well as non-immune functions, such as tissue homeostasis and 
repair (7). Conventional Tregs are characterized by expression 
of the forkhead family transcription factor, Forkhead box P3 
(FOXP3). FOXP3 was originally identified as playing a role in 
the development and maintenance of Tregs from observations in 
Scurfy mice, which develop a fatal lymphoproliferative disorder 
with CD4 T cell hyperactivation and production of proinflam-
matory cytokines (8). In humans, mutations in FOXP3 lead to 
a lack of functional Tregs and results in immunodysregulation 
polyendocrinopathy enteropathy X-linked (IPEX) syndrome 
that manifests as multi-organ autoimmunity, including diabetes, 
thyroiditis and allergy (i.e., eczema); in the absence of a bone 
marrow transplantation, death occurs within a year of birth 
(9–13). FOXP3, the lineage determinant of thymus-derived 
Tregs is a transcriptional repressor and inhibits cytoplasmic and 
calcineurin-dependent NFATc2, as well as other transcriptional 
factors, such as NFκB, and AML1/RUNX1 (Figure 1). Interaction 
of NFAT with FOXP3 is needed for suppressor function of 
Tregs. FOXP3 also facilitates Treg development by amplifying 
and stabilizing its own expression and inhibiting transcription 
factors required for other cell lineages, such as Tbet, GATA3, 
and RORγt (14).

The potency of Tregs lies in their ability to deploy 
various immunosuppressive mechanisms depending on the 

immunological context as well as extending their influence 
through the process of infectious tolerance (15, 16). Through 
contact-dependent mechanisms, Tregs have been shown to cause 
reduced T cell receptor (TCR)-induced calcium flux, NFAT, and 
NF-κB signaling and IL-2 production by effector T cells (17). In 
addition, by virtue of expression of CD25, they have been shown 
to consume IL-2, needed by effector T cells, and induce effector 
cell death by granzyme and perforin (18, 19). Tregs can inhibit 
T cell costimulation by either regulating CD80/86 expression on 
APCs through CTLA-4 or competing for CD28 binding (20–22). 
Finally, Tregs can produce regulatory cytokines, such as TGFβ, 
IL-35, and IL-10, which facilitate a key functional consequence 
of Tregs, namely bystander suppression (23–27).

The Treg TCR repertoire is highly skewed toward self- 
reactivity, which may be important in ensuring their ability to  
prevent the activation of autoreactive effectors and to avoid regu-
lation of effector T cells needed for responses to pathogens and 
tumors. Work from our lab has shown that disease susceptibility 
loci, such as CTLA-4 and IL-2, in Type 1 diabetes lead to Treg 
instability (28). Immune effector T cells generated from destabi-
lized FOXP3+ Tregs can mediate autoimmune reactivity, suggest-
ing that some autoreactive effector T cells may have their origins in 
the Treg lineage. In addition, data suggest that a subset of effector T 
cells can become resistant to Tregs enhancing the potential activity 
of the autoreactive T cells in the type 1 diabetes setting (29).

DeFiNiTiON AND ROLe OF TReG 
SUBSeTS

Thymus-derived cells, tTregs [previously termed natural or nTreg 
(30)] are needed for general homeostasis and tissue repair. Tregs 
generated in the periphery, pTregs (previously termed adaptive 
or inducible), develop from conventional T cells (Tconv) and 
may be more important in controlling local auto-inflammatory 
responses (31). These subsets have distinct TCR repertoires 
where autoantigens may be presented differently in local tissues 
than during thymic development. In instances where the origin 
of Tregs is unclear, the general term “FOXP3+ Treg cell” is used 
(30). Although many markers have been identified as important 
in the immunobiology of Tregs, most are not unique to Tregs 
(Table 1). Signaling by IL-2 through the IL-2R has been shown 
to be particularly critical for Treg homeostasis and the mainte-
nance of FOXP3 expression (32). CD127 expression is low on 
Tregs when compared to activated, conventional T cells, thus, 
the combination of CD4, CD25, and CD127 has been used to 
select T cells for functional studies as well as for expansion and 
adoptive immune therapy (33, 34). Other cell surface markers 
have been identified on Tregs that have functional significance. 
CD39 and CD73 are ectoenzymes that are involved in generation 
of adenosine, which inhibits effector T cells through interactions 
with the adenosine receptors A2AR/A2BR and in recruiting Tregs 
(35–37). Neuropilin-1 is a membrane-bound receptor on Tregs 
whose ligation by Semaphorin-4a restrains Akt phosphorylation 
and maintains Treg stability (38, 39). Helios, a transcription 
factor of the Ikaros family, was originally proposed as a marker 
of tTregs, distinguishing them from pTregs (40). However, a sub-
sequent study showed that upon induction by APCs, pTregs can 
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FiGURe 1 | Current and potential future therapies to promote Tregs and immune tolerance. Therapies, such as rapamycin, anti-CD3 mAb, anti-thymocyte 
globulin (ATG), and Alefacept, a CD2 binding fusion molecule that eradicates CD2 expressing cells, exert their immune suppressive effect by eliminating effector T cells 
(gray cell) and tipping the balance in favor of Treg function and/or frequency. In addition, the anti-T cell receptor therapies, such as anti-CD3 mAbs may enhance 
survival and function of Tregs (yellow). IL-2, signaling through the ILR receptor (purple) and pSTAT5 (orange), is central to Treg survival and FOXP3 maintenance 
through the signaling cascades shown. FOXP3 inhibits cytokine gene expression by inhibiting NFATc2, as well as other transcriptional factors, such as NFκB and 
AML1/RUNX1. FOXP3 also facilitates Treg development by amplifying and stabilizing its own expression and inhibiting transcription factors required for other cell 
lineages, such as Tbet, GATA3, and RORγt. Cell-based therapies include use of Tregs engineered to express TCRs directed against specific antigens, including 
chimeric antigen receptors (CAR) (blue).
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also express Helios, preventing its use as a tTreg marker (41). The 
cell surface receptors TIGIT and FCRL3 have also been recently 
identified as useful markers for Helios+ Tregs. TIGIT is associ-
ated with lineage stability and suppressive capacity. TIGIT+ Tregs 
were reported to selectively inhibit Th1 and Th17 but not Th2 T 
cell responses through an Fgl2-dependent mechanism (42–44). 
In addition, Smigiel et al. have discriminated Treg subsets into 
tissue-resident (eTregs: CD44hiCD62lo/−), which are dominant in 
non-lymphoid tissues and highly proliferative or central Tregs 
(CD44loCD62L+), which are quiescent and recirculate through 
the secondary lymphoid tissues (45). The latter are dependent 
on IL-2 for survival and function, whereas the former are largely 
controlled by signaling through the TCR and IL-33, hence, their 
role in the control of antigen-specific responses that occur in 
peripheral tissues.

PD1, implicated in negative regulation as well as a marker of 
T cell activation, is also expressed on Tregs. As in conventional 
cells, activation of PD1 on Tregs inhibited responses to anti-CD3 
mAb but induced a different cluster of genes in Tregs compared 
to those activated in conventional T cells (75, 76). Finally, some 
investigators have subdivided FOXP3+ Tregs into effector/
memory phenotypes in much the same manner as conventional 
T cells (57, 58, 77).

Studies in recent years have identified Treg populations 
in non-lymphoid tissues, including the skin, visceral adipose 
tissue (VAT), liver, intestine, skeletal muscle, bone, lungs, and 
placenta. Tissue-specific Tregs have unique phenotypes and roles 

depending on their location, varying with regard to frequency, 
TCR repertoire, cytokine production, chemokine receptor 
expression, and mechanism of action (15, 78–80). Immune-
related functions in non-lymphoid tissues include suppression of 
T cell responses as well as limiting inflammation through control 
of myeloid populations (70, 73, 74, 78–80).Tregs are recruited by 
unique homing receptors to the skin and intestinal mucosa where 
they are needed to regulate the immune response against infec-
tious pathogens as well as tolerance of commensal organisms 
(78). TGF-β and IL-10, produced by Tregs, play an important role 
in Treg function in the intestine and the intestinal microbiome 
also seems to influence Treg development and induction (81). 
Tregs in VAT express peroxisome proliferator-activated receptor 
gamma (PPAR-γ), a transcription factor that is required for the 
accumulation of Tregs at this location where they have a positive 
effect on insulin resistance and glucose metabolism (73, 74). VAT 
Tregs express IL-10 and TGF-β and depend on IRF4, BATF, and 
IL-33 (70).

There is growing evidence that Treg expansion occurs at 
sites of tissue injury and plays an important role in tissue repair 
and regeneration beyond immune regulation by influencing 
tissue resident non-immune cells. In injured skeletal muscle, a 
Treg population was identified that can promote muscle repair 
through expression of amphiregulin, an epidermal growth fac-
tor, in  vitro and in  vivo in mice (82). Tregs have been shown 
to have an amphiregulin-dependent role in tissue repair in the 
setting of infectious lung injury independent of their immune 
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TABLe 1 | Markers of Tregs.

Marker Ligand and interacting 
proteins

Function

Cell surface CD4 MHCII T cell marker and coreceptor for TCR
TCR/CD3 Peptide/MHC Required for Treg activation and suppressive function
CTLA-4 CD80/CD86 Interacts with CD80 and CD86 on APCs to inhibit T cell activation through competition for 

costimulation of CD28. (20–22)
CD28 CD80/CD86 Costimulatory signal required for differentiation of tTregs to eTregs. (21, 22)
CD25 (IL-2R α 
chain)

CD122 and CD132 as  
part of IL2 receptor

IL-2 binding regulates Foxp3 expression, induces Treg proliferation, and is important for Treg 
survival (32, 46–52)

CD127 (Interleukin 
7 receptor α)

CD132 as part of IL7 receptor Low CD127 expression compared to conventional T cells is characteristic of Tregs (33, 34)

GITR GITR-L Seems to have positive effects on effector T cells and inhibitory effects via Tregs but role 
remains unclear (53, 54)

Neuropilin Plexin receptors, semaphorins Highly expressed on tTregs and restrains Akt activation. Important in maintenance of Treg 
stability and has role in methylation (38, 39)

TIGIT CD155 Highly expressed on tTregs. Useful marker for Helios+ Tregs (42–44)
FCRL3 Along with TIGIT, may help differentiate Helios+ from Helios− FOXP3 memory Tregs (44)
OX40 (CD134) OX40L Inhibition of Treg suppressive function when stimulated (55, 56)
CD45RA/RO CD4/CD8 and TCR/CD3 

complex
CD45RA is predominantly a naïve T cell subset and CD45RO a memory T-cell subset (57, 58)

CD73 and CD39 Adenosine phosphates Ectoenzymes that generate adenosine to inhibit effector T cell function. Role in Treg 
recruitment (35–37, 59)

CD44 Hyaluronic acid, osteopontin and 
other ECM components

Increased expression in eTregs (45)

CD62L GlyCAM1, MadCAM1, CD34 Increased in thymic Tregs and functions as homing receptor (45)
KLRG1 Cadherins Expressed in a small number of peripheral Tregs and seems to represent a terminally 

differentiated Treg subset (60–62)
ICOS ICOS-L Costimulatory receptor for TCR (63, 64)

Transcription 
factors

FOXP3 Master regulator essential for development, maintenance, and function of Tregs. Represses 
NFATc2, NFkB, AML1/RUNX1 (16)

STAT5 Downstream of IL2 signaling. Stabilizes FOXP3 expression (65)
NFAT Positively regulates Foxp3 gene expression (66–68)
AP-1 Positively regulates Foxp3 gene expression (68)
Helios Initially identified as a marker of tTregs, but more recently found on pTregs as well (40, 41, 44)
SMAD3 Positively regulates Foxp3 gene expression (67, 69)
IRF4 Role in differentiation of Tregs and is important for Treg function in adipose tissue (70–72)
BLIMP-1 Role in differentiation of Tregs and is important for maintenance of transcriptional signature in 

eTregs (72)
PPAR-γ Role in VAT Tregs to reduce insulin resistance (73, 74)

AP1, activation protein 1; APCs, antigen-producing cells; BLIMP1 or PR domain zinc finger protein 1 (PRDM1); CTLA-4, cytotoxic T-lymphocyte-associated protein 4;  
ECM, extracellular matrix; FCRL3, Fc receptor-like protein 3; FOXP3, forkhead box P3; GITR, glucocorticoid-induced TNFR-related protein; ICOS, inducible T cell costimulator; 
ICOS-L, ICOS ligand; IRF4, interferon regulatory factor 4; KLRG1, Killer cell lectin-like receptor subfamily G member 1; NFAT, nuclear factor of activated T-cells; PPAR-γ, peroxisome 
proliferator-activated receptor gamma; SMAD3, mothers against decapentaplegic homolog 3; STAT, signal transducer and activator of transcription; TCR, T cell receptor;  
TIGIT, T cell immunoreceptor with Ig and ITIM domains; VAT, visceral adipose tissue.
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suppressive function (83). A role for Tregs in bone repair and 
regeneration has also been proposed to occur not only through 
the effect of Tregs on other immune cells to maintain bone 
homeostasis but also potentially through direct interactions 
with osteoblasts (15).

Various tumors contain Tregs, where their accumulation may 
suppress the immune response that would otherwise keep tumor 
cells at bay (84). CCL22 on tumors recruits CCR4+ Treg cells to 
the site and has been associated with tumor progression through 
their suppression of effector T cells that target tumor antigens (85, 
86). Tregs constitutively express CTLA-4 and the benefit seen with 
CTLA-4 antibody therapy in cancer may in part be attributed to 
Treg depletion. Furthermore, CCL28 positive tumors can recruit 
Tregs where they have a proangiogenic role (87).

Unstable Tregs
Several years ago, we demonstrated that Tregs were unstable in 
inflammatory tissues as they can lose FOXP3 and begin to turn 
on a broad array of potentially pathogenic pathways, such as the 
production of interferon-gamma and IL-17 (88). In part, this 
instability is due to decreased IL-2 signaling but may also reflect 
Treg inactivation through cytokines, such as IL-6. Purified IFNγ+ 
Tregs were suppressive in vitro but lacked Helios expression and 
were methylated at the Treg-specific demethylated region (TSDR) 
of FOXP3, characteristic of in vitro-induced Tregs. Thus, efforts 
to target Tregs in clinical settings will rely on efforts to repair 
and replace Tregs in autoimmunity and organ transplantation 
or destabilize and eliminate Tregs in the cancer and infectious 
disease settings.
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HUMAN THeRAPieS THAT  
PROMOTe TReGS

Rapamycin
While calcineurin inhibitors (such as Tacrolimus and 
Cyclosporine A) appear to inhibit Treg generation, rapamycin, 
which inhibits PI3K/AKT signaling through its direct interac-
tion with the mTORC1 complex enhances Treg expansion and 
survival at the time it inhibits proliferation of Th1 and Th17 cells 
(89–102) (Figure 1). This is in part because PI3K/AKT signaling 
is a principal signaling pathway in Teff cells but less so in Tregs. 
In mice, rapamycin treatment leads to expansion of Tregs with 
increased suppressive activity in vitro and an enhanced ability 
to prevent pancreatic β cell transplant rejection in  vivo (96). 
Administration of rapamycin in NOD mice, a model of T1DM, 
resulted in prevention of diabetes and restored tolerance to self-
antigens due to expansion of Tregs (103). In patients with T1DM, 
rapamycin promoted expansion of Tregs (97) and enhanced 
their suppressive capacity (104). Again, unlike calcineurin 
inhibitors, rapamycin treatment maintained the proportion of 
Tregs in peripheral blood in renal transplant recipients (105) 
or even enhanced their frequency and reduced production of 
inflammatory cytokines, such as IL-1β, IL-6, IL-17, and IFNγ, in 
patients switched from tacrolimus to rapamycin (106). Similar 
effects are seen with everolimus, a synthetic derivative of rapa-
mycin (107).

interleukin-2
The cytokine IL-2 plays a central role in Treg function and the 
balance between immunity and tolerance (46, 108, 109). Tregs 
express high-affinity CD25 and require IL-2 for survival. IL-2 
interacts with the trimeric IL-2 receptor complex (CD122, 
CD132, and CD25) and signals primarily through the JAK/STAT 
pathway in Tregs to maintain FOXP3 expression and the devel-
opment, proliferation, and suppressive function of Tregs (32, 
47). IL-2 can expand Tregs in vivo and enhance their immune 
suppressive function (7, 110). The role of IL-2 in maintenance of 
self-tolerance is clear from studies of IL-2 or IL-2R-deficient mice 
that developed severe multi-organ autoimmune disease and early 
death (48–51). The levels of IL-2 and expression of CD25 on tar-
get cells influence the balance between immunity and tolerance. 
Tregs have a 10- to 20-fold lower activation threshold for IL-2 
than effector T cells as assessed by the level of phosphorylated 
STAT5 (pSTAT5). The sensitivity to IL-2 in Tregs may be due to 
the function of the IL-2R signaling specificity: the MAPK, PI3K-
AKT, and STAT5 pathways are all activated in effector T cells. In 
Tregs, the high PTEN expression may inhibit the PI3K signaling 
pathways and, therefore, activation relies on pSTAT5 signaling 
(65, 111, 112).

In autoimmune diseases, impaired IL-2 signaling is thought to 
affect the number and function of Tregs. The IL-2RA gene is one 
of the T1DM susceptibility genes (51, 52, 113–116). NOD mice 
treated with low-dose IL-2 showed increase in Tregs and reversal 
or prevention of diabetes (115, 117). In an EAE mouse model of 
multiple sclerosis, IL-2 treatment resulted in restoration of FOXP3 
expression, Treg stability, and prevention of autoimmunity (118). 

However, depending on the dose, IL-2 can increase other poten-
tially damaging leukocytes, including NK cells, activated CD8+ T 
cells and eosinophils [as a direct consequence of the activation of 
an innate lymphoid cell subset (ILC2)] (76).

Interleukin-2 was first used clinically to augment the immune 
response against tumor self-antigens in metastatic malignancies, 
such as melanoma and renal cell carcinomas, but variable clinical 
responses were seen with significant side effects (119, 120). Thus, 
in order to maximize the ability of IL-2 to selectively enhance 
Treg function, a series of mouse and human studies have been 
undertaken to examine IL-2 dosing as a means to shift the balance 
between immunity and tolerance in autoimmune diseases (111, 
121, 122). IL-2 has been tested in clinical trials to treat graft versus 
host disease (GVHD), hepatitis C virus-induced vasculitis, and 
T1DM (108, 123–126) through a Treg-dependent pathway. A 
clinical response was shown in patients with GVHD enrolled in a 
Phase I, dose escalation, 8-week trial (123). Subjects exhibited not 
only an increased number of Tregs but also an increase in eosino-
phils and NK cells, which also express CD25. These investigators 
reported that IL-2 therapy increased Treg proliferation, thymic 
export, and enhanced resistance to apoptosis with minimal effects 
on conventional T cells (127). There was a selective effect of low 
concentrations of IL-2 on phosphorylation of STAT5, whereas 
IL-7 induced similar phosphorylation of STAT5 in conventional 
and Tregs at low concentrations. Patients with HCV vasculitis 
were treated with IL-2 in a Phase I/II clinical trial with the objec-
tive of increasing Tregs, which had been shown previously to 
correlate with successful treatment of this disease process. The 
majority of patients showed clinical improvement and there was 
an accompanying increase in the number of Tregs (124).

Preclinical studies by Rabinovitch et  al. had demonstrated 
reversal of diabetes with combination of IL-2 and rapamycin 
(128). Thus, it was postulated that combining rapamycin with 
IL-2 would optimize inhibition of Teff signaling and concurrent 
augmentation of Treg signaling. Long et  al. found that T1DM 
patients treated with rapamycin and IL-2 achieved increased 
frequency of circulating Tregs and sustained IL-2 signaling (125) 
but had transient worsening of β cell function as assessed by 
C-peptide following a mixed meal tolerance test. The trial was 
stopped after treatment of nine subjects. These investigators 
observed increased eosinophilia and natural killer cells. The 
relatively high doses of IL-2 (12 doses of 4.5 × 106 IU) adminis-
tered to the patients in that study was thought to account for the 
expansion of these potentially β cell toxic cells, although effects 
of the rapamycin could not be ruled out.

Thus, more recent efforts have been devoted to administer-
ing low-doses of IL-2 in patients with new onset diabetes. In a 
Phase I/II randomized double-blind placebo-controlled study, 
Hartemann et  al. studied treatment with IL-2 at doses of 0.33, 
1, or 3 million IU/day for a 5-day course. IL-2 induced a dose-
dependent increase in the proportion of Tregs at all doses but 
at a dose of 1 × 106 IU × 5, approximately one-tenth of the dose 
used in the trial of Long et al. Effects on Tregs predominated and 
there were insignificant changes in the proportion of NK cells 
in the peripheral blood. Adverse events also showed a dose–
response with the most common AEs injection-site reactions and 
influenza-like syndrome (126). These studies were followed by 
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Rosenzwajg et al. to determine the effects of IL-2 on induction 
of Tregs and NK cells in patients with T1DM (129, 130). They 
observed an increase in CD4+FOXP3+ and CD8+FOXP3+ Tregs, 
the proportion and duration of which was dose dependent. The 
Tregs expressed enhanced levels of activation markers and basal 
pSTAT5 and had a 20-fold higher sensitivity to IL-2 than Teff 
and NK cells. Global transcriptome analyses showed a dose-
dependent decrease in immune response signatures. However, 
although they were able to induce a dose-dependent increase in 
Tregs, they did not observe a change in glucose metabolism (126).

Low-dose IL-2 is being trialed in other clinical settings, 
including rheumatoid arthritis, ankylosing spondylitis, systemic 
lupus erythematosus, psoriasis, Behcet’s disease, Wegener’s gran-
ulomatosis, Takayasu’s disease, Crohn’s disease, ulcerative colitis, 
autoimmune hepatitis, and sclerosing cholangitis (TRANSREG, 
ClinicalTrials.gov NCT01988506).

CD3 Monoclonal Antibodies
In the 1990s, we established that CD3 monoclonal antibodies 
(mAbs) were shown to cause reversal of disease and induce 
immunologic tolerance in hyperglycemic NOD mice (131–135). 
To overcome the adverse events due to cytokine release associ-
ated with clinical use of Fc receptor (FcR)-binding CD3 mAb, 
molecules with mutations in the Fc region of the immunoglobu-
lin were developed and further mechanistic studies in mice used 
either similarly modified molecules or F(ab’)2 fragments of the 
hamster anti-mouse CD3 mAb 145-2C11. Similar to the induc-
tion of Tregs following engagement of TCR with self-antigens, 
a relatively weak cognate signal may result in development of 
a regulatory phenotype rather than effector cells or depletion. 
The CD3 mAbs depleted effector T cells and caused a transient 
systemic rise in the percentage of CD4+FOXP3+ Tregs (136, 137). 
Expression of Helios was increased after anti-CD3 mAb treat-
ment, suggesting that it increased the relative proportion of Tregs 
and stabilized their function (136). Belghith et al. described 
induction of adaptive TGFβ-dependent Tregs with anti-CD3 
mAb even in CD28−/− mice that lacked naturally occurring 
Tregs (137). These studies suggested that CD3 mAb induced 
pTregs from Tconv cells. Expanding on this notion, Esplugues 
et al. and Waldron-Lynch et al. showed in mice and in human-
ized mice that teplizumab, a non-FcR binding anti-CD3 mAb, 
caused migration of peripheral T cells to the lamina propria of 
the gut. At that location, there was induction of FOXP3 on T 
cells and Tregs. In the murine studies, this occurred following 
an inflammatory response heralded by the production of IL-17 
and resolution with the formation of TGFβ and IL-10-producing 
cells. In the humanized mice treated with teplizumab, the gut 
migrating T cells expressed FOXP3 and produced IL-10. In the 
humanized mice, treatment with teplizumab prevented rejection 
of xenogeneic skin grafts (138, 139). Both CD4+ and CD8+ T cells 
were involved and the effects of the mAb required gut migra-
tion because it was blocked with the anti-α4 mAb, natalizumab. 
Interestingly, more recent studies by You et  al. showed, in the 
setting of islet transplantation, that the effects of the anti-CD3 
mAb were greatest after initiation of the graft-specific immune 
response (140). These findings were consistent with previous 
work in NOD mice and an experimental animal model of 

Multiple Sclerosis (EAE) showing that the efficacy was greatest 
at the time of peak immune response (131). This was confirmed 
in humans with T1DM where the greatest efficacy was observed 
at the time of clinical diagnosis (137).

Human trials with CD3 mAbs have shown effects and 
mechanisms consistent with induction of immune regulation 
(141–146). In general, an increase in the number of circulating 
CD4+CD25+FOXP3+ Tregs in the peripheral blood has not been 
seen in drug-treated patients with new onset T1DM. However, 
an increase in the number of circulating CD8+ T cells that have 
been suggested to have regulatory function has been consistently 
observed (147). These cells produce IL-10 family members and 
can suppress effector T cells ex vivo. Some evidence suggests that 
among these cells are CD8+ cells reactive with antigens from EBV, 
which may be reactivated with high doses of CD3 mAb (148). 
More recent studies have suggested that these cells show reduced 
expression of genes associated with T cell activation (149).

Mucosal, oral or nasal, administration of CD3 mAb has 
been shown to suppress autoimmunity in animal models of 
encephalomyelitis, collagen-induced arthritis, systemic lupus 
erythematosus, and diabetes (150–155). These studies demon-
strated suppression of autoimmunity via induction of a Th3 type 
CD4+CD25−LAP (latency-associated peptide)+ Treg population. 
These Tregs are proposed to be a unique population given lack 
of CD25 expression and lower expression of FOXP3 that is not 
induced by mucosal anti-CD3 administration. Mucosal anti-
CD3 seems to act primarily locally by inducing Tregs and not by 
reduction of effector T cells. Oral anti-CD3 has also been used in 
human studies to promote Tregs (156–158). Patients with non-
alcoholic steatohepatitis treated with oral anti-CD3 in a Phase 
IIa trial showed that treatment was well tolerated and resulted 
in positive effects on hepatic and metabolic factors. Depending 
on treatment dose and time of analysis, they observed increased 
CD4+LAP+, CD4+CD25+LAP+, and CD4+CD25+FOXP3+ cells 
as well as increased TGF-β, supporting that oral anti-CD3 could 
induce Tregs in humans (156).

Other Anti-T Cell Modulators
The major effect of anti-thymocyte globulin (ATG) and polyclonal 
anti-T cell antibodies was thought to involve broad elimination of 
T cells (159–164). However, subsequent in vitro and in vivo data 
suggest that ATG may actually selectively deplete Teff cells while 
sparing or in some cases even promoting the generation of Tregs 
(160, 165–171). The mechanisms that lead to depletion versus 
induction of regulatory cells have not been clearly defined.

Alefacept is a LFA3 fusion molecule that binds CD2 and 
results in eradication of CD2 expressing cells and has primar-
ily been used in the treatment of psoriasis where it resulted in 
clinical benefit and sustained disease remission long after drug 
termination, suggesting lasting immune tolerance (172–174). In 
a randomized placebo-controlled, Phase II trial in T1DM pres-
ervation of C-peptide was improved with Alefacept vs. placebo 
treatment at 1 and 2 years. Phenotype studies of peripheral blood 
cells showed a decreased frequency of central memory and effec-
tor memory T cells and preserved Tregs resulting in increased 
Treg:Teff ratio similar to what was seen in mouse models with 
CD3 mAb (175–177).
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CeLLULAR THeRAPY wiTH TReGS

The ability to identify Tregs based on the expression of surface 
markers enabled investigators to isolate and potentially expand 
them ex vivo for cell therapy treatment. Moreover, the evidence 
that defects in Treg signaling that had been observed in patients 
might be repaired/reversed during culture provided even more 
support for adoptive cellular therapy with Tregs for treatment of 
autoimmune diseases. Methods to expand Tregs for clinical use 
were reported by our group using a 14-day expansion protocol 
with anti-CD3/28 and IL-2 (178). The expanded cells retained 
their immune suppressive function and had features consistent 
with nTregs, including high expression of CD25 and FOXP3 and 
demethylation of the TSDR. The Tregs could be expanded 500- to 
2000-fold to as many as 3 × 109 cells from 400 ml of peripheral 
blood. This represents more than 20% of the total estimated 
number of Tregs in humans (179).

Autoantigen-specific Tregs have had superior efficacy to 
polyclonal Tregs in preclinical studies but difficulties in expand-
ing these cells and maintaining their phenotype and function 
led to the initial development of polyclonal Tregs for adoptive 
immune therapy (180, 181). An important consideration was 
that although Tregs require TCR-mediated activation to develop 
regulatory activity, their suppressive activity can spread within 
the affected tissues through bystander suppression and they can 
regulate local inflammatory responses through a combination 
of cell–cell contact and suppressive cytokine production. Thus, 
initial studies have been performed with polyclonal Tregs. In 
one study of 12 patients with new onset T1DM, aged 5–18 years, 
Marek-Trzonkowska et  al. administered autologous Tregs that 
had been expanded with CD3/CD28 antibodies and IL-2. FOXP3 
expression was found on >90% of the infused cells. A dose escala-
tion of 10–30 × 106 Tregs/kg in 1 or 2 doses was studied. After 
1 year, 8/12 met the criteria of clinical remission (<0.5 U/kg/d 
of insulin) and two were insulin independent. They reported 
a significant improvement in glucagon-stimulated C-peptide 
responses and reduced insulin usage at 4  months and 1  year 
compared to untreated subjects. The infusions were well tolerated 
and antibody responses to a hepatitis B vaccine and rubella were 
apparently not affected by the treatment (182).

In a recently completed Phase I trial (NCT01210664), we 
observed that polyclonal FOXP3+CD4+CD25+CD127lo Tregs 
could be efficiently isolated and expanded from patients with 
T1DM (183). This trial involved isolation and expansion of 
autologous Tregs over a 2-week culture period. The cells could 
then be shipped to a collaborating institution for infusion into 
patients, suggesting that development of this strategy for adoptive 
transfer of cells is feasible and need not be limited only to sites that 
are capable of performing the expansion on site. There were no 
significant safety signals from the study and the cells maintained 
their phenotype in vivo: there was no evidence of differentiation of 
the infused Tregs into other, potentially pathogenic phenotypes. 
Importantly, using an in vitro non-radioactive labeling technique 
(184), a subset of the adoptively transferred Tregs were observed 
to survive >1 year post infusion. A similar strategy is being used 
for treatment of patients with cutaneous lupus erythematosus 
(NCT02428309).

Tregs in Organ Transplantation
Adoptive Treg therapy is being tested in transplantation settings. 
Tregs, partially matched for MHC, isolated from umbilical cord 
blood, have been used to treat graft-versus-host disease, associ-
ated with double umbilical cord blood transplantation. The Tregs 
were enriched from cryopreserved umbilical cord blood followed 
by an 18-day expansion culture with anti-CD3/CD28 beads and 
IL-2. Patients received a dose of 0.1–30 × 105 Treg/kg after double 
umbilical cord blood transplantation. After infusion, the Tregs 
could be detected for 14 days. The Treg infusion was associated 
with reduced incidence of grades II–IV GVHD compared to 
historical controls with no deleterious effects on risk of infection, 
relapse, or early mortality (185). However, the Tregs were short 
lived, suggesting that either the third party cells were immuno-
genic or the absence of IL-2 in vivo in the BMT setting reduced 
Treg survival.

Solid organ transplants offer the opportunity to isolate, 
expand, and infuse antigen-specific Tregs from the graft recipi-
ent. In an ongoing trial (NCT02091232), Tregs are being isolated 
from mixed lymphocyte cultures in the setting of CTLA4Ig and 
infusing sorted Tregs from these cultures (The “ONE” Study). In 
patients with evidence of renal allograft rejection, another trial 
is expanding polyclonal Tregs for adoptive immune therapy 
(NCT02088931).

FUTURe DiReCTiONS

Studies being conducted at UCSF and elsewhere have been 
initiated that utilize either polyclonal Tregs in other kidney 
and liver transplant settings with a goal of the discontinuation 
of immunosuppressive drugs (e.g., NCT02088931). These and 
other efforts will be essential in determining the potential 
use of ex vivo expanded cells in patients with these immune 
dysregulation diseases. Maximizing the functional activity, 
persistence, and migration of infused Tregs will be essential by 
either altering the Treg genetically or combining the treatment 
with growth factors, such as IL-2. Trials of Tregs plus low-
dose IL-2 are ongoing (NCT1937468) and others are planned 
in T1DM. In an effort to increase the persistence of the cells 
in vivo, Parmer et al. showed that ex vivo fucosylation, which 
forms the sialyl Lewis X moiety on P-selectin glycoprotein 
ligand-1, improved in vivo persistence and had improved effects 
on a murine model of GVHD (186). We expect that additional 
biologics and antigen-based therapies will be introduced to 
protect and expand Tregs.

As mentioned above, antigen-specific Tregs are likely to be the 
best able to block unwanted immunity. In this regard, we have 
developed alloantigen-specific Tregs using a modified protocol 
that can selectively expand Tregs specific for MHC molecules 
expressed by donor tissue in kidney and liver transplant recipi-
ents. Donor-alloantigen-reactive Tregs (darTregs), isolated after 
leukapheresis, are being tested in patients undergoing liver trans-
plantation at doses up to 800 × 106 together with thymoglobulin, 
everolimus, mycophenylate mofetil (MMF), and solumedrol 
(NCT02188719). Future studies are likely to include Tregs, engi-
neered to express TCRs, that are specific for auto or alloantigens 
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or even antigens that are on or in the region of target organs to 
cause localization of the cells to the site of pathology and acti-
vation. Strategies used to introduce chimeric antigen receptors 
(CAR) for tumor antigens in effector T cells may be considered. 
As such, Ag-specific TCRs or chimeric antigen receptor-based 
genomic manipulation is now feasible with the use of genetic 
manipulation techniques, such as CRISPRCas9 to modify and 
enhance Treg specificity and function (187).

CONCLUSiON

Because of their central role in regulating immune tolerance and 
modulating immune responses, manipulation of Tregs represents 
a clear target for treatment of unwanted immune responses. 
Contrary to the strategy of immune suppression or cell deletion as 
a means to curtail responses, treatment with agents that enhance 
or cellular therapies with Tregs represent a strategy to restore 
immune tolerance. Trials that have enhanced the number and 

function of Tregs have shown success in treatment of a variety of 
conditions, and the development of technologies to expand Tregs 
and even select for antigen specific cells has created a new era for 
adoptive cellular immune therapies. Further refinements of the 
ways Tregs are selected and administered, including methods to 
improve their survival and maintain their efficacy, are likely to 
occur in the next several years.
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