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Urban air pollution is a serious worldwide problem due to its impact on human health. 
In the past 60 years, growing evidence established a correlation between exposure to 
air pollutants and the developing of severe respiratory diseases. Recently particulate 
matter (PM) is drawing more public attention to various aspects including historical 
backgrounds, physicochemical characteristics, and its pathological role. Therefore, this 
review is focused on these aspects. The most famous air pollution disaster happened 
in London on December 1952; it has been calculated that more than 4,000 deaths 
occurred during this event. Air pollution is a complex mix of gases and particles. Gaseous 
pollutants disseminate deeply into the alveoli, allowing its diffusion through the blood–air 
barrier to several organs. Meanwhile, PM is a mix of solid or liquid particles suspended in 
the air. PM is deposited at different levels of the respiratory tract, depending on its size: 
coarse particles (PM10) in upper airways and fine particles (PM2.5) can be accumulated 
in the lung parenchyma, inducing several respiratory diseases. Additionally to size, the 
composition of PM has been associated with different toxicological outcomes on clinical 
and epidemiological, as well as in vivo and in vitro animal and human studies. PM can 
be constituted by organic, inorganic, and biological compounds. All these compounds 
are capable of modifying several biological activities, including alterations in cytokine 
production, coagulation factors balance, pulmonary function, respiratory symptoms, 
and cardiac function. It can also generate different modifications during its passage 
through the airways, like inflammatory cells recruitment, with the release of cytokines 
and reactive oxygen species (ROS). These inflammatory mediators can activate differ-
ent pathways, such as MAP kinases, NF-κB, and Stat-1, or induce DNA adducts. All 
these alterations can mediate obstructive or restrictive respiratory diseases like asthma, 
COPD, pulmonary fibrosis, and even cancer. In 2013, outdoor air pollution was classified 
as Group 1 by IARC based on all research studies data about air pollution effects. 
Therefore, it is important to understand how PM composition can generate several 
pulmonary pathologies.
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iNTRODUCTiON

Urban air pollution is a serious problem around the world. Since 
the Industrial Revolution, the growing use of fuels, electricity 
demand, and mining activities have been the primary drivers 
of atmospheric pollution. It was not until after historic high air 
pollution events that scientists began the study of its impact on 
health. Three well-documented air pollution episodes occurred 
in the twentieth century: “The great air pollution disasters” or 
“The historic pollution episodes.” The first occurred in the Meuse 
river valley in eastern Belgium. The valley hosted a massive 
industrial zone with a diverse set of air pollution sources. On 
December 1930, a combination of low temperature, fog, and 
low wind speed resulted in the lack of air dispersion, and the 
consequence was seen as a large accumulation of gaseous and 
particulate air pollutants in the valley. In 2 days, 6,000 cases of 
unexpected deaths were observed, mainly impacting the elderly 
and individuals with preexisting heart and lung diseases (1). 
The second incident occurred on October 1948, in Donora, PA, 
USA. The heavily industrialized Monongahela River valley used 
soft coal as the main fuel. The episode began with persistent cool 
air and heavy fog and had the sharply irritating pungent odor of 
sulfur dioxide. While 1 to 2 deaths were expected during the time 
of the event, an astonishing 18–20 excess in deaths was attributed 
to the episode (1).

The third episode represented the most severe air pollution 
disaster and occurred in London during 4 days in December 
1952. In the Thames Valley, the meteorological conditions were 
unusually intense, with cold, stagnant air, dense fog, and a rapid 
buildup of soot-filled air as a result of a thermal inversion. 
Approximately 4,000 deaths occurred during that period (2). 
The cause of death included pneumonia, bronchitis, and heart 
diseases. Prior to the episode, particle levels averaged a sub-
stantial equivalent of 500 μg/m3 of air, and sulfur dioxide levels 
averaged 0.15  ppm. During the episode, accumulated particles 
levels arose to 4,500  μg/m3, and sulfur dioxide level reached a 
substantial 1.3 ppm. The British Smoke Shade methods were used 
to estimate particles levels based on the dark color of the filter 
sampler (1). After three events, the scientists started studying 
the different pathologies or damage caused by air pollution (1). 
The preexistence of cardiopulmonary disease in individuals aged 
≥45 years and during infancy, it was an important condition in 
80% of the deaths (1).

In general terms, air pollution is made up of gases and particu-
late matter (PM). Especially, PM can be transported into the alveoli, 
depending on its size (3). In recent years, some researchers have 
reported that air pollution can produce cancer. Lately, outdoor 
air pollution was classified by the IARC as a group I carcinogen 
or proven carcinogen for humans (4). However, exposure to PM 
also produces several other diseases in the respiratory system. 
Therefore, it is important to establish how the composition of PM 
can induce several pulmonary pathologies.

PARTiCULATe MATTeR

Particulate matter is defined as solid and/or liquid suspended in 
the atmosphere, also named aerosol (5). It is generated chiefly 

through two processes, natural and anthropogenic. The natural 
process includes phenomena that take place on the earth, such 
as, sea sprays (6), volcanic eruptions, spontaneous forest fires, 
and soil erosion (7). The second process involves emissions to the 
atmosphere, mainly from traffic, other forms of transportation, 
and industrial sources, such as electricity generation, mining, 
welding, and building (8). In general, any form of fuel burning, 
for instance, wood, gas (9), oil-derived diesel, and gasoline (10), 
generates PM.

Many different types of particles can be found in the atmos-
phere. If particles are emitted directly to the atmosphere, they 
will be named primary PM (11, 12), but if they are formed in 
the atmosphere by gas-to-particle conversion processes, they will 
be named secondary particles (6). Mineral dust, metals, soot, 
salt particles, pollen, and spores constitute primary aerosols. On 
the other hand, secondary aerosols are formed by gases such as 
sulfates, nitrates, and organic compounds (5). These processes 
follow three steps that can increase particle size or modify its 
composition. Nucleation-mode is the first step in new particles 
generation (13) and depends on gases concentration, humid-
ity, and temperature in the atmosphere (11), and transition of 
the gaseous phase to liquid or solid phase by condensation or 
chemical reaction, forming the first nuclei or particles in the 
atmosphere (5).

The second step is a condensation of hot gases, originating 
primary aerosols. This event is similar to nucleation (11). The 
final step in the aerosol formation is coagulation. Whole aerosols 
formed in previous steps can begin to agglomerate by Brownian 
motion (14) or turbulence and contact between particles (1). 
Consequently, particles grow in aerodynamic size (15) forming 
secondary particles from primary particles (Figure 1).

COMPOSiTiON AND SiZe

There are different types of PM depending on its source and its 
composition, e.g., Diesel exhausts particles (DEP), residual oil 
fly ash (ROFA), and Utah Valley urban air particles (UAP). The 
first one is produced by diesel combustion and is constituted 
by transitional metals, such as vanadium and zinc (16), and 
also by Polycyclic Aromatic Hydrocarbons (PAHs). ROFA is a 
complex mixture of sulfates and nitrogen compounds, carbon 
and metals (primarily vanadium) (17). UAP were identified in 
the United State of America, but became a general denomina-
tion for any UAP around the world, due to its high transitional 
metal levels (18).

Particulate matter is commonly formed by different com-
pounds (Table  1). PM composition can be different among 
cities, depending on the predominant emission sources. Another 
important characteristic of particles is the size that depends on 
the emission sources such as primary aerosol and atmospheric 
dynamic as a secondary aerosol, already described. The size 
plays an important role in human airways because it will define 
the deposition site in the lung. The deposition of aerosol in the 
human lung occurs through a combination of inertial impaction, 
gravitational sedimentation, and Brownian diffusion (19). In the 
atmosphere, different PM sizes can be found, such as the coarse 
fraction (PM10–2.5) that can penetrate into the upper airways (20) 
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FiGURe 1 | Particulate matter and its atmospheric dynamics. Particles nucleation is generated by gases emission. Condensation can occur by cooling, 
producing particles. The interaction between primary particles and secondary particles constitute the coagulation. In this way, the particles can increase their size 
and composition.
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and is deposited through an impaction or sedimentation process 
(19). The fine fraction (PM2.5) is deposited in the lung, especially 
in the alveoli (20) through sedimentation and Brownian diffusion 
processes (19), although it could pass to the systemic circulation 
(20). PM1 is deposited mainly by Brownian diffusion in the lung 
(19), but these particles can be translocated from sites in the 
lung through systemic circulation (21) to the liver, spleen, heart 
(22), or brain (23). However, they can also arrive to the brain 
through the olfactory bulb by a trans-synapsis mechanism (23) 
(Figure 2).

SPeCiFiC COMPOSiTiON AND DAMAGe

The complex mix of PM can produce different changes in the 
tissues, depending on its composition, which includes a water-
soluble or a water-insoluble fraction (31). The water-soluble 
fraction can produce cell signaling, expression of inflammatory 
mediators, oxidative stress (32) that generates DNA damage via 
a transition metal-dependent OH formation, implicating an 
important role of H2O2 (33). In vitro experiments in BEAS-2B 
have demonstrated that oxidant generation and the concentra-
tion of inflammatory cytokine were higher in an exposure with 
the water-soluble fraction than in an exposure with the insoluble 
fraction; the production of IL-8 by the former cells increased as 
well. Likewise, in  vivo intratracheal instillation of both water-
soluble and insoluble fractions in rats also increased neutrophil 
incursion and lavage protein concentrations. However, both 
neutrophil and protein elevation were greater after the exposure 
to water-soluble fraction (32). Furthermore, water-soluble and 
insoluble organic aerosols substantially contribute to the oxida-
tive properties of ambient PM (34).

Some researchers have applied statistical methods to demon-
strate that certain elements of the particles can produce specific 

changes. They have used a multivariate technique that analyzes 
the inter-correlated quantitative dependent variables, called the 
Principal Component Analysis (PCA) (35). This analysis has 
demonstrated a strong relationship between IL-6/TNF-α secre-
tion with the presence of Cu and Zn from anthropogenic sources 
in Mexicali (36). Another study, using BEAS-2B cells exposed to 
France’s PM from a different season (2008/2009) indicated that 
inorganic elements and ions were rather related to early oxidative 
events, whereas PAHs were rather related to later oxidative dam-
age and cytokine secretion such as IL-8 (27). The exposure also 
produced ROS after PAHs metabolism through the cytochrome 
P450 activation (37). Some chemical components are preferen-
tially associated with these early oxidative events. Other metals 
and PAHs have also been associated to oxidative damage and/or 
cytokine secretion (27).

ReSPiRATORY eFFeCTS

Particulate matter is easily deposited on bifurcations or angle 
ramifications of the bronchial tree due to air flow and turbulence, 
increasing PM interaction with the mucous membrane through 
an impact process (38). Once deposited on a particular region 
in the lung, it can penetrate or be absorbed by the mucous 
layer, generating local damage (39). Many researchers have 
done in vitro experiments with DEP or carbon black. They have 
analyzed the effects of particle accumulation in macrophages 
and their phagocytic capacity (40). PM can produce damage to 
the whole respiratory apparatus, increasing cellular permeability 
and reducing the mucocilliary activity by ROS production and 
cytokine releases. Since 1980, many reports have mentioned that 
exposure to PM increases cancer and deaths. It is well known 
that exposure to PM cause pulmonary diseases such as COPD, 
asthma, and fibrosis (41).
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TABLe 1 | The composition of particles.

Composition elements Reference

Metals K, Ca, Ga, Pb, Sr, Zr (16, 24–26)
Ba, Na, Li, Be, Ti, Sn, Mg 
Al, Cs, Bi
In
Sb

Transitional metals Cr, Mn, Fe, Ni, Cu, Zn (16, 24, 25, 27)
Cd, Au, V, Hg, Nb, Tl, Co
Mo
Zr
Rb, Ag

Non-metals B, As, Se (24, 25)
S
Sb

Lanthanides and 
actinides

Sm, U (24, 25, 27)
Tb
Ce, La

Biologicals Glucans (20, 28)
Endotoxins
Pollens
Viruses

Carbon Elemental (29)
Organic

PAHs (AcPy) acenaphtylene (27)
(Ant) anthracene
(BaA) benzo[a]anthracene
(BaFL) benzo[b] fluoranthene
(BkFL) benzo[k] fluoranthene
(BaP) benzo[a]pyrene
(Bg,h,iP) benzo[ghi]perylene
(BaP-TEQs) Benzo[a]
Pyrene-Toxic
(Chr) chrysene
(Flu) fluorine
(Fl) fluoranthene
(Nap) naphthalene
(InP) indeno[cd] pyrene
(BkF) dibenzo[a,h]anthracene
(Phe) phenanthrene
Pyrene

Others Ammonium sulfates and 
nitrates

(7, 18, 30)

Paraformaldehyde

FiGURe 2 | Size and Dynamic of particles in the lung and other 
tissues. Large particles can be deposited in upper airways through 
sedimentation or impaction while in the lower airways Brownian diffusion can 
deposit them in the alveoli. Ultrafine particles can translocate to blood-
circulating and be deposited in the liver, spleen or brain, although they might 
also penetrate through trans-synaptic mechanisms.
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PHYSiOLOGiCAL ALTeRATiONS

Pulmonary function assessment is the main non-invasive proce-
dure to evaluate respiratory health, identifying ventilation altera-
tions, such as restrictive or obstructive pathologies. For example, 
FEV1 assesses the volume of forced exhalation in the first second. 
Another parameter is the forced vital capacity (FVC) that evaluates 
the amount of air exhaled during the FEV assay. Jie et al. (42) evalu-
ated FVC and FEV on individuals during cooking with coal and 
non-coal fuels, as well as PM indoor concentration in the kitchen 
and living room. Despite the absence of outdoor particles, their 
results showed a significant increase in the relative concentration 
of PM2.5 in the indoor. The coal smoke was associated with 31.7% 
decrease in FVC, and 42.0% decrease in FEV1. They conclude that 

in the kitchen, the fine particles’ relative concentration produces 
a significant effect on the FVC and FEV1. On the other hand, 
children exposure to PM10 causes the loss of 23 ml in the FEV1 test 
for every 1 μg/m3 increment of PM10 in the atmosphere (43). The 
same finding was observed in women; a reduction of 5.1% in FEV1 
per each 7 μg/m3 increment of PM10 (44) was found. In this regard, 
Forbes et al. (45) mentioned that FEV1 is associated with increased 
outdoor PM10 concentration. In their analysis, they mentioned that 
increases in 3 μg/m3 PM10 was associated with a loss of 28 ml in 
FEV1, mainly in men, elderly people, and ex-smokers.

Also, a Swiss study (SAPALDIA) aimed to evaluate respira-
tory health in the adult population and the potential association 
between long-term exposure to air pollution and respiratory 
health, concluded that PM10 reduced 3.4% the FVC per each 
increment of 10 μg/m3 of PM10 (46). Even more, patients with a 
diagnosis of COPD or asthma had a major reduction of the FEV1 
when exposed to fine and ultrafine particles (47). Animal models 
have also been used to evaluate physiological parameters after PM 
exposures. Barometric plethysmography can also measure res-
piratory frequency and tidal volume. Exposure to PM increases 
both parameters (66–103 bpm and 97–190 ml, respectively) in 
rats (48). Another parameter, Penh (enhanced pause), has been 
used as well in plethysmographic studies (49). In the murine 
model, after intranasal instillation of PM1640 (standard reference 
material), the Penh index increased in a dose-response manner 
(50). The respiratory physiological changes could be generated by 
several mechanisms, like the release of molecular mediators that 
affect the cells, tissue, or systems after the PM exposure.

iMMUNe ReSPONSe

Perivascular and peribronchiolar inflammation increases after 
DEP exposure (51). Titanium dioxide nanoparticles (TiO2) rise 
the number of neutrophils and macrophages recruited in the 
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bronchoalveolar lavage fluid (BALF) (52). In healthy humans, 
the experimental exposure to DEP (300  μg/m3/h) increased 
the percentage of inflammatory cells (neutrophils), B and T 
lymphocytes, and mast cells in the lungs (17, 53). Intratracheal 
instillation (3.3 mg/kg) of Mexico City particles (PM2.5 and PM10) 
in a rat model increased the number of inflammatory cells in 
the lungs (54). This concentration induced lymphocytosis, but 
higher concentration, such as 5  mg/m3 leads to lymphopenia 
(20). Some inflammatory proteins, such as IL-1 (55), IL-17 (56), 
IL-6, IL-8, and TNF-α, increase (57). Exposure to DEP or UAP 
also increased the same cytokines (58) in in vitro experimental 
models (59). Also, other cytokines as MIP-1 (2), GM-CSF, IL-1, 
2, 4, 5, 10 (60), and IL-13 (17), are affected. Especially, exposure to 
DEP increases IL-4 (17) and IgE (61). This inflammation process 
permits diseases development through cytokines activation.

OXiDATive STReSS

Exposure to fine or ultrafine particles induces ROS-mediated 
oxidative stress, altering cellular permeability in epithelial cells 
(62) due to their organic or inorganic content (63). A primary 
form of ROS is the hydroxyl radical formed by hydrogen peroxide 
after exposure to PM (64). Also, PM2.5 can produce superoxide 
leading to the formation of hydrogen peroxide (65). H2O2 is 
a main free radical in the lung; it can produce cell damage by 
oxidant stress. Alveolar macrophages and epithelial cells gener-
ate oxidants (18). Exposure to Mexico City’s PM changed mRNA 
expression of several markers of oxidative stress in an in  vivo 
model. Especially, PM10 from the industrial and residential zone 
induced a significant 3.2-fold and 3.9-fold increase, respectively, 
as well as the stress-inducible protein HO-1. PM from Industrial 
area led to a significant 2.5-fold increase in the receptor for 
oxidized lipoproteins LOX-1 24 h after exposure (54). ROS func-
tion as intermediary signaling molecules and can activate the 
Tyrosine-kinase receptor, MAP kinase, NF-κB, and Stat-1 (66). 
These signaling pathways activate the transcription and gene 
expression of molecules related to inflammation, such as TNF-α 
and IL-1β (67), fibrosis, and apoptosis (18, 66). Oxidative stress 
can produce damage to DNA inside the lungs, as a consequence, 
cells die (62). In subjects with or without COPD or lung fibrosis, 
oxidative stress can regulate the NF-κB transcription, stimulating 
inflammatory cytokine synthesis (68, 69); exposure to PM can 
also increase exacerbations and the lung damage.

ASTHMA

Asthma is a major health issue around the world, which is 
characterized by airway hyperresponsiveness (70), obstruction 
(71), and chronic inflammation (72). Another important aspect 
of this condition is the reversibility of airway obstruction, either 
spontaneously or following treatment (73). In the asthmatics 
patients, their pulmonary cells respond to an allergen, producing 
a Th2 response, including IL-4 and IL-13 (mucous metaplasia), 
which are required to initiate this response and drive allergen-
specific IgE synthesis by B cells; IL-3, which drives basophil 
development. IL-3, IL-5, and GM-CSF can regulate eosinophil 
recruitment (74). Also, other interleukins such as IL-17 promote 

the neutrophilic reaction (75). All the proteins above maintain 
the asthmatic process in the airways.

Some reports found that the exposure to DEP activates Th2 
response and leads to the production of IL-17A (75) and mucous in 
the bronchiolar epithelium. On the other hand, UAP exposure leads 
to high level of IgG (animal models) or IgE (humans) production (76) 
arising the asthma attack (77). Acute exposures to PM can activate 
the Th2 response, inhibiting INF-γ production (78) and promoting 
an asthmatic condition. Probably, the chronic exposure enhances 
Th1 response by activation of IL-12 (79), and in turn trigger to INF-γ 
(80). Th1 response strongly suppresses the Th2 response (79).

In the asthma animal model, it has been described that exposure 
to PM increases the asthmatic process, indicating that particles 
function as an adjuvant in the generation of de novo asthma in mice 
(76). This characteristic depends on the exposure site because the 
particles include different components that differ from site to site 
or city to city (57). PM could be similar to aluminum hydroxide, 
an indispensable adjuvant in vaccines or the asthma animal model. 
Both adjuvants, as well as PM, will produce oxidative stress by 
increasing the production of reactive species oxygen (ROS), IL-1, 
IL-8, and maturation of B lymphocytes (81). The second mecha-
nism could be related to Th2 response in the lung and also to the 
production of inflammatory mediators such as IgE or IgG (82).

CHRONiC OBSTRUCTive PULMONARY 
DiSeASe

Chronic obstructive pulmonary disease (COPD) is a chronic 
progressive disease that is characterized by an airflow limitation 
(83), that can be observed in FEV1 or FVC and peak expiratory 
flow (PEF) (84). This obstruction is not reversible like in asthma. 
Exacerbation of COPD could be caused by bacteria, viruses (84), 
cigarette smoking (85), and exposure to indoor and outdoor 
air pollution (86). It is characterized by chronic inflammation 
of the airways and lung parenchyma, especially of neutrophils, 
activated macrophages, and lymphocytes (87). The patients 
present increased levels of  IL-6, TNF-α, and IL-1β (88). A close 
correlation between high levels of air pollution and COPD clini-
cal manifestation has been described. Patients with a diagnosis 
of COPD are more susceptible to urban particles, particularly 
elderly women and patients with severe COPD (89). Chen et al. 
(90) found a correlation between PM levels (PM2.5 and PM10–2.5) 
and increased COPD hospitalizations in Vancouver.

In patients with stable COPD showed an increase of proinflam-
matory mediators such as IL-6, IL-1β, TNF-α, and IL-8, produced 
by macrophages or epithelial cells (2). IL-6 increased in the sys-
temic circulation in patients during exacerbations, whereas TNF-
α and IL-1β was associated with a muscular mass decrease (88). A 
hypothetical response after PM10 exposure might be that particles 
produce NF-κB activation, and therefore, increase inflammation 
and exacerbations in patients with COPD (91). Transcription of 
TNF-α and IL-1β genes are known to be regulated by NF-κB (67).

PULMONARY FiBROSiS

Pulmonary fibrosis is a restrictive disease that presents an irrevers-
ible decrement of the vital capacity (63). Furthermore, some cells are 
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FiGURe 3 | The principal route of damage after PM exposure.
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implicated such as fibroblast, myofibroblast (92), and macrophage 
(93), which produce an excess of extracellular matrix components 
(94) and the pulmonary remodeling like an irreversible distortion 
of the lung’s architecture (95). In this event, the deposit of collagen 
fibers is stimulated by TGF-β (96), a potent mediator of fibrogenesis 
(97). Furthermore, this response is also involved in the production 
of IL-4 and IL-13 (98). Exposure to ambient particles could lead 
to pulmonary fibrosis (99), especially the exposure to elements or 
chemicals such as Al, Si, carbon black, TiO2, silicon oxide, talcum 
powder, asbestos, and other fibers can cause epithelial damage and 
rise the levels of IL-2 (100) and IL-8 (66).

PM10 collected in Mexico City can induce increases in the PDGF, 
a potent mitogen and chemotactic factor for interstitial cells (101), 
and together with NF-κB, are indispensable in survival factors that 
inhibits apoptosis and promotes proliferation (102); it also provokes 
myofibroblast differentiation (66) and production of collagen fibers 
in the lung (101). Another factor is the proteases activity (20) that 
increases in airway epithelial A549 cells exposed to PM10 of Mexico 
city. It was demonstrated an increase in protease activity, especially 
of MMP-2 and MMP-9 and a decrease in E-cadherin and β-catenin 
expression (103).

During 5 days, the exposure to TiO2 produced a small increase 
in procollagen in rat tracheal explants. After 7 days, fine TiO2 sig-
nificantly increased PDGF-β, TGF-α, or TGF-β levels, compared 
with animals exposed to ultrafine TiO2; both particle samples 
produced similar increments of PDGF-A (104). These changes 
could be associated with oxidative stress, which generates 
inflammatory infiltrate (99). PM generate ROS, which produces a 
proinflammatory activity and cytotoxic effects. Proinflammatory 
effects are mediated by the MAP kinase and NF-κB cascades that 
are responsible for the expression of cytokines, chemokines, and 
adhesion molecules (105). In the bleomycin animal model, the 
exposure to carbon black nanoparticles increased neutrophils 
and macrophages in the lung. However, lymphocytes or eosino-
phils do not increase (106), and pulmonary fibrosis worsened in 
the mouse model (107). Intratracheal instillation of PM increases 
fibrosis (108) and its fibrogenic mediators such as KC, IL-6, 
CCL2, and TGF-β1 (109). Metals represents the major source 
of ROS in PM, which can activate mitogen proteins or nuclear 
regulating as; nuclear factors such as AP-1 and NFAT (110). 
However, other elements of PM also produce proteins activation 
by ROS, the exposures to particles worsen damage in patients 
with pulmonary fibrosis.

CANCeR

Recently, outdoor air pollution was classified as a group I car-
cinogen by the International Agency for Research on Cancer (4). 
Particles contain two major components that produce oxidant 
stress, PAHs, and metals. Both are strong mutagenic and carcino-
genesis agents (111), and it has been associated with markers of 
genetic damage, which may increase the frequency of human can-
cer (112). Especially the cancers of the trachea, bronchus, or lung 
represented approximately 7% of total mortality attributable to 
PM2.5 in 2010 (113). Some studies showed that lung cancer among 
non-smokers can result by exposure to PM (114), however, the 
risk of developing lung cancer is higher in smokers (115).

Exposure to UAP or DEP can induce DNA single-strand 
break, producing a nucleoside, 8 hydroxyguanine, or 8-oxo-
7,8-dihydro-2-o-desoxyguanosine (116), that is a predominant 
product of free radicals, which causes DNA adducts by oxidation 
(117). Formation of adducts is generated by PAHs metabolism 
of CYP1A1 and GSTM1 (116). Some reports have mentioned 
that in vivo exposure to PAHs increases the rate of chromosome 
aberration, and micronuclei in lymphocytes. In this regard, sister 
chromatide exchange has been found in lymphocytes of both 
policemen and drivers in China (112). Furthermore, there is 
evidence that PAHs can generate deletion (p) of an arm on chro-
mosomes, as well as K-ras and P53 mutations (116), the principal 
oncogene and tumor suppressor, respectively.

CONCLUSiON

Our ambient plays an important role in the composition and size 
of the particles; this dynamic process is the main factor to produce 
specific damage along the airways. In this way, the exposure can 
increase inflammatory factors and cellular recruitment in the lung, 
which promotes physiology alterations, resulting in pulmonary 
diseases as COPD and asthma. Likewise, PM can activate other 
cellular mediators that produce pulmonary fibrosis. Acute expo-
sure to PM can activate Th2 immune responses; however, chronic 
exposure changes this profile by activation of Th1, and it triggers 
pro-fibrotic cytokines as well. The PM components are associated 
with different damage in accordance with elements such as water-
soluble or insoluble fraction. However, all components presents 
in the PM, form a final complex mixture that will produce or 
activate inflammatory processes, damage or ROS in the lung. All 
this changes harm the epithelium, increasing epithelial perme-
ability. In patients with pulmonary diseases, the exposure to PM 
increases the changes and the lung damage (Figure 3).
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