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The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glyco-
proteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and 
SLAMF4 interact with each other. Their interactions induce signal transduction networks 
in trans, thereby shaping immune cell–cell communications. Collectively, these receptors 
modulate a wide range of functions, such as myeloid cell and lymphocyte development, 
and T and B cell responses to microbes and parasites. In addition, several SLAMF 
receptors serve as microbial sensors, which either positively or negatively modulate the 
function of macrophages, dendritic cells, neutrophils, and NK cells in response to micro-
bial challenges. The SLAMF receptor–microbe interactions contribute both to intracellu-
lar microbicidal activity as well as to migration of phagocytes to the site of inflammation. 
In this review, we describe the current knowledge on how the SLAMF receptors and 
their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive 
immune responses to microbes.
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SLAM FAMiLY ReCePTORS AND THeiR ADAPTORS SAP 
AND eAT-2

The SLAMF Gene Family
Seven of the nine members of the signaling lymphocytic activation molecule (SLAM) gene Family 
(SLAMF1–7), a subfamily of the immunoglobulin superfamily, cluster on the long arm of human and 
mouse chromosome 1 (1). While SLAMF8 and SLAMF9, as well as the SLAM-associated adaptor 
EAT-2 (SH2D1B) are located in close proximity to the “core” SLAMF locus (shown in Figure 1), 
the SAP (SH2D1A) gene is on the X-chromosome [reviewed in Ref. (2, 3)]. The nine SLAMF genes 
encode cell surface receptors, whose expression is mostly confined to hematopoietic cells (Table 1). 
A wide range of these cells expresses at least one member. The activation state, presence of the adap-
tor molecules SAP and EAT-2, and the location of immune cells dictate SLAMF receptor expression 
and function (Figure 2). While SLAMF receptors share intracellular interaction partners and display 
overlapping features, the individual members of this family have a unique functional signature.

The consensus structure of SLAMF receptors consists of an extracellular membrane distal IgV 
domain linked to a proximal IgC2 domain, a transmembrane region, and an intracellular signaling 
domain that often contains several intracellular tyrosine-based switch motives (ITSM) (Figure 1). 
Notable exceptions to the consensus structure are SLAMF2, which lacks the intracellular and trans-
membrane region and instead harbors a glycosyl-phosphatidylinositol membrane anchor; SLAMF3, 
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FiGURe 1 | Signaling lymphocytic activating molecule gene family (SLAMF receptors family) and proteins. Organizational overview of the SLAM family 
cluster on chromosome 1 in both human and mice. EAT-2 is also located proximal to this gene cluster and is duplicated in mice, encoding Eat-2a and Eat-2b. The 
SLAMF receptors are part of the Ig-superfamily and they have an IgV and an IgC2 domain. Seven of the SLAM receptors are homophilic ligands. SLAMF2 and 
SLAMF4 are co-ligands that bind each other. Three SLAM genes have been shown to possess bacterial binding capacity. Six of the SLAM receptors have docking 
domains for SAP (and EAT-2) represented by Y (tyrosine in ITSM). SLAMF2 is anchored to the plasma membrane by a GPI-anchor.
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which has a duplication of the IgV–IgC2 domains; and SLAMF8 
and SLAMF9, which only have ~30 intracellular amino acid 
residues and lack ITSMs.

Most SLAMF Receptors Are Homophilic
Most SLAMF receptors are self-ligands with signaling motifs, 
which function in cell–cell communication. Crystal structures 
of SLAMF1, SLAMF5, and SLAMF6 revealed an angled engage-
ment of the IgV domains in trans (4, 5). Exceptions to this 
homotypic engagement are SLAMF2 and SLAMF4, which are 
counter-structures (6–8). Ligation of SLAMF receptors leads to 
inhibitory or activating signaling events through modulation of 
the cellular responses. Interestingly, SLAMF receptors can also 
engage microbial structures. For example, SLAMF1 partakes in a 
xenophilic interaction with the hemagglutinin MH-V of Measles 
virus, which facilitates viral entry as well as cell fusion (9, 10). 
As this interaction is thought to benefit the virus, it is pathogen-
centric. Additional studies also revealed cognate interactions of 
SLAMF1, SLAMF2, and SLAMF6 with bacterial components 
(Table 2) (11–13). This class of xenophilic interactions appears 
to be beneficial for the host and is, therefore, host-centric.

The SLAMF-Specific Adaptor Proteins 
SAP and eAT-2
A little under two decades ago, three independent research 
groups discovered an association between mutations in SH2D1A, 
the gene that encodes the intracellular adaptor protein SLAM-
associated protein (SAP) and X-linked lymphoproliferative 
syndrome (XLP) (14–16). At the same time, we showed that SAP 
is an intracellular binding partner of SLAMF1, which is required 
for proper functioning of SAP in response to Epstein–Barr virus 
(EBV) and other virus. In XLP patients, SAP is mutated or absent 
resulting in aberrant functioning of SLAMF1 (16).

SLAM-associated protein encodes a small adaptor protein 
(14 kDa) that consists almost entirely of a Src homology 2 (SH2) 
domain. SAP can interact with the ITSMs motif of six SLAMF 
receptors in phospho-tyrosine-dependent and independent 
modes (Figure 1) (16–19). Mice that are deficient for the gene 
that encodes SAP (Sh2d1a−/−) have a range of specific immune 
malfunctions, which manifest the development and maturation 
of immune cells and during responses to microbial challenges 
(20–22). Although SAP expression by T-cells, NK cells, and NKT-
cells is well established, B-cells express SAP only under certain 
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TABLe 1 | Slam receptor expression, associated effector molecules, and functions.

expression effectors SAP-dependent eat2-dependent Other/unknown

SLAMF1, SLAM, 
CD150

Act T, act B, 
mono, Mø, DC, 
plat, HSC

Fyn, Lck, SHIP-1, Src, 
Shp-1/2, PKCθ, Bcl-10, 
Beclin-1, PI3K, Nf-κB, 
Ras-GAP, Akt, JNK1/2, 
Dok-1/2 

T: (+) IL-4, IL-13, 
proliferation, Th2/
Th17 polarization, 
NKT: development 
(with Slamf6)

Unknown T: (+) IFNγ, B: (+) proliferation and activation, 
(+) apoptosis, Mø: (+) ROS, IL-12, TNFα, NO, 
(−) IL-6, (+) myeloid cell migration, (+) platelet 
aggregation, (+) phagocytosis

SLAMF2, CD48 Pan-lymphocyte Lck, Fyn, RhoA N/A N/A T: (+) IL-2, proliferaton, B: (+) activation, (−) 
apoptosis Mast: (+) TNFα, eo: (+) activation, 
mobilization, Mø: (+) TNFα, IL-12, (+) 
phagocytosis, DC: (+) survival

SLAMF3, Ly-9, 
CD229

T, B, iCD8, NKT, 
mono, Mø, HSC

AP-2, Grb-2, ERK, 
PLZF, NFAT

Unknown Unknown T: (−) IFNγ, (+) proliferation, IL-2, IL-4, iCD8+ 
T-cells, iNKT (−) development

SLAMF4, 2B4, 
CD244

NK, NKT, T, γδ, 
CD8, DC, eo, 
mast, mono

LAT, PI3K, Vav-1, SHIP, 
c-Cbl, ERK, Shp-1/2, 
PLC-γ, 3BP2, Csk

T: (−) IFNγ, NK/
CD8+: (+) cytotoxicity, 
proliferation

NK: (−) Cytotoxicity of 
Slamf2-neg target cells, 
(−) IFNγ

eo: (+) adhesion, chemotaxis, peroxidase, (+) 
IFNγ, IL-4

SLAMF5, CD84 Pan-lymphocyte 
plat, mast, eo

Dok-1, c-Cbl, ERK, JNK, 
Fes, Shp-1, Nf-κB

T-B: (+) GC response NK: (+) Cytotoxicity 
Mast: (+) Degranulation

lat: (+) spreading

SLAMF6, 
NTB-A, Ly-108

NK, NKT, T, B, 
Mø, pDC

PLC-γ, SHIP, Shp-1/2, 
PI3K, PLZF, Lck, PKCθ, 
NFAT

T-B: (+) GC response, 
NK: (+) IFNγ, NKT: 
development (with 
Slamf1)

NK: (+) Cytotoxicity T-B: (−) GC response, Neutro: (+) ROS, (+) IL-6, 
TNFα

SLAMF7, 
CRACC, CS1, 
CD319

T, B, mono, DC, 
NK

PLC-γ, c-Cbl, SHIP, Akt, 
Vav-1, Shp-1/2

Unknown/N/A NK: (+) Cytotoxicity NK: without Eat2 (−) Cytotoxicity, B: (+) 
proliferation

SLAMF8, 
BLAME

iCD8, mono, DC, 
Mø, Neu, endo, 
FRC

PKC, p40(phox) N/A N/A (−) myeloid cell migration, (−) ROS, iCD8+ T-cells, 
iNKT (+) development

SLAMF9, 
SF2001

mono, DC ND N/A N/A Unknown

T, T cells; B, B cells; act, activated; Mø, macrophage; DC, dendritic cell; plat, platelet; HSC, hematopoietic stem cell; mono, monocyte; NKT, natural killer T cell; eo, eosinophil; γδ, γδ 
receptor-expressing T cell; mast, mast cell; endo, endothelial cell; FRC, fibroblastic reticular cell; ROS, reactive oxygen species.
Expression data are based on murine expression.
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specific conditions (23, 24). Some EBV-transformed B-cells, 
Hodgkin’s lymphomas, and germinal center (GC) B-cells appear 
to express SAP. The second SLAMF-associated adaptor, EAT-2, 
exhibits distinct functional features and is not associated with any 
primary human immune deficiency (25). EAT-2 binds different 
ITSMs in SLAMF receptors and is involved in the activation of 
antigen-presenting cells (APCs) and cytotoxicity of NK cells 
(25, 26). The expression profile of this adaptor also differs from 
SAP. NK cells express EAT-2 as do a range of APCs, including 
monocytes (25, 27).

Two SAP signaling modes exist: (1) blockade of the bind-
ing of SH2-domain-containing molecules, e.g., the tyrosine-
phosphatases SHP-1 and SHP-2 to phosphorylated ITSMs and 
(2) recruitment of the Src kinase Fyn in its active (“open”) con-
figuration to SAP (3, 16, 28–30). The blocking function of SAP 
is due to its high affinity for ITSM motifs caused by an unusual 
three-pronged binding of the SH2 domain (31). In the absence 
of SAP, SLAMF1 and SLAMF6 bind the tyrosine phosphatases 
SHP-1 and/or SHP-2, which are negative regulators of T cell 
functions (16, 17, 32).

A set of functions of SAP in T-cells is dependent on the 
recruitment of the Src kinase Fyn, which is intricately involved 

in T-cell receptor (TCR) signaling (Figure 3). SLAMF–SLAMF 
homophilic ligation leads to the recruitment of SAP to their 
ITSMs, which interacts with the SH3 domain of Fyn (28, 33). 
Binding of Fyn to SLAMF1-associated-SAP enhances IL-4 and 
IL-13 production (29). Structural analyses have shown that 
Arg78 of SAP is crucial to this interaction (28, 29). Indeed, 
SAPR78A mice showed a lack of IL-4 production, similar to that 
of Sh2d1a−/− mice (29). Lacking this arginine (28), EAT-2 does 
not interact with Fyn but associates with a variety of different 
Src kinases (27). Similar to Sh2d1a−/− T-cells, SLAMF1−/− CD4+ 
T-cells are also less prone to TCR-mediated IL-4 production 
(34). It was, therefore, concluded that SLAMF1 contributes to 
Th2 polarization. Subsequent studies showed that a signaling 
cascade involving SAP and Fyn as well as GATA-3 transcrip-
tional promotion by NF-κB are responsible for this phenotype 
(22, 35, 36). This pathway in T-follicular helper cells effectively 
contributes to GC B-cell maintenance and optimal humoral 
responses (37).

Overall, these studies have demonstrated that SLAMF recep-
tors and SAP have a complex involvement in mechanisms that 
fight intracellular infections, via their effect on cytokine produc-
tion. Together, SAP and EAT-2 dictate the major part of the 
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FiGURe 2 | Ribbon representation of Slamf6 and Slamf5 structures. Homophilic interactions of SLAMF6 and SLAMF5 as well as heterophilic interactions 
between two other Ig-superfamily receptors CD58 and CD2. MHC interacting with TCR functions as a reference for the molecular dimensions. Image adopted from 
Calpe et al. (2).
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SLAMF signaling. However, other mediators dictate a distinct set 
of SLAMF receptor functions.

SeveRAL SLAMF ReCePTORS iNTeRACT 
wiTH BACTeRiA

SLAMF1 and SLAMF6 interactions with 
Gram− Bacteria
The importance of SLAMF receptors in phagocytes was high-
lighted by our recent observations that SLAMF1 is involved in 
cognate interactions with bacterial entities. These interactions 
result in the defect in the clearance of Salmonella typhimurium 
SseB− after peritoneal infection (11, 12, 38). Thus, direct cognate 
interactions with microbial components modulate SLAMF func-
tions in phagocytes.

Evidence for direct interactions of SLAMF1 and SLAMF6 
with Escherichia coli outer membrane porins C (OmpC) and 
OmpF was shown in a cell-based luciferase reporter assay 
(11). The specificity of these interactions extends to different 
Gram− bacteria, but not Gram+ bacteria; SLAMF1 interacts with  
S. typhimurium (11); SLAMF6 interacts with S. typhimurium 
and to some degree with Citrobacter rodentium (38). Subsequent 
analyses demonstrated that this interaction depends on the IgV 
domain of SLAMF1 and SLAMF6. The structure of SLAMF1 has 
proven difficult to unravel due to the flexible (non-rigid) nature 
and high degree of glycosylation of SLAMF1. By a combination 
of techniques, several amino acid residues have been implicated 
in SLAMF1 homophilic engagement as well as SLAMF1 engage-
ment with Measles virus protein MV-H (10). The FCC beta-sheet 
and the CC loop of SLAMF1 contain several conserved residues 
and substitution of Val63, Thr65, Ala67, Lys77, and Glu123 
within these regions all resulted in a reduction in the binding 
of SLAMF1 to SLAMF1 as well as to MV-H. Single mutations of 
equivalent residues in mouse SLAMF1 resulted in little difference 
in the binding of OmpC/F containing E. coli. In line with this, 

SLAMF6 engagement with E. coli structures does not require 
amino acid residues in the SLAMF6 IgV domain that are crucial 
for SLAMF6–SLAMF6 homophilic ligation (38). However, gen-
eral masking of interaction domains by mAbs directed against 
epitopes in the IgV domains of SLAMF1 or SLAMF6 blocked 
their interactions with bacteria (11, 38). Thus, whereas there is 
overlap in the SLAMF1 residues that are essential for SLAMF1–
SLAMF1 ligation with the residues involved in MV-H binding 
to SLAMF1, it is likely that OmpC/F binding involves a separate 
set of interacting SLAMF1 residues. This would suggest that 
the interaction of SLAMF1 with bacteria is of a separate origin, 
distinct from the SLAMF1–SLAMF1 interaction domain, and 
hence may represent a SLAMF1 function of separate evolution-
ary significance. Structural analyses of SLAMF1 or SLAMF6 and  
E. coli outer membrane porins should provide conclusive insights 
into the mode of these interactions.

SLAMF1 enhances Phagocyte effector 
Functions
The interaction of SLAMF1 with OmpC/F+ E. coli results in a more 
effective phagocytosis of these bacteria by macrophages (11). 
Clusters of SLAMF1 bound to OmpC/F remain proximal to the 
bacterium during phagocytosis, thus colocalizing to intracellular 
phagosomes. A signaling complex is recruited to the intracellular 
domain of SLAMF1 either directly upon bacterial ligation or 
shortly thereafter during internalization. The transient recruit-
ment of the autophagy scaffold protein Beclin-1 is the initial 
event that leads to the formation of a functional complex that also 
contains Vps34, Vps15, and UVRAG (Figure 4) (13). This novel 
SLAMF1 signaling module is enhanced by, but not prerequisite 
of the presence of EAT-2 (13). Vps34 supported by its co-enzyme 
Vps15 is the sole Class III phosphatidylinositol kinase and pro-
duces the docking lipid phosphatidylinositol-3′-phosphate (PI3P) 
(39). This SLAMF1-enhanced production of PI3P affects two 
important phagosomal processes. First, formation and activation 
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FiGURe 3 | Slamf receptors modulate the cellular communication 
between antigen-presenting cells (APCs) and T cells. Binding of SLAM 
family members to their ligands induces the phosphorylation of their 
cytoplasmic tails and the subsequent binding of SLAM-associated protein 
(SAP) or EAT2 through a tyrosine-containing motif (ITSM). SAP is widely 
expressed by T cells and EAT2 is expressed by APCs. These two molecules 
can recruit and activate several Src kinases (including Fyn) that modulate cell 
activation by signals generated through the T cell receptor (TCR) and 
costimulatory proteins, such as CD28. Signals mediated by the SLAM 
receptors can also affect the function of APCs. SLAM receptors recruit 
various SH2-domain-containing proteins giving rise to different signals that 
determine distinct and, in some cases, divergent biological outcomes.

TABLe 2 | Slamf receptors and their adaptor SAP modulate susceptibility 
to microbes.

Deficiency: 
resistant

Deficiency: 
susceptible

SLAMF 
ligand

Microbial ligand

SLAMF1 T. cruzi Gram− bacteria, L. 
major

Slamf1 Measles virus,  
E. coli (OmpC/F+) 
S. typhimurium

SLAMF2 S. aureus FimH+ 
enterobacterae

Slamf4, 
CD2

E. coli (FimH+)

SLAMF3 MCMV Slamf3

SLAMF4 LCMV, γHV-68 Slamf2

SLAMF5 Slamf5

SLAMF6 L. 
mexicana, 
C. 
rodentium

S. typhimurium Slamf6 E. coli, C. 
rodentium

SLAMF7 Slamf7

SLAMF8 Slamf8

SLAMF9 ?

SAP Mouse: γHV-68, 
LCMV, influenza, 
human: EBV, some 
other viruses

Slamf1, 
3, 4, 5, 6 
human: 
Slamf7

N/A

SAP (Sh2d1a), SLAM-associated protein; LCMV, lymphocytic choriomeningitis virus; 
Omp, outer membrane porin; EBV, Epstein–Barr virus; FimH, bacterial lectin; MCMV, 
murine cytomegalovirus; γHV-68, murine gamma-herpes virus 68.
Deficiency: resistant and deficiency: susceptible refer to observations made in 
Slamf-deficient mice; resistant indicates that knock out animals have milder disease, 
susceptible indicates that knock out animals have stronger disease manifestations.
? Unknown.
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of the classical phagocytic NADPH oxidase (Nox2) complex is a 
tightly regulated process that involves assembly of the membrane 
bound catalytic gp91phox and p22phox with at least four cytosolic 
subunits p40phox, p47phox, p67phox, Rac1/2 (40). By recruiting the 
p40phox subunit to the maturing phagosome, PI3P initiates the 
formation of this superoxide-producing complex (39). Second, 
PI3P enables the recruitment of the tethering molecule EEA1, 
which is critically involved in phagolysosomal fusion. Thus, in 
the absence of SLAMF1 from phagocytes, the phagocytic process 
of specific Gram− bacteria is compromised.

SLAMF2 interactions with Gram− Bacteria
SLAMF2 is implicated in the recognition of non-opsonized  
E. coli via surface type-1 fimbriae, which contain the lectin FimH 
(12). Microscopy and genetic analysis suggest that SLAMF2 
binds to FimH, which is dependent on the presence of mannose 
on SLAMF2 (41). Uptake of FimH− E. coli is not mediated by 
SLAMF2 (42).

SLAMF2 internalizes with FimH upon phagocytosis of FimH+ 
E. coli by mast cells and macrophages, which can be inhibited by 
mAb directed against SLAMF2. The “force catch” interactions 
between SLAMF2 and FimH are strengthened by the motility 
that is implicit to fimbriae and, therefore, represents a unique 
mode of interaction between phagocytes and E. coli (43). Studies 
utilizing mast cells show that the SLAMF2-FimH-mediated 
phagocytosis, which results in cholesterol-dense E. coli+ cave-
olae (44), has a distinct outcome compared to phagocytosis of 

opsonized E. coli (Figure  5). SLAMF2-aided uptake results in 
the expulsion of the bacterium rather than its intracellular killing 
(42). Thus, SLAMF2 mediates uptake of FimH+ E. coli via the 
formation of caveolin+ phagocytes that represent recycling vesi-
cles that release their content to the extracellular milieu within 
several hours.

SLAMF Receptors Alter Cytokine 
Production by Phagocytes
Beside the delayed phagocytosis of E. coli, SLAMF1−/− mac-
rophages display impaired responses to crude LPS (bacterial 
homogenate) (11, 13, 34). Stimulation with IFNγ and LPS, but 
not GpC or PGN, induced an ameliorated production of IL-12, 
TNF-α, and nitric oxide in SLAMF1−/− macrophages (34). 
Conversely, human DCs that were stimulated with CD40-L 
expressing cells produced less IL-12 and TNF-α when SLAMF1 
costimulation was induced, even in the presence of IFNγ and 
LPS (45). This discrepancy could suggest that SLAMF1 plays 
distinct roles on cytokine production in phagocytes, depending 
on whether SLAMF1 engages in homophilic interactions and/
or bacterial interactions (i.e., OmpC/F). Although SLAMF2 has 
no intracellular signaling domain, SLAMF2 induces signaling 
events in human brain microvascular endothelial cells that 
involve an influx of intracellular Ca2+ and the phosphorylation 
of RhoA (46). In mast cells, SLAMF2 engagement results in an 
increase in their TNF-α production and histamine release (41, 47, 
48). Stimulation of SLAMF2−/− macrophages with LPS results in 
reduced induction of TNF-α and IL-12 production (49). No spe-
cific interactions of SLAMF5 with bacterial entities have currently 
been reported, yet SLAMF5 also affects phagocyte functions. 
Transfection studies in mast cells and macrophages have shown 
that SLAMF5 signaling enhances phagocyte activation. SLAMF5 
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FiGURe 5 | SLAMF2 mediated the temporary retention of FimH+  
E. coli in phagocytes. SLAMF2 can associate with the bacterial lectin FimH 
on the flagella of E. coli. The bacteria are internalized into caveolin+ vesicles 
to subsequently be released. The presence of SLAMF2 on macrophages and 
mast cells induced an LPS- or bacteria-mediated enhanced burst of TNF-α 
production.

FiGURe 4 | Slamf1 affects phagosome functions in two ways, after binding to E. coli. OmpC/F+ E. coli can be bound by SLAMF1. Subsequently, SLAMF1 is 
internalized into the progressing phagosome. The Vps34/15 > UVRAG > Beclin-1 complex is formed. PI is converted to PI3P, which is the docking lipid for subunits 
of the Nox2 complex as well as the tethering molecule EEA-1. The result of the docking of these proteins is the progression of phagosomes toward bactericidal 
phagolysosomes that are able to kill the internalized bacteria. The positive modulation of Nox2 complex formation by PKC-delta is inhibited by SLAMF8. There is 
preliminary evidence for an inhibition by SLAMF8 of Vps34/15 > UVRAG > Beclin-1 complex recruitment to SLAMF1.
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engagement induces FcϵRI-mediated mast cell degranulation, 
which depends on Dok1 phosphorylation (50). Interestingly, 
LPS stimulation of macrophages results in phosphorylation of 
SLAMF5 at the second ITSM domain (Y300), which enhances 
the production of MCP-1 and TNF-α in an NF-κB dependent 
fashion (51). These observations indicate that SLAMF receptors 
initiate the signaling through the phosphorylated ITSM motif in 
phagocytic cells.

EAT-2 may modulate cytokine production. Indeed, recent 
reports suggest that EAT-2 mediates the production of TNF-α 
through several SLAMF receptors in human DCs (52). Although 
specific mechanisms need to be further identified, it is clear that 
SLAMF receptors modulate inflammatory effector functions of 
phagocytes in the presence of bacteria or LPS.

SLAMF8 iNHiBiTS NOX2 ACTiviTY iN 
BACTeRiAL PHAGOSOMeS

SLAMF8 is a member of the SLAMF receptor family that 
exhibits unique characteristics, as SLAMF8−/− macrophages 
appear over-activated. The presence of SLAMF8 in phagocytes 
inhibits the maturation of phagosomes, irrespective whether 
the cargoes are Gram+ or Gram− bacteria (53). We have recently 
reported that SLAMF8 negatively regulates the activity of 
PKC-δ, which phosphorylates the p40phox subunit of the NOX2 
complex (53). The presence of SLAMF8, therefore, negatively 
regulates the production of superoxide. However, the molecular 
intermediates that facilitate this SLAMF8 function have yet to 
be determined. Because SLAMF8 does not contain an intracel-
lular domain with known signaling motives, it is unlikely that 
SLAMF8 recruits adaptor molecules that in turn inhibit PKC. 
Speculatively, competitive inhibition of SLAMF1 by SLAMF8 
represents a possible mechanism. Although interactions in trans 
between SLAMF1 and SLAMF8 did not occur (54), the SLAMF1-
Beclin1-Vps34/15-UVRAG complex is more readily formed in 
the absence of SLAMF8. This preliminary finding alludes to a 
functional interplay between these two SLAMF receptors.

SLAMF1 AND SLAMF8 ReGULATe 
MiGRATiON OF MYeLOiD CeLLS TO 
SiTeS OF iNFLAMMATiON

Differential expression of SLAMF1 and 
SLAMF8 by Phagocytes
Several SLAMF receptors are highly expressed by phagocytes 
after activation by inflammatory signals, suggesting a time-
sensitive functional significance of SLAMF receptor surface 
expression in these cells. SLAMF1 expression is induced by 
stimulation with either LPS or IL-1β and in phagocytes during 
active colitis (34, 55, 56). Resting blood leukocytes are virtu-
ally devoid of SLAMF8 transcripts and protein (57). LPS only 
marginally induces SLAMF8 expression, rather its expression in 
phagocytes is mainly dependent on IFNγ signals, which result in 
a strong upregulation of SLAMF8 (53, 54, 57). Thus, during an 
ongoing infectious inflammation, phagocytes initially increase 
SLAMF1 surface expression and subsequently induce SLAMF8 
expression.
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SLAMF1 and SLAMF8 Modulate Myeloid 
Cell Motility
Phagocyte-expressed SLAMF1 positively affects cell migration 
to sites of ongoing inflammation. Our study that focused on cell 
motility during inflammation revealed that phagocyte-intrinsic 
functions of SLAMF1 enhance the capacity to migrate into sites 
of inflammation (54). Inflammatory phagocytes are required to 
infiltrate the lamina propria of the colon to establish persisting 
colitis after transfer of CD45RBhi CD4+ T-cell into Rag1−/− mice. 
The impairment of inflammatory phagocytes in SLAMF1−/− 
Rag1−/− mice to migrate to the lamina propria, therefore, resulted 
in ameliorated colitis (55). The poor outcome in SLAMF1-
deficient mice of experimental infections with Leishmania major, 
which rely on macrophages for effective clearance, may also be 
partly explained by impaired migration of macrophage-forming 
monocytes (34). Opposed to the positive effect that SLAMF1 has 
on myeloid migration, SLAMF8 has a phagocyte-intrinsic nega-
tive effect on cell motility (54). Given the timing of the surface 
expression of SLAMF1 and SLAMF8 and their opposite effect 
on phagocyte activation, we hypothesize that these two SLAMF 
molecules represent a rheostat mechanism that modulates the 
extent of inflammation at different stages of an infection.

The opposite effects on reactive oxygen production displayed 
by these two SLAMF receptors were shown to influence cell 
motility. Specific inhibition of NOX2 activity canceled the in vitro 
migration phenotypes of both SLAMF1−/− and SLAMF8−/− phago-
cytes (54). These two phenomena can be linked by the mounting 
evidence that hydrogen peroxide, which is the more stable 
intermediate of superoxide, can act as a “second messenger” by 
oxidizing phosphatases and  –  as such  –  modulate cell motility 
(40, 58, 59).

SLAMF1, 2, 4, AND 6 ReGULATe 
eNTeROCOLiTiS

In line with the observations that SLAMF members modulate 
the function of phagocytes, three SLAMF receptors (SLAMF1, 
SLAMF2, and SLAMF6) also affect the pathogenesis of murine 
models of colitis, which are complex, multifaceted immune 
events, including activation of the mucosal immune system by 
microbes. Accumulating evidence by our group and by others 
shows a role of SLAMF receptors in cognate interactions with 
bacteria. The infiltration of pro-inflammatory phagocyte into the 
lamina propria of the colon is also prerequisite of the pathogenesis 
of colitis and some SLAMF receptors affect the extent of the colitis 
by influencing this process. Additionally, modulation of cytokine 
production may also contribute to these colitis phenotypes. No 
strong intestinal inflammation phenotype has been ascribed to 
XLP (60), thus SAP-independent functions of SLAMF receptors 
likely modulate mucosal immune processes.

SLAMF6 enhances C. rodentium Colitis
Citrobacter rodentium are attaching bacteria that harbor a 
pathogenicity island, which renders them capable of coloniz-
ing the colonic epithelia of mice. Colonized C. rodentium 
causes lesions that result in a compromised mucosal barrier. 

Colitis induced by oral infection with C. rodentium is remark-
ably reduced in mice lacking both the Rag1 and the SLAMF6 
genes compared to their Rag-1-deficient controls, but not in 
mice that only lack the SLAMF6 gene (single knock out) as 
compared to their WT littermates. This shows an involvement 
of SLAMF6 in innate responses to the mucosal infections with 
specific enterobacteriae (38). Specific interactions between  
E. coli or C. rodentium and SLAMF6 have also been reported. 
Lacking this interaction in SLAMF6−/− mice manifests in impaired 
functions of phagocytes that first detect the effacing C. rodentium 
bacteria, hence driving the phenotype of reduced pathology (38).

Phagocyte Functions of SLAMF1 
Contribute to Colitis
SLAMF1 in phagocytes also contributes to the development of 
colitis. By adoptive transfer of CD45RBhi CD4+ T-cells into Rag−/− 
or SLAMF1−/− Rag−/− mice, we found that only SLAMF1 expression 
by innate cells, and not T-cells, is required for the full induction 
of experimental colitis (55). Activation of macrophages and 
DCs via CD40-stimulation alone was not sufficient to overcome 
the reduced inflammation in SLAMF1−/− Rag−/− mice, further 
establishing a phagocyte-intrinsic cause of this phenotype. The 
hampered migratory capacity of SLAMF1-deficient inflammatory 
phagocytes was shown to be the primary cause of this phenotype 
(55). The enhanced phagosomal maturation and ROS production 
that results from the interaction of SLAMF1 with E. coli could 
represent an additional mechanism if these SLAMF1-mediated 
functions lead to a higher activation state of the lamina propria 
phagocytes. The production of pro-inflammatory cytokines 
that are implicated in colitis development are also impaired by 
SLAMF1-deficiency (55).

SLAMF2 enhances Colitis while SLAMF4 
Negatively Regulates inflammation of the 
Small intestine by the Control of Cytotoxic 
ieLs
SLAMF2 is abundantly expressed in all myeloid cells (61). 
SLAMF2−/− T-cells induced colitis in Rag−/− mice, but not in 
SLAMF2−/− Rag−/− mice, indicating that SLAMF2 expression 
by both innate cells and transferred T-cells contributes to the 
development of colitis (49). Indeed, SLAMF2-deficient mice 
were shown to have severely impaired CD4+ T-cell activation 
and SLAMF2 expression is required on both T-cells and APCs 
for proper activation (62). Beside T-cell activation, which is 
a prerequisite for the development of colitis in this model, 
macrophage-expressed SLAMF2 could contribute to colitis by 
inducing TNF-α production, as suggested by in vitro experiments 
(41, 49). Whether both SLAMF2 interactions with SLAMF4 and 
bacteria drive this in vivo remains to be determined.

SLAMF4 also affects gut-mucosal immune responses. CD8+ 
T-cell transfer experiments showed that SLAMF4 expression 
specifically correlated with localization to the intestinal lamina 
propria, where SLAMF4 modulates homeostasis by negative 
regulation of the expansion of cytotoxic CD8+ IELs (61). SLAMF2 
expression in myeloid cells, especially the CX3CR1+ and 
CX3CR1− phagocytes in the lamina propria of the small intestine, 
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facilitates this negative regulation (61). Vice versa, under specific 
conditions these cytotoxic IELs are capable of controlling the 
phagocyte population (61).

SAP AND SLAMF ReCePTORS MeDiATe 
PROTeCTiON FROM eBv AND OTHeR 
viRUSeS

Whereas SLAMF receptor-mediated immune responses to 
bacteria are mostly mediated by SLAMF–bacteria interactions, 
the involvement of SLAMF receptors in antiviral immunity relies 
mostly on SLAMF–SLAMF homophilic interactions.

XLP and epstein–Barr virus
X-linked lymphoproliferative disease finds its primary cause in 
dysfunctional SAP (14–16). Often, but not always (63), patients 
develop fulminant infectious mononucleosis with a fatal outcome 
upon the first encounter with EBV. Although SAP-deficient 
patients who survive EBV infections or never encounter EBV will 
develop aberrant B-cell response such as dysgammaglobulinemia 
and B-cell lymphomas as well as a lack of innate type lymphocytes 
such as NKT-cells, the most prominent manifestations of this 
genetic defect arise in the context of EBV infections. Excellent 
reviews about EBV-independent immunologic manifestations 
of the aberrant response in SAP-deficient patients are published 
elsewhere (3, 64–66). In sum, in the absence of functional 
SAP, EBV-infected B-cells are not cleared and massive B- and 
T-lymphocytic expansion is found in most organs. CD4+ T-cells, 
CD8+ CTLs, NKT cells, and NK cells are implemented in the 
defective immune mechanisms that result in uncontrolled or 
ineffective immune responses to EBV infections in XLP patients. 
The phenotypic manifestations of non-EBV viral infections in 
XLP patients are sometimes also more severe than those in SAP-
proficient individuals, although the disease manifestations are 
usually less increased.

SAP and CD8+ T-cell expansion and 
Cytotoxic Responses
T-cell receptor signals in naïve T-cells induce a proliferative burst. 
SAP and SLAMF receptors control both the extent of the CD8+ 
T-cell expansion as well as the cytotoxicity of these cells, thereby 
influencing the effectiveness of the immune response to viruses 
as well as potential immunopathology.

In an effort to delineate the complex phenotypes of EBV 
infections of XLP patients, Sh2d1a−/− mice were generated and 
infected with γHV-68 (67) or LCMV (22, 68). The murine virus 
γHV-68 is, like EBV and Kaposi’s sarcoma-associated herpes 
virus, a gamma-herpes virus but has coevolved with rodents and, 
therefore, does not infect humans. In addition to B-cells, γHV-
68 also infects macrophages and DCs, which should be noted 
when comparing EBV infections of XLP patients with γHV-68 
in Sh2d1a−/− mice. After infection with γHV-68, Sh2d1a−/− mice 
have an expanded population of CD8+ T-cells (69, 70), which 
produce higher levels of IFNγ as compared to CD8+ T-cells from 
infected WT mice (70). This higher amount of IFNγ controls 

γHV-68 in macrophages in the peritoneum, but not in the B-cell 
reservoir (71). In accordance with reports on γHV-68 infected 
Sh2d1a−/− mice, LCMV-Armstrong infections induce a stronger 
expansion of CD4+ and CD8+ IFNγ-producing T-cells (22, 68). 
However, exacerbated immune pathology caused by the over-
expansion of CD8+ T cells in this infection results in a higher 
mortality (22, 68).

One of the mechanisms that drive the massive expansion of 
T-cells is the deregulation of reactivation-induced cell death 
(RICD). A second TCR activation leads to proapoptotic signals 
in some expanding T-cells, thereby controlling the extent of the 
expansion of the collective T-cell pool. XLP patients that suffer 
fulminant mononucleosis typically lack this T-cell restricting 
phase of the response to EBV, which is also not observed in 
virus-infected Sh2d1a−/− mice. SAP expression was shown to 
correlate with the extent of RICD in several cell lines and a lack 
of cell cycle arrest was found in irradiated lymphocytes from XLP 
patients (72). The observation that SAP immuno-precipitates 
with the proapoptotic valosin-containing protein (VCP) alludes 
to a potential mechanism. A later study showed that SLAMF6 
recruitment of SAP and Lck rather than Fyn in these restimulated 
T-cells results in a proapoptotic signal, which was not observed in 
T-cells obtained from XLP patients (73).

The expanded population of γHV-68-specific CD8+ CTLs in 
Sh2d1a−/− mice does reduce the amount of infected B-cells (69, 
70). However, cytotoxicity per cell appears not to be affected by 
SAP (69). In contrast to these murine T-cells, CD8+ T-cells from 
XLP patients are selectively impaired in their cytotoxic response 
to B-cells (74). These human CTLs showed similar cytokine 
production and proliferation when they are stimulated in vitro 
with anti-CD3 and anti-CD28 or anti-SLAMF1 mAbs (75, 76). 
However, incubation with anti-SLAMF4 mAb markedly reduces 
cytotoxicity of the EBV-specific CD8+ CTLs and lowered IFNγ 
production (76). Because this defect is associated with aberrant 
lipid rafts, perforin release, and SAP recruitment to the cytol-
ytic synapse, it can be concluded that SLAMF4–SAP pathway 
plays a critical role in the cytotoxic response of CD8+ T-cells to 
EBV-infected autologous B-cells (75). Indeed, whereas virtually 
all EBV-specific CD8+ T-cells in SAP-proficient individuals are 
SAP+, other viruses induce a mixed pool of SAP+ and SAP− virus-
specific CTLs (77). The dependence of EBV-specific CD8+ T-cells 
on the SLAMF4–SAP pathway to target infected B-cells together 
with the narrow B-cells tropism of EBV may represent two of 
the underlining principles for the strong susceptibility of XLP 
patients to this virus.

SAP and CD4+ T-Cell Responses and 
Germinal Centers
Like XLP patients, γHV-68 infected Sh2d1a−/− mice had a strong 
reduction in the amount of GC B-cells (69). These mice also dis-
played the typical hypo-gammaglobulinemia (67, 69). Whereas 
SAP-deficient mice develop normal acute IgG responses upon 
infection with LCMV, they lack a humoral memory response (78). 
When the (chronic-infectious) LCMVc113 strain was used, GCs 
were grossly absent from Sh2d1a−/− mice (68). Lacking adequate 
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help from CD4+ T cells, humoral response and cytotoxicity of 
CD8+ T cells are impaired, which renders the immune system 
not sufficient to clear the virus (68). Protection against secondary 
influenza infections is best established by CD4+ T-cell-mediated 
humoral responses through the generation of memory B-cells and 
long-lived plasma cells. Experimental exposure of Sh2d1a−/− mice 
to a second influenza challenge established the observation that 
these mice have a severely impaired IgG antibody response and, 
therefore, succumb to this infection (20). Thus, in the late stages 
of infections with LCMV, γHV-68, and influenza virus, profound 
defects in humoral immunity become apparent in Sh2d1a−/− mice.

SLAM-associated protein is critical for the development of 
GCs, the anatomical site for B/T-cell cooperation. The observa-
tion that T-cell-independent humoral responses are unaffected 
by SAP deficiency, showed that this phenotype depends on 
T-cell interactions with B-cells (79). Whereas a B-cell intrinsic 
SAP component in IgG antibody production was reported in 
some transfer experiments but not in others, SAP expression 
by helper T-cells is indispensible for early GC responses (21, 
80–82). The contact time of T–B-cell interactions is reduced 
in SAP-deficient mice, which is the likely underlining mecha-
nism of the impaired GC response (83). Sustained adhesion of 
T-cells to B-cells is dependent on SLAMF5 (84). An additional 
study showed that SLAMF6, in the absence of SAP, conveys 
a negative signal resulting in an insufficient contact time 
between B-cells and T-cells (32). This negative signal is medi-
ated by SLAMF6 as SLAMF6−/− Sh2d1a−/− mice (lacking both 
SLAMF6 and SAP) have normal developing GCs. Recruitment 
of SHP-1 to SLAMF6 is the signaling event that is responsible 
for the impaired cognate B/T-cell interaction (32). Although 
SLAMF1 signaling contributes to GC IL-4 production (37), 
SLAMF1 and Fyn are not involved in proper GC formation 
(85). SLAMF3-deficiency does not notably affect GC formation 
either (86).

NKT Cell Development Depends on SAP, 
SLAMF1, and SLAMF6
NKT-cells are implicated in responses to a wide range of microbes 
and are reactive to lipid antigens. Positive selection of NKT cells is 
mediated by semi-invariant TCR interactions with lipid antigens 
in the MHC-I-like CD1d molecule from one double-positive (DP) 
thymocyte to a neighboring DP thymocyte. Thus, commitment 
of NKT cells, which takes place in the thymus, is dependent on 
CD1d stimulation from proximal lymphocytes instead of stromal 
cells. A secondary signal is required to induce differentiation and 
expansion. Either SLAMF1 or SLAMF6 homophilic ligation is 
required for this second signal that induces SAP recruitment to 
their ITSM (87). SAP-mediated signals are crucial for the devel-
opment of NKT cells as Sh2d1a−/− mice completely lack these cells 
(88). Upon SAP recruitment to either SLAMF1 or SLAMF6, Fyn 
binds to the SLAMF–SAP complex to induce signals that facilitate 
the requirements for differentiation and expansion. In contrast to 
SLAMF1 and SLAMF6, SLAMF3-deficient mice present elevated 
numbers of thymic NKT cells, indicating that SLAMF3 plays a 
unique role as an inhibitory receptor regulating the development 
of NKT cells (89). An in-depth review of SLAMF receptors in 

NKT-cells and other innate lymphocyte populations has recently 
been published (90).

Role for SAP, SLAMF4, and Other SLAMF 
Receptors in NK Cells
The capacity of chronic infections with lymphotropic viruses 
to transform their host cells makes targeted killing of infected 
cells an important requirement in the immunity to such viruses. 
SLAMF4 is the major SLAMF receptor to mediate cytotoxic-
ity in both NK cells as well as CD8+ CTLs. Initial studies have 
shown that SLAMF4 interactions with SLAMF2 on target cells 
induced perforin-mediated killing, which is dependent on SAP 
(91–95). SLAMF4 phosphorylation is dependent on its sub-
location in lipid rafts (96). Within these rafts, association with 
linker for activation of T-cells (LAT) is prerequisite for SLAMF4 
phosphorylation and, hence, SLAMF4-mediated killing of target 
cells (97). SLAMF4 has four ITSM domains and the membrane 
proximal ITSM recruits SAP to the cytotoxic immune synapse 
upon phosphorylation (98). This SLAMF4–SAP complex inhib-
its the recruitment of inhibitory phosphatases and, hence, is 
required for a sustained interaction between the NK cell and the 
target cells (99). However, SLAMF4 can also mediate inhibitory 
signals in cytotoxic cells (100, 101). The levels of SLAMF4 surface 
expression on NK cells as well as the abundance of SAP appear to 
dictate whether signals induce or inhibit targeted killing (95, 102, 
103). Naïve human NK cells do not express SAP, but IL-2 or IL-12 
stimulation results in the upregulation of SAP expression. Only 
NK cells that express SAP had the potential to kill target cells by 
SLAMF4 ligation (104). A recent review describes the intricacies 
of the dual function of SLAMF4 on cytotoxicity of NK cells in 
more detail (103).

Whereas SLAMF4 appears to be dominated by SAP, other 
SLAMF receptors have a stronger dependence of EAT-2. Analysis 
of EAT-2-mediated signals revealed that EAT-2 induces calcium 
fluxes and ERK phosphorylation, which results in exocytosis of 
cytotoxic granules (105). SLAMF6 ligation was shown to induce 
a cytotoxicity signal by recruiting EAT-2 to its second phospho-
rylated ITSM, which does not bind to SAP (106). In addition, 
EAT-2-deficient mice were incapable of SLAMF5- or SLAMF6-
mediated targeted killing of SLAMF2+ tumors (107). Thus, 
SLAMF6 signaling through EAT-2 in addition to SAP enhances 
the cytotoxicity of NK cells. SLAMF7 expression on target cells 
enhanced NK cell cytotoxicity, which was solely dependent on 
EAT-2, as EAT-2−/− NK cells conveyed a signal that inhibits cyto-
toxicity through SLAMF7 (26).

viRAL USe OF SLAMF ReCePTORS

Thus far, we have discussed how SLAMF receptors perform 
functions by interactions with bacterial entities and by interac-
tion with SLAMF receptors. SLAMF receptors are also actively 
targeted by pathogens that seek to use or to alter functions of 
SLAMF receptors for their benefit. Three such modes of interac-
tion have been postulated to date. First, Morbilliviruses (most 
prominently Measles virus) utilize SLAMF1 as entry receptors. 
Second, certain cytomegaloviruses (CMVs) express SLAMF 
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receptors or molecules that closely resemble the structure of 
SLAMF receptor, potentially representing (negative) competitors 
of endogenous SLAMF receptors to modulate their functions. 
Third, several other viruses encode molecules that interfere with 
cell surface expression of SLAMF receptors and inhibit their 
functions.

SLAMF1 on the Surface of Myeloid Cells 
Binds to the Measles virus H Protein and 
is involved in virus entry
The human pathogenic Measles virus belongs to the lymphotropic 
Morbillivirus genus. Measles virus and other Morbilliviruses 
utilize SLAMF1 as one of two entry receptors (9, 108). Crystal 
structures of SLAMF1 and Measles virus protein MV-H reveal 
four binding domains that are conserved between marmoset and 
human but not between mice and human, which determines the 
tropism of Measles virus (10). Mechanistically, the interaction 
between SLAMF1 and MV-H reduces the distance between the 
membranes of the target cell and the virus. The subsequent release 
of the viral protein MV-F enables fusion of the membranes and, 
hence, facilitates infection.

Measles virus has evolved a mechanism to induce SLAMF1 
surface expression, thereby gaining access to its entry receptor 
(109, 110). Acidic Sphingomyelinase (ASMase)-containing 
vesicles, which are also SLAMF1+, play an interesting role in this 
process (Figure 6). ASMases convert sphingolipids into ceramide, 
creating a lipid environment that favors endocytosis or internali-
zation of small membrane fractures. Thus, under non-infectious 
conditions, the recruitment of these vesicles to the surface of 
cells provides a membrane repair mechanism. Activation of the 
lectin receptor DC-SIGN by Measles virus induces a signaling 
cascade that involves Raf-1 and ERK (109). This signal relies on 
the expression of ASM and results in the relocation of ASM+ vesi-
cles to the surface of DCs (109). Thus, by activating DC-SIGN, 

Measles virus induces surface expression of its entry receptor 
(110). This observation, thus, provides evidence of a coupling 
between SLAMF1 localization and membrane dynamics and 
shows that SLAMF1 resides in intracellular membranes, suggest-
ing that SLAMF1 has distinct intracellular location with putative 
intracellular functions. These functions may represent events that 
are similar to the functions that were described for SLAMF1 in 
E. coli+ phagosomes.

viral expression of SLAMF Receptor 
Homologs
SLAMF3 has stronger sequence homology with the human CMV 
protein UL-7 than with other human SLAMF receptors (111). 
Only one other CMV, which infects chimpanzees, bears a similar 
gene, suggesting that this gene was hijacked relatively late dur-
ing the evolutionary arms race between mammals and β-herpes 
viruses. While no binding of UL7 to SLAMF3 could be detected, 
this viral protein has been shown to be secreted from infected 
cells and to reduce the production of TNFα, IL-8, and IL-6 by 
DCs (111).

Recently, seven SLAMF gene-homologs encoded by the 
genomes of two CMVs that infect New World monkeys have 
been identified. Several of these viral SLAMFs exhibit exceptional 
preservation of their N-terminal immunoglobulin domains, 
which results in maintenance of their ligand-binding capacities. 
The observation that large DNA viruses have captured SLAMF 
family homologs further underscores the importance of these 
molecules as critical immune regulators and as convenient scaf-
folds for viral evolution (112).

Hiv-1 Protein vpu and CMv m154 
Modulate SLAMF expression
Assessment of SLAMF expression in HIV-1 infected cells 
showed a negative correlation between SLAMF4 expression 
by NK cells and viral load, suggesting a positive role for 
SLAMF4 in the killing of HIV-1 infected cells (113). Indeed, 
NK cell treatment with specific antibodies for SLAMF4 or 
SLAMF6 decreased their in  vitro killing potential of infected 
T-cells (114). Surface expression of both of these SLAMF 
receptors is actively down-modulated by HIV-1. CD8+ CTLs 
of patients required both SLAMF2-to-SLAMF4 signaling and 
TCR stimulation for the downmodulation of SLAMF4 surface 
expression (115). HIV-1 infection also down-modulates the 
expression of SLAMF2 and SLAMF6 in infected CD4+ T-cells, 
suggesting active modulation of cytotoxicity by the virus. The 
HIV-1 protein Vpu associates with SLAMF6 by interacting at 
the transmembrane regions. This interaction interferes with 
the glycosylation of SLAMF6 and results in retention in the 
Golgi-complex (116, 117). SLAMF6 downmodulation leads to 
insufficient degranulation, and hence impaired targeted killing 
of HIV-1 infected cells (116).

Murine CMV encodes a different viral protein that interferes 
with NK cell cytotoxicity. During CMV infection, m154 expres-
sion leads to proteolytic degradation of SLAMF2 that reduces the 
capacity of NK cells to kill infected cells (118).
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Detrimental effects of SLAMF4 During 
Chronic Hepatitis infection
Lysis of non-MHC HCV-infected cells by activated CD8+ T-cells is 
mediated by SLAMF4 (119). However, during chronic HCV infec-
tions, SLAMF4 predominates as an inhibitor of cytotoxic functions 
in CD8+ T-cells (95). In line with this notion, recombinant IFN-α 
therapy of HCV-infected patients induces NK cell-mediated 
enhanced immunity but reduces SLAMF4 expression of these cells 
(120). SLAMF4 expression by CD8+ T-cells also correlated with 
poor clinical outcomes in HBV-infected patients (121). Blockade 
of SLAMF4 signaling effectively enhanced IFNγ production and 
virus-specific CD8+ T-cell proliferation in approximately one-
third of HCV+ patients (122). Overall, SLAMF4 expression cor-
relates with the T-cell exhaustion that is typically observed during 
HCV infections. However, functionally exhausted T-cells are not 
universally revived by blockade of SLAMF4 alone, but other CTL 
inhibitory receptors are involved (122). Thus, these β-herpes virus 
infections cause the expression and function of specific SLAMF 
receptors to be detrimental to the immune outcome.

CONCLUDiNG ReMARKS

SLAMF receptors and their adaptors are intricately involved in 
the responses to microbial challenges. Modulation of immune 

responses as a result of SLAMF receptor homophilic interactions 
represents an important category of functions for these recep-
tors. We can also observe an emerging theme that places SLAMF 
receptors in a possibly underappreciated category of functions; 
they can engage microbial ligands. SLAMF receptors are direct 
microbial sensors and are part of functional anti-microbial 
mechanisms. Thus, SLAMF receptors fulfill a unique role within 
the immune system, as they are both microbial sensors and cell–
cell communicators of immunologic conditions. Additionally, 
we can distinguish a category of microbe-encoded genes that 
directly interfere with SLAMF functions. Interestingly, some 
of these genes have strong homology with endogenous SLAMF 
receptors.
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