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Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine implicated 
in acute and chronic inflammatory conditions, including sepsis, autoimmune disease, 
atherogenesis, plaque instability, and pulmonary arterial hypertension. MIF in plasma 
and urine is significantly elevated in patients with acute kidney injury (AKI) and elevated 
MIF in serum is associated with markers of oxidative stress, endothelial dysfunction, 
arterial stiffness, and markers of myocardial damage in chronic kidney disease (CKD). 
Furthermore, MIF seems to be involved in vascular processes and cardiovascular disease 
associated with CKD, glomerulonephritis, autosomal dominant polycystic kidney dis-
ease, and possibly also in progression to renal failure. Moreover, in active anti-neutrophil 
cytoplasmatic antibody-associated vasculitis, plasma MIF levels have been shown to be 
significantly elevated as compared with samples from patients in remission. A significant 
difference in the genotype frequency of high production MIF -173 G/C genotype has 
been found in end-stage renal disease, compared to controls. Inhibition of MIF in a 
diabetic nephropathy model ameliorated blood glucose and albuminuria and in a model 
of adult polycystic kidney disease cyst growth was delayed. Preclinical studies support 
a potential therapeutic role for MIF in AKI and in a number of CKDs, whereas these 
data in human disease are still observational. Future interventional studies are needed to 
delineate the role of MIF as a treatment target in clinical kidney disease.

Keywords: MiF, AKi, CKD, glomerulonephritis, vasculitis, MiF gene polymorphism, diabetic nephropathy, ADPKD

inTRODUCTiOn

Macrophage migration inhibitory factor (MIF) was one of the first cytokines that was identified 
after being isolated from the supernatants of T-lymphocytes, and initially described as a soluble 
factor with macrophage migration-inhibiting properties (1–3). It has later been shown that MIF 
is produced by a number of other cells, such as monocytes, macrophages, granulocytes, endocrine 
cells, epithelial cells, and endothelial cells (4, 5).

Migration inhibitory factor is a pleiotropic upstream proinflammatory integral mediator of the 
innate immune system, stimulating the release of multiple cytokines, including tumor necrosis fac-
tor (TNF)-α, with CD 74 being a binding receptor promoting the recruitment of leukocytes into 
inflammatory sites in a chemokine-like fashion (6). Three-dimensional X-ray crystallography has 
revealed that the MIF molecule contains a hydrophobic pocket, which has been identified as the 
proinflammatory active site of MIF (7) and compounds binding to this region decrease downstream 
MIF signaling (8, 9).
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Migration inhibitory factor has been implicated in the patho-
genesis of sepsis, autoimmune diseases, such as rheumatoid 
arthritis, systemic lupus erythematosus, and cardiovascular 
disease (CVD) (6, 10–13). In atherosclerosis animal models, 
aortic inflammation was reduced, and neointimal plaques were 
stabilized after administration of anti-MIF antibody (14, 15).

Chronic kidney disease (CKD) is a state of chronic inflamma-
tion with major implications for morbidity and mortality driven 
by a significant increased risk for CVD (16, 17). Delineating the 
role of inflammatory markers in atherosclerotic and inflamma-
tory disease in CKD is therefore of considerable interest. Whether 
MIF has an important role in this area is not well known. This 
article therefore aims at reviewing available data on the role of 
MIF in acute kidney injury (AKI), CKD, diabetic nephropathy, 
inflammatory kidney disease, and genetic aspects of MIF and 
kidney disease.

MiF AnD AKi

Urinary MIF has previously been reported to be increased, and 
associated with the severity of renal injury, in human glomeru-
lonephritis and has also been suggested as a potential biomarker 
for acute kidney damage in acute pyelonephritis (18, 19). Similar 
findings have been demonstrated in kidney transplantation (20). 
Augmented plasma levels of MIF seem to be an early and predic-
tive event of AKI in septic patients admitted to the ICU (21). In 
preclinical models, MIF stimulates leukocyte chemotaxis as well 
as tissue infiltration of leukocytes and induces multiorgan dam-
age affecting both lungs and kidneys (6, 22–24). In a recent paper 
by Stefaniak et al., it was shown that increased plasma levels of 
MIF in patients undergoing liver transplantation was significantly 
more predictive than serum creatinine for AKI and the need for 
renal replacement therapy postoperatively (25).

MiF AnD CKD, iMPLiCATiOnS FOR 
CARDiOvASCULAR DiSeASe

The prevalence of CKD worldwide is 10–12% and its incidence is 
even greater in the elderly (26, 27). Systemic low-grade inflam-
mation is associated with loss of renal function, and the uremic 
phenotype is also linked to premature aging and accelerated 
atherosclerosis (28, 29). CVD is a major challenge in this patient 
population in which mortality rates due to CVD are about 
10–20 times higher in dialysis patients than those of the general 
population (30). A number of proinflammatory factors have been 
investigated, such as C-reactive protein (CRP), interleukin-6 
(IL-6), TNF, and high-mobility group box-1 protein (HMGB1), 
and increased circulating levels have in most cases been shown 
to be associated with poor outcome (22–34). It has however 
been suggested that retention by reduced cytokine excretion or 
degradation in the kidney, not only increased production, may 
play a role for the elevated cytokine levels (35).

We have previously shown that circulating serum levels of MIF 
are significantly elevated in CKD stage 3–5 patients (n = 257), 
compared with controls (n  =  53) in a cross-sectional study 
(36). MIF levels were also associated positively with markers of 

oxidative stress and endothelial activation, such as 8-hydroxy-
2-deoxyguanosine (8-OH-dG) levels and ICAM-1 levels, but 
not with inflammatory markers, such as CRP, IL-6, and TNF. 
However, in contrast to most previously described cytokines, we 
observed no correlation between MIF and glomerular filtration 
rate (GFR).

Rammos et  al. recently showed that plasma MIF levels cor-
related negatively with endothelial function by flow-mediated 
dilation of the brachial artery, and positively with arterial stiffness 
indices using applanation tonometry in patients with end-stage 
renal disease (ESRD). In a multivariate regression model, MIF 
was an independent predictor for arterial stiffness. A correlation 
between high MIF and high-sensitive troponin I also suggested 
an association with myocardial injury in these patients (37). 
Taken together, these studies indicate that MIF may play a role 
in vascular disease associated with CKD, but further studies are 
needed.

MiF, PULMOnARY ARTeRiAL 
HYPeRTenSiOn, AnD CKD

Pulmonary arterial hypertension (PAH) is characterized by 
endothelial dysfunction, vasoconstriction, and pulmonary vas-
cular remodeling. Haddad et al. have shown that AKI is relatively 
common in individuals with PAH and is a strong predictor of 
early death (38). Furthermore, in the study of Shah et al. (39), the 
severity of CKD in patients with PAH was directly related to the 
risk of death.

Recent studies have shown clear links among MIF, PAH, 
and the concomitant pulmonary vasoconstriction and vascular 
remodeling (40, 41). The release of MIF and the vascular changes 
are due, at least in part, to increased oxidative stress (42). Our 
study in CKD stage 3–5 patients showed that elevated serum MIF 
concentrations are associated with markers of oxidative stress 
(plasma 8-OH-dG levels) and endothelial activation (ICAM-1) 
(36). This further suggests possible links between MIF in CKD 
and the associated pulmonary vascular changes and cardiac 
changes.

MiF AnD DiABeTiC KiDneY DiSeASe

Diabetic nephropathy is one of the leading causes of CKD 
and dialysis dependency. Albuminuria and impaired GFR 
predominantly account for the increased mortality observed 
in type 2 diabetes (43). Accumulating evidence has revealed 
that immunological and inflammatory mechanisms may 
play a significant role in the development and progression of 
diabetic nephropathy, in addition to non-immunological fac-
tors (44, 45). Elevated MIF levels have been found in patients 
with impaired glucose tolerance and type 2 diabetes and have 
also been associated with coronary events in these patient 
populations (46–48). MIF protein expression and urinary 
MIF excretion, the latter preceding the onset of microalbu-
minuria, have been demonstrated in a diabetic mouse model 
(49). Glomerular and tubulointerstitial mRNA expressions of 
the MIF receptor CD74 were shown to be increased in Pima 
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Indians with type 2 diabetes and diabetic nephropathy (50). 
As shown by Wang et al., treatment of the diabetic db/db mice 
with the MIF inhibitor ISO-1 significantly decreased blood 
glucose levels and albuminuria in these mice, suggesting that 
MIF inhibition may be a potential therapeutic strategy in 
diabetic nephropathy (51).

MiF AnD GLOMeRULOnePHRiTiS

It has been established that upregulation of renal MIF mRNA 
expression in the endothelium, glomerular, and tubular epithelial 
cells is closely related to macrophage accumulation and renal tis-
sue lesions in experimental glomerulonephritis. By contrast, in 
the normal kidney, MIF mRNA and protein are largely restricted 
to tubular epithelial cells and some glomerular visceral and 
parietal epithelial cells (52). By using a neutralizing anti-MIF 
antibody, it was possible to partially reverse established crescentic 
glomerulonephritis (53). In human disease, a marked increase in 
both glomerular and tubular MIF mRNA and protein expression 
has been demonstrated in proliferative forms of GN, correlating 
with leukocyte infiltration, histologic damage, and renal function 
impairment (54). Elevated MIF concentrations have been meas-
ured in peripheral blood T cells and monocytes from patients 
with IgA nephropathy (IgAN), which is the most common form 
of primary glomerulonephritis and is characterized by IgAN 
immune complexes in the glomerular mesangium, proliferation 
of mesangial cells, infiltration of inflammatory cells, and progres-
sive glomerular injury. MIF overproduction was also correlated 
with the intensity of acute exacerbation in these patients (55, 56). 
Polymeric IgAN isolated from patients with IgAN was able to 
induce MIF production in human mesangial cells, and anti-MIF 
treatment was shown ameliorate kidney injury and reduce glo-
merular TGF-β 1 expression in an experimental model of IgAN 
(57, 58).

MiF AnD vASCULiTiS

Granulomatosis with polyangiitis (GPA) and microscopic 
polyangiitis (MPA) are diseases characterized by systemic 
small vessel necrotizing inflammation, commonly affecting 
the kidneys and with a close association with the presence 
of anti-neutrophil cytoplasmatic antibodies (ANCAs), thus 
known as ANCA-associated vasculitides (AAV). A number of 
inflammatory cells and proinflammatory mediators have been 
implicated in the pathogenesis, which is believed to be initiated 
by priming of neutrophils and monocytes in the circulation by 
inflammatory stimuli (59). Increased levels of circulating MIF 
in serum have been found particularly in active AAV patients, 
but not in patients with other forms of vasculitis, such as giant 
cell arteritis and polyarteritis nodosa (60). We studied MIF in a 
prospective study of incident AAV patients at induction treat-
ment, and at follow-up at 3 and 6 months and found elevated 
plasma levels at baseline. MIF decreased significantly during 
follow-up when most patients were in remission, but remained 
still elevated as compared with controls at all time points (61). 
MIF levels did not correlate with CRP, creatinine, or organ 

involvement. MIF has intriguingly been shown to be induced 
from macrophages by low concentrations of glucocorticoids 
(GC), possibly acting as a counter-regulator for glucocorticoid 
action (62). However, we found no correlation between MIF 
levels and GC exposure possibly due to the unphysiologically 
high GC treatment doses at the time of sampling. Finally, since 
there is a known association between thyroid disease and AAV 
in addition to antithyroid drugs being associated with the 
development of ANCA and vasculitis (63, 64), we investigated 
the role of thyroid hormone activity and MIF in AAV. The 
thyroid hormone thyroxine (T4) and its dextrorotatory isomer 
(dextrothyroxine; d-T4), but not triiodothyronine (T3), bind to 
the hydrophobic pocket within the MIF molecule and has been 
shown to be a potent inhibitor of the inflammatory activity 
of MIF in a dose-dependent manner, which was clearly dem-
onstrated by administration of exogenous d-T4 to mice with 
severe sepsis (65). Administration of the hormonally inactive 
d-T4 significantly improved survival, even in mice that had 
previously undergone thyroidectomy. In patients with severe 
sepsis, low plasma T4 concentrations were inversely correlated 
with plasma MIF concentrations (65). In our human study, 
there was a strong correlation over time between the baseline 
MIF/T4 ratio and the MIF/T4 ratio at 6 months in AAV patients 
in remission (61). Both the preclinical and clinical data there-
fore suggest that blocking the inflammatory active site of MIF 
may both reduce inflammatory responses and improve the 
availability of T4.

MiF AnD AUTOSOMAL DOMinAnT 
POLYCYSTiC KiDneY DiSeASe

Autosomal dominant polycystic kidney disease (ADPKD) is an 
inherited autosomal dominant disease characterized by renal 
cyst formation and is associated with renal interstitial inflamma-
tion and fibrosis. The most common is the PKD1 mutation that 
encodes for polycystin-1 (PC1), which frequently leads to loss 
of kidney function in mid-life (66). It was recently shown that 
MIF regulates cyst growth in a murine ADPKD model through 
several mechanisms and is also accumulated in cyst fluid of 
human ADPKD kidneys (67). In polycystin-1-deficient mice, 
recruitment and retention of renal macrophages were dependent 
on MIF, which promoted cyst expansion. By deleting MIF or by 
pharmacological inhibition, cyst growth was delayed in murine 
ADPKD models. Macrophage recruitment was associated with 
the upregulation of monocyte chemotactic protein 1 (MCP-1) 
and inflammatory cytokine TNF-α, which further induced MIF 
affecting renal epithelial cells and cyst development (68). These 
findings may potentially be very important as the therapeutic 
options in slowing ADPKD progression until recently have 
been limited. New drugs, such as tolvaptan, a vasopressin 
V(2)-receptor antagonist, have recently been approved after 
demonstrating an effect on the increased rate of total kidney 
volume and slowing down renal function decline. However, the 
long-term effect of tolvaptan is unclear and side effects may limit 
its use (68).
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MiF AnD GeneTiCS

Migration inhibitory factor corresponding gene has known poly-
morphisms in the -794 CATT(5–8) repeat and the single-nucleotide 
polymorphism (SNP) -173*G/C and is associated with increased 
susceptibility and severity of a number of inflammatory and 
autoimmune conditions (69, 70).

The frequency of high-producer MIF -173 G/C genotype 
was higher (10.1%) in ESRD than in controls (1.2%), suggesting 
that it may play a role in progression to renal failure. However, 
there was no clear association between the MIF genotype and 
type of kidney disease in ESRD (71). In children with idiopathic 
nephrotic syndrome, the high-producer MIF -173*C allele was 
significantly more common than in controls. Furthermore, this 
allele was more common in steroid-resistance cases and was 
also associated with significantly higher probability of ESRD 
compared with G/G homozygous patients within 5  years from 
onset (72). In a recent study, it was shown that patients with GPA 
have an increased frequency of high-expression MIF CATT, and 
higher plasma MIF levels. In a murine model of granulomatous 
vasculitis, higher MIF expression increased mortality and pul-
monary granulomas while injection of anti-MIF mAb protected 
mice from dying suggesting a role for MIF in the pathogenesis 
of GPA (73).

COnCLUSiOn

We have here described the current evidence of MIF being a 
mediator in a number of diseases and conditions associated with 
kidney disease (Figure 1). Both MIF and its receptor CD74 may 
be potential biomarkers in these disorders and possible targets 

for pharmacological modulation. However, since MIF is also 
constitutively expressed it may be problematical to interfere 
with MIF activity in an interventional setting. Also, while we 
have discussed the possible detrimental effects of MIF, especially 
those associated with its inflammatory active site, the molecule 
can also be protective in certain circumstances. In particular, in 
addition to the inflammatory site, MIF also has an intrinsic thiol 
protein oxidoreductase activity. We, and others, have shown that 
this enzyme activity is protective against oxidative injury induced 
by ischemia reperfusion injury (74, 75).

Recently, Thiele et al. demonstrated that there are two redox-
dependent conformational MIF isoforms. Oxidized MIF (oxMIF) 
is selectively expressed in the plasma and on the cell surface of 
immune cells of patients with different inflammatory diseases, but 
not in healthy individuals and is specifically recognized by three 
monoclonal antibodies (mAbs) directed against MIF. The authors 
also found a clear correlation between disease severity and the 
oxMIF/Cr ratio in the urine in patients with acute lupus nephritis, 
but not in patients with SLE without renal manifestations or in 
remission. Anti-oxMIF mAbs alleviated disease severity in a rat 
model of crescentic glomerulonephritis, interestingly with further 
improvement in synergy with GC (76). However, while there is 
much evidence, from preclinical studies, for the participatory role 
of MIF in the pathogenesis if several conditions few clinical trials 
of anti-MIF agents have been recorded. Anti-MIF mAb therapy is 
currently in phase I trials both for solid tumors (NCT01765790) 
and for lupus nephritis (NCT01541670). Whether inhibition of 
MIF or oxMIF may offer promising therapies in clinical condi-
tions, such as AKI, CKD, diabetic nephropathy, inflammatory 
kidney diseases, and ADPKD, needs to be elaborated in future 
interventional studies.

Polymorphisms

↑ frequency MIF -173
G/C genotype 

Glomerulonephritis

↑ Renal MIF mRNA and 
protein expression, 

↑ MIF in T-cells and 
monocytes in IgA

nephropathy 
End stage renal 

disease

Type 2 Diabetes

AKI

Cardiovascular
Disease and CKD

↑ MIF expression and
↑ glomerular 

expression of CD74

ANCA Vasculitis

↑ plasma MIF and alterations 
in thyroid hormone levels

↑serum MIF in CKD, 
↑ plasma MIF correlated 
with Troponin I levels

↑ urinary/plasma MIF predicts AKI
in pyelonephritis, sepsis,

kidney and liver transplantation

ADPKD

MIF in cyst fluid from 
ADPKD kidneys

FiGURe 1 | MiF and human kidney disease. Autosomal dominant polycystic kidney disease (ADPKD), acute kidney injury (AKI), chronic kidney disease (CKD).
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