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The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine 
exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but 
ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed 
to stop both the spread of the virus in human populations and disease progression 
in infected individuals. A safe and effective cure strategy for human immunodeficiency 
virus (HIV) infection will require multiple tools, and appropriate animal models are tools 
that are central to cure research. An ideal animal model should recapitulate the essential 
aspects of HIV pathogenesis and associated immune responses, while permitting inva-
sive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size 
of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). 
Since there is no perfect animal model for cure research, multiple models have been 
tailored and tested to address specific quintessential questions of virus persistence and 
eradication. The development of new non-human primate and mouse models, along 
with a certain interest in the feline model, has the potential to fuel cure research. In this 
review, we highlight the major animal models currently utilized for cure research and the 
contributions of each model to this goal.
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iNTRODUCTiON

Human immunodeficiency virus (HIV) infection in humans induces massive and continuous 
depletion of CD4+ T cells, resulting in immune suppression, which, in the absence of antiretroviral 
therapy (ART), culminates with the development of the acquired immunodeficiency syndrome 
(AIDS) and death in all HIV-infected patients. As such, the burden of the HIV epidemic, which 
spreads unabated such that for every HIV-infected person, two new people become infected, calls 
for a cure for HIV (1).

The advent of ART is one of the most prominent accomplishments of modern medicine, provid-
ing relief to HIV-infected patients through effective suppression of viremia and drastically improving 
their quality of life. However, life expectancy is not fully restored in HIV-infected patients on ART 
(2). Furthermore, ART requires life-long adherence, thus preventing effective treatment from being 
delivered in a sustainable way to all in need; is associated with short- and long-term toxicity; does not 
completely restore immune integrity; is not curative; and does not eradicate HIV-1 from the infected 
patients. Studies have shown that residual HIV persists virtually indefinitely, even in patients receiv-
ing ART, and that this persistent reservoir virus is replication-competent (3). The infected cells that 
form the reservoirs, such as resting memory CD4+ T lymphocytes (1, 4, 5), are refractory to ART and 
are invisible to HIV-specific immune responses (6–8). Moreover, the anatomic sites of the reservoirs 
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are diffuse, with multiple tissues containing latent virus, including 
brain (9, 10), adipose tissue (11), spleen, lung, and other organs 
(12, 13). To further complicate the matter, unconventional cell 
types besides resting memory CD4+ T cells (such as T follicular 
helper, T memory stem cells, and T regulatory cells) have been 
identified as being latently infected (14–17). It has also been 
reported that non-T cell innate cell sets may contribute to the 
latent reservoir, such as monocytes/macrophages and dendritic 
cells (18–25), but these innate reservoirs are controversial (26). 
The tissue and cellular complexity of the viral reservoir results in 
a minimal impact of ART on the latent reservoir, even in patients 
receiving prolonged ART for over a decade (27–30). Removal of 
ART from treated patients systematically results in viral rebound, 
even in cases when therapy is initiated very early after infection 
(28, 31, 32). Rebounding virus may reseed the virus reservoirs 
and may carry drug resistance mutations (33, 34). Therefore, due 
to these potentially daunting effects of ART cessation, the current 
paradigm is that once initiated, ART should be maintained for 
life (1).

In addition to these limitations of ART, the low levels of 
residual viral replication observed in HIV-infected patients 
receiving therapy are most likely the main reason for the residual 
immune activation and inflammation observed during infection 
(35). Immune activation and inflammation are associated with 
comorbidities, accelerated aging, and mortality (36, 37). These 
issues, along with a limited availability of invasive samples from 
multiple potential reservoir sites necessary for a proper char-
acterization of the reservoir, significantly impact our ability to 
cure HIV.

Multiple lines of documented evidence unequivocally support 
the fact that ART alone cannot cure HIV infection, which are as 
follows: (i) ART intensification does not impact the viral reservoir 
(27, 38, 39); (ii) the functionally cured “Mississippi baby” (40), in 
which a very aggressive therapy was initiated very early during 
infection and was maintained for 1.5 years, experienced a massive 
virus rebound after controlling the virus for over 2 years following 
cessation of ART (29); (iii) short-course ART in acutely infected 
subjects had a minimal impact on the reservoir (30); and (iv) 
cytotoxic T lymphocytes (CTLs) are necessary to eliminate the 
virus in patients receiving ART (41). Nevertheless, a small fraction 
of patients in which ART was initiated very early during infection 
and maintained for a long period of time (largely exceeding the 
half-life of the major reservoir cell populations) was reported 
to be able to robustly and persistently control viral replication 
at the cessation of ART (42, 43). Yet, since these posttreatment 
controllers only represent a small fraction of patients and the 
correlates of virus control in these patients are not completely 
understood, there is consensus in the field that the strategies for 
virus eradication should involve therapeutic approaches that go 
beyond ART (1).

In the aftermath of the reports of the cured HIV infection in 
the “Berlin patient” (44), cure research focused around develop-
ing a “sterilizing cure” (i.e., aimed at the complete elimination 
of the virus from the infected patient). Yet, it soon became clear 
that dissecting the key factor driving HIV cure in the “Berlin 
patient” (i.e., stem cell transplantation, radiation, immune 
therapy, or graft-versus-host disease) is very challenging. 

Furthermore, studies revolving around the cure in the Berlin 
patient emphasize the complexity of this process and suggest 
that an intricate action of multiple factors may have led to the 
positive outcome in this patient. This was seen in the “Boston 
patients,” two HIV-1 positive men that received hematopoietic 
stem cell transplants from donors with wild-type-CCR5+ cells 
in an attempt to provide a sterilizing cure for HIV (45). While 
in the initial posttransplant stages (when patients were still on 
ART), there was no evidence of residual infection, both men 
exhibited rebound of virus after ART interruption (46). This 
clearly suggests that a cure approach might be a difficult enter-
prise, and therefore, a more realistic alternative to the sterilizing 
cure is the development of a “functional cure,” whereby the viral 
reservoir is reduced enough to permit cessation of ART without 
risking viral rebound (40, 45).

All these various approaches toward the HIV cure cannot be 
directly tested in humans without major risks, making impera-
tive for cure research the use of animal models that mimic HIV 
infection. In addition to providing in  vivo systems that enable 
detailed studies of the multiple anatomic reservoirs through 
invasive sampling, the animal models of cure research also permit 
refining the system in order to deconvolute different components 
that are largely intricated in humans, which prevent our complete 
understanding of the correlates of viral control. Finally, animal 
models permit interventions aimed at depleting various arms 
of the immune system or specific immune cell populations that 
might drive formation of the reservoir or enable virus persistence. 
Altogether, use of the animal models appears to be mandatory for 
the very complex field of cure research and has the potential to 
significantly advance the field.

The most commonly used animal models for cure research are 
non-human primates (NHPs), humanized mice, and to a lesser 
degree, felines, each infected with their respective immunode-
ficiency virus. Though none of these models exactly match HIV 
infection in humans, each model can be tailored to address the 
key specific questions of cure research. This review will present 
the currently available animal models for cure research, along 
with their advantages and disadvantages (Table 1), and will focus 
on the contributions that each of these models have made to the 
cure field.

NHP MODeLS FOR CURe ReSeARCH: 
STRAiNS, SYSTeMS, AND LiMiTATiONS

Non-human primates are the most widely used animal models 
for AIDS research due to the variety of disease states that can be 
induced in various NHP species by a plethora of simian immuno-
deficiency virus (SIV) strains (Table 2). Studies in NHPs helped 
define key paradigms of HIV infection pathogenesis, have been 
used in testing various therapies, and are essential for the develop-
ment of AIDS vaccines (53, 54). The NHP model of AIDS is one 
of the best animal models for infectious diseases, as it shares a lot 
of key features with HIV-1-infected humans, including anatomy, 
physiology, immune system, infectious agents, and susceptibility 
to antiretroviral treatments (55). Furthermore, due to their large 
size, NHPs allow for the frequent collection of relatively large 
volumes of samples.
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TABLe 1 | Advantages and disadvantages of the major animal models for 
Hiv cure research.a

NHP/Siv or 
SHiv

Murine/
Hiv

Feline/
Fiv

Sample size +++ + ++

Anatomy compared to humans Similar Different Different

Similarity of virus to HIV Different Same Different

Infection characteristics compared to 
human/HIV

Similar Similar Different

Availability for experimental infection in 
controlled conditions vis-à-vis route and 
dose of virus inoculation, drug regimens

Yes Yes Yes

Ability to deplete arms of immune system Yes Yes Yes

Outbred Yes No Yes

Major surgery required to generate the 
model

No Yes No

Development of graft-versus-host 
disease

No Yes No

Reservoir comparison to human/HIV Similar Similar Different

Cost to maintain +++ ++ ++

aFauci and Desrosiers (47), Evans and Silvestri (48), Del Prete and Lifson (49), Akkina 
(50), McDonnel et al. (51), and Apetrei et al. (52).

TABLe 2 | Different NHP/Siv models used in cure research.a

Non-human 
primate 
species

Siv strains Acute vLs Chronic vLs Spontaneous 
elite control?

Rapid progression 
(frequency of RP)

Control with 
conventional ART

Use of 
NNRTi

Chronic 
immune 
activation

Indian rhesus 
macaque

SIVmac251/239 107–109 104–107 Yes (for specific  
MHC types)

30–40% Requires complex 
combinations

No Yes

SIVsmm 107–108 102–105 Yes (for specific  
Trim genotypes)

No Yes No Yes

SIVagmSab 106–109 <3–100 100% No No data No No
RT-SHIV 105–108 103–106 Yes (for specific  

MHC types)
No Requires complex 

combinations
Yes Yes

Chinese 
rhesus 
macaque

SIVmac239 105–107 10–105 Yes (~33%) No Yes No Yes

Pigtailed 
macaque

SIVmac251/239 105–109 103–106 Rare 30–40% Requires complex 
combinations

No Yes

SIVsmm 105–109 104–107 No >75% Requires complex 
combinations

No Yes

SIVagmSab 107–109 104–106 No 30–40% No data No Yes
RT-SHIV 104–107 103–105 Rare >75% Yes Yes Yes

Cynomolgus 
macaque

SIVmac251/239 106–108 102–105 Yes (~30%) No Yes No No data

aHaase (56), Lackner and Veazey (57), Demberg et al. (58), Horiike et al. (59), Pandrea et al. (60), Ma et al. (61), Uberla et al. (62), North et al. (12), North et al. (63), Kauffman et al. 
(64), Monceaux et al. (65), Ling et al. (66), Ling et al. (67), Klatt et al. (68), Dinoso et al. (27), Canary et al. (69), Hirsch et al. (70), Mandell et al. (71), Kristoff et al. (72), Ambrose et al. 
(73), Shao et al. (74), Kearney et al. (75), Kline et al. (13), Benlhassan-Chahour et al. (76), Mannioui et al. (77), Sellier et al. (78), Reimann et al. (79), and Budde et al. (80).
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Administration of SIV to multiple macaque species typically 
results in a persistent pathogenic infection in which progression 
to AIDS occurs in a similar fashion to HIV-infected patients 
(47). Of the wide variety of macaque species, HIV-1 research has 
focused on rhesus macaques (RMs) (Macaca mulatta), of both 
Indian and Chinese origin, pigtailed macaques (PTMs) (Macaca 
nemestrina), and cynomolgus macaques (CMs, the crab-eating 

macaque) (Macaca fascicularis). All these three macaque species 
are susceptible to infection by various SIV strains, and the disease 
outcome varies from elite-controlled infection, with a small rate 
of disease progression to AIDS-defining illnesses to a very rapid 
disease progression, with death occurring within a few months 
following infection. This variability of the disease outcomes is 
dependent on the viral strains used for challenge, on macaque 
species, and on genetic pedigree of the individual monkeys 
(48, 49). In addition to these different macaque species, HIV-1 
research has also utilized African NHPs that are natural hosts 
of SIVs, such as African green monkeys (AGMs) (Chlorocebus 
genus), sooty mangabeys (Cercocebus atys), and mandrills 
(Mandrillus sphinx). SIV infection of these species generally does 
not progress to AIDS, therefore permitting comparative studies 
aimed at identifying the correlates of immune protection and the 
lack of disease progression (81–84).

Simian immunodeficiency virus infection of macaques shares 
the key pathogenic features with HIV infection in humans, 
which make macaques an ideal environment for cure research. 
Particularly, SIVs and HIV share the following key features of 
virus persistence: (i) both HIV and SIV DNA are integrated in 
the target cell genome (85, 86) and with a similar preference to 
integration site (87). (ii) Response to interferons results in tran-
scriptional control of virus long terminal repeats (LTRs) through 
a bias of histone acetylation favoring HIV/SIV DNA persistence 
(88). (iii) Costimulatory signals can induce latent HIV/SIV 
without coengagement of T-cell receptors (89). (iv) Distribution 
of cells containing HIV and SIV DNA and RNA sequences in 
peripheral blood, lymph nodes (LNs), and at mucosal sites are 
similar in humans and macaques (77, 78, 90). (v) CTLs are 
ineffective in clearing infected cells long term due to resistance 
mutations in HIV/SIV (91, 92). These characteristics underline 
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similar reservoir dynamics in HIV- and SIV-infected humans and 
macaques, respectively.

In addition to these shared features between SIV infection in 
macaques and HIV infection in humans, there are also several 
notable differences between the two models that limit the use of 
the macaque model and call for its improvement. Of these, the 
most critical for cure research are the overall higher viral loads 
(VLs), during both acute and chronic infections, and the natural 
resistance to non-nucleoside reverse transcriptase inhibitors 
(NNRTIs), which is a common feature of HIV-2 and SIV strains 
(93–95). Due to these features, SIV infection is more difficult 
to control with ART in macaques compared to HIV infection, 
requiring more potent combinations to achieve suppression (53, 
96–98). This limitation can be addressed by using unadapted 
SIVsmm strains in macaques, which more closely reproduces the 
pathogenesis of HIV infection in humans and are less pathogenic 
than SIVmac strains (99), with the caveat that these newly devel-
oped strains are less characterized than the reference SIVmac 
strains.

Another notable difference between HIV and SIV infection 
regards their relations with the enzyme SAM domain and HD 
domain 1 (SAMHD1). SAMHD1 is a nuclear protein with phos-
phohydrolase activity that can restrict replication of lentiviruses 
by depleting the nucleotriphosphate (NTP) pool during reverse 
transcription (100). SAMHD1 is involved in HIV-1 restriction 
in non-dividing, resting T cells that do not support productive 
virus replication and is a key component of the reservoir. The viral 
accessory protein Vpx, which antagonizes SAMHD1 activity, has 
no effect on the infection of activated T cells but relieves the block 
to reverse transcription in resting T cells (101, 102). As such, Vpx 
could allow the establishment of latently infected cells, which, 
upon subsequent activation, would produce infectious virus that 
can expand the pool of infected (including latently infected) T 
cells. Only HIV-2 and some SIVs (notably those that are used in 
the macaque models) contain Vpx (103, 104). Although HIV-1 
does not encode Vpx, the virus is susceptible to the infectivity 
enhancement provided by the SIV accessory protein (105, 106). 
As such, while SAMHD1 seems to play a key role in a strategy 
of the immune system to avoid immune cellular responses upon 
viral infection, it also represents a key difference between the HIV 
infection of human patients and the NHP animal model (107).

Rhesus macaques infected with either the reference swarm 
SIVmac251 or with the SIVmac251-derived infectious molecular 
clone SIVmac239 accurately reproduce several aspects of human 
HIV infections, including sustained, high VLs, immediate and 
progressive depletion of mucosal CD4+ T cells, and chronic 
immune activation (56, 57). As such, this model is most widely 
used in a wide variety of cure-based studies. SIVmac239/251-
infected Chinese RMs represents another model of interest for 
cure research. Compared to Indian RMs, Chinese RMs have lower 
acute and chronic VLs, more closer to HIV-1 infected humans, 
and as such, SIV infection can be more readily controlled in 
Chinese RMs than in Indian RMs (67, 108).

Other macaque models have been also used to investigate the 
viral reservoirs. PTMs infected simultaneously with SIV/17E-Fr 
and SIV/Delta B670 represent a model of pathogenic infection, 
whereby the animals progress to AIDS within 3  months, with 

most animals developing central nervous diseases (109). This 
model is susceptible to tritherapy, which can suppress virus to 
below 50 copies/ml and was utilized to identify various anatomic 
sites of latently infected CD4+ T cells (27). It was also used to 
show that ART reduces both vRNA levels in cerebrospinal fluid 
to below the limit of detection (50 copies/ml), similar to vRNA 
levels in plasma, and inflammation in the central nervous system 
(CNS), suggesting early ART benefits levels of virus replication in 
the CNS and pointing to a strategy to mitigate neurological disor-
ders that develop during chronic infection (9, 110). This model of 
neuro-AIDS was used for the study of the anatomic reservoir of 
the brain as well as the macrophage reservoir (27, 109).

Cynomolgus macaques represent another NHP model of cure 
research, albeit its use is more limited than that of RMs. SIVmac-
infected CMs have intermediate peak VLs and low chronic VLs 
and, as such, are vastly easier to control with ART (76). This 
model is extensively used in Europe for the experiments related 
to cure research (11, 77, 90).

Due to genetic differences between SIVs and HIV, SIVmac 
strains, similar to HIV-2 strains, are not susceptible to NNRTIs 
(95, 98). Furthermore, SIV infection results in the selection of 
different epitopes compared to HIV infection. To address these 
limitations, SIVmac strains have been engineered to share charac-
teristics from both types of viruses to maximize model potential. 
Such chimeric simian-human immunodeficiency viruses (SHIVs) 
were produced to include HIV-1 reverse transcriptase (RT) gene. 
Two RT chimeras have been produced thus far: RT-SHIVmac239 
and RT-SHIVmne, SIV containing the HIV RT for the viruses 
SIVmac239 and SIVmne, respectively. They both overcome 
the NNRTI block for use in RMs and PTMs, respectively (62, 
73, 111). Additionally, enhanced SHIV clones with HIV-1 Env 
proteins from transmitted/founder strains have been developed 
without passaging, thus providing a model for future studies 
aimed at neutralizing antibody development and testing (112).

While very useful for addressing these critical aspects of 
cure research, RT-SHIVs also have their limitations, including 
difficulty in suppressing virus replication with the same triple 
ART treatments used in humans (i.e., tenofovir/emtricitabine/
efavirenz) (12, 73). Since most of the genome is represented by 
the SIVmac239 backbone, these are limitations due to the use of 
SIVmac.

The conventional NHP models for cure research based on the 
use of SIVmac recapitulate most of the characteristics of HIV-
infected patients. As HIV and SIV infections are both characterized 
by severe immunosuppression and significant alterations of the 
immune responses and since studies have shown that clearance of 
virus reactivated from the reservoir requires functional immune 
responses (113) and various cure approaches requires functional 
CTLs to eliminate the virus reactivated from the reservoirs, we 
recently focused on the development of alternative models for 
cure research that would permit us to refine the system, in order 
to be able to dissect the relative impact of various interventions 
on the reservoir.

Thus, we developed a RM model in which functional cure 
of SIV infection occurs spontaneously in 100% of infected 
monkeys in the absence of ART (60). In this model, infection of 
Indian RMs with SIVsab, the virus that naturally infects AGMs 
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in West Africa (114), results in a robust acute viral replication 
and a massive CD4+ T cell depletion. Control occurs between 2 
and 3 months postinfection and is maintained indefinitely (60). 
Virus control is progressively consolidated, and SIVsab infection 
eventually becomes latent in RMs, as documented by the use of a 
single copy assay (61). Consequently, residual immune activation 
persists throughout the first year of infection before returning to 
preinfection levels. As a result of complete virus control, mucosal 
CD4+ T cells are slowly restored, reaching preinfection levels after 
4 years postinfection (60). Furthermore, all biological and clinical 
markers of SIV infection (microbial translocation, immune acti-
vation, and apoptosis) are resolved and the animals serorevert by 
2 years postinfection. This robust and persistent virus control can 
be reverted by the in vivo depletion of CD8+ cells, while restored 
CD8+ cells control the rebounding virus (60). In this model, virus 
control is not due to its inability to replicate, as the serial passage 
of the reactivated virus to naïve RMs resulted in very robust levels 
of viral replication, which were similar to those observed with the 
parental virus, clearly demonstrating that the controlled virus is 
replication-competent (61). This model, in which a very robust 
control of the virus by functional immune responses occurs with-
out the complexity of ART, is an ideal setting for the screening of 
various strategies aimed at reactivating the virus from reservoirs 
by allowing the dissection of the effects of various reversing 
agents and of the corresponding immune responses without the 
confounding factors of ART and a weakened CTL response.

NHP MODeLS FOR CURe ReSeARCH: 
APPLiCATiONS

Use of the NHP Models to establish 
Pathogenesis Paradigms
The NHP models for AIDS research decisively contributed to 
the establishment of key paradigms of HIV pathogenesis, and it 
is likely that they will play a central role in cure research. Yet, 
initially, the field was relatively reluctant to consider NHPs for 
testing therapies requiring ART coverage, because SIV and SHIV 
infections were relatively difficult to control with tritherapy (12, 
53, 96–98), and as discussed above, residual virus replication is 
a major roadblock for studying virus reservoirs. However, with 
the renewed interest in cure research and the use of NHP mod-
els in this niche, complete suppression of VL and a noticeable 
effect on the viral reservoir were rapidly achieved by employing 
various aggressive ART regimens (9, 97, 110, 115). The original 
drug regimens used for the complete control of viral replica-
tion in macaques were complex and included a combination 
of emtricitabine (FTC), tenofovir (TDF), and raltegravir (RAL) 
with ritonavir-boosted darunavir and even maraviroc (97). 
With the advent of dolutegravir (DTG) and a coformulation of 
the above drugs, it was reported that control of SIVmac repli-
cation can be achieved in RMs with a tritherapy regimen (i.e., 
FTC + TDF + DTG) (115, 116). The ability to suppress SIVmac 
in RMs to the same levels of suppression seen in HIV-1-infected 
patients dramatically improved the prospects of cure research, 
allowing studies on reservoir seeding (116) or testing virus reac-
tivation strategies (112).

One of the key obstacles for cure research is that the virus res-
ervoir is established very early following infection. While this was 
postulated for quite a while based on results in vaccine studies, it 
was only recently directly proven (116). Thus, very rapid initiation 
of suppressive ART in RMs on days 3, 7, 10, and 14 after intrarec-
tal SIVmac251 infection showed that only treatment with ART 
on day 3 blocked the emergence of viral RNA and proviral DNA 
in peripheral blood and substantially reduced levels of proviral 
DNA in LNs and gastrointestinal mucosa compared to treatment 
at later time points. Furthermore, treatment on day 3 abrogated 
the induction of SIV-specific humoral and cellular immune 
responses. Yet, when ART was interrupted after 24 weeks of fully 
suppressive therapy, virus rebounded in all animals, including 
those that were treated on day 3. However, the day 3-treated RMs 
had a delayed virus rebound compared to those treated on days 7, 
10, and 14. The time to viral rebound correlated with total viremia 
during acute infection and with proviral DNA at the time of 
ART discontinuation. Altogether, these results demonstrated an 
extremely rapid seeding of the viral reservoir in RMs, during the 
“eclipse” phase, prior to detectable viremia, pointing to the dif-
ficulty of HIV eradication (116). Furthermore, the observed delay 
in virus rebound in monkeys treated very early during infection 
raises the question of whether or not a prolonged therapy will 
have a discernable impact on the size of the reservoir and on the 
ability to control viral rebound at cessation of ART, as reported 
with “Mississippi baby” (40) or the “Visconti” posttreatment 
controllers (43). In other studies whereby SIVmac251-infected 
RMs were given ART at 4  h, 7  days, or 14  days postinfection, 
it was shown that ART given at 4  h postinfection resulted in 
drastically lower virus replication and dissemination in the gut 
and lower plasma virus load 2 weeks following treatment com-
pared to 7 and 14 days postinfection, further supporting a rapid 
establishment of the reservoir (78, 90) and calling for a very rapid 
therapeutic intervention in HIV-infected patients. Unfortunately, 
the drawback of these observations is that in the vast majority of 
HIV-infected patients, it is virtually impossible to initiate ART so 
early postinfection.

One of the very important applications of the NHP models 
of AIDS with major impact on cure research is the study of 
residual viral replication in patients on ART. Studies employing 
ultrasensitive viral quantitation assays reported that in treated 
patients, the initial rapid virus decay is followed by a very slow 
decay (stage III of virus decay and even stage IV decay that is 
likely persistent during the lifespan of the infected patient) 
(117, 118). A key question in the field is whether or not this 
detectable virus (7–10  copies/ml) is replication-competent and 
can contribute to reservoir reseeding. There is also a debate as 
to whether virus persistence seen during successful ART is the 
result of incomplete suppression of virus replication or residual 
production of virus from long-lived, chronically infected cells 
(27, 38, 119–121). Persistent virus replication under ART may 
result in the development of resistance against the drugs used to 
suppress the virus, requiring the addition of more toxic drugs 
or, in extreme cases, resulting in complete drug failure. Though 
these studies can be done in humans, they have major limitations 
as they cannot thoroughly investigate the sources of the residual 
virus, such investigations requiring access to multiple tissue sites. 
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The use of the NHP model, in which we can sacrifice the animals 
and extensively collect multiple tissue sites and cell types, allows 
us to understand what the specific “sanctuary” reservoir tissues 
are (i.e., the locations where the virus is not suppressed), as well 
as the sources of virus reactivation and resistance.

Use of the RT-SHIV/NHP models represents the most 
efficient method to address these aspects of viral persistence 
under ART. Since the experimental inoculum is thoroughly 
characterized when infectious molecular clones are employed, 
experimental infections with a known inoculum followed by the 
administration of potent ART, frequent sampling, and extensive 
sequencing permit a thorough assessment of virus evolution 
under ART as a surrogate of virus replication. Multiple studies 
utilizing the PTM model infected with various RT-SHIVs have 
documented that viral evolution occurs under ART (75, 122, 
123).

Studies in the RT-SHIV model have also shown that viral 
diversity does not decrease during suppressive ART and that the 
virus levels present prior to initiation of therapy influence the 
development of resistant strains (64, 75). They have also shown 
that upon ART reinitiation following interruption, the rate of 
viral decay matches the decay seen upon initial ART adminis-
tration, reflecting that wild-type virus becomes integrated and 
emerges following ART interruption (73–75). Further studies will 
be needed to better characterize the fate of various viral reservoirs 
in patients receiving ART.

Use of NHP Models to Test Latency 
Reversal Agents
The virally suppressed SIV/RM models have allowed the testing 
of several latency reversal agents (LRAs) to determine their ability 
to reactivate latent virus and assess the impact of this strategy on 
the size of the overall reservoir. Administration of the histone 
deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid 
(SAHA) to SIV-infected ART-suppressed RMs induced a very 
limited amount of virus reactivation, in spite of inducing a dis-
cernable increase in histone acetylation, indicating that repeated 
HDACi administrations may be necessary to see a more robust 
effect (67, 124). The NHP model can further be employed to test 
various hypotheses based on ex vivo experiments using HDACi. It 
was recently reported that administration of HDACi (particularly 
romidepsin, and to a lesser extent, panobinostat and SAHA) 
may significantly impact T-cell effector functions through either 
rapid suppression of cytokine production from viable T cells or 
through induction of selective death of activated T cells (125). 
As such, HDACis impaired CTL-mediated IFN-γ production, as 
well as the elimination of HIV-infected or peptide-pulsed target 
cells. It was, therefore, concluded that treatment with HDACis 
to mobilize the latent reservoir could have unintended negative 
impacts on the effector functions of CTL, which could influence 
the effectiveness of HDACi-based eradication strategies, by 
impairing elimination of infected cells (125). In vivo studies in 
NHPs are needed to confirm these ex vivo results.

Auranofin, a gold-based compound used to treat rheumatoid 
arthritis and a potential LRA, was also tested in RMs. It was 
reported that RM exposure to auranofin resulted in a reduction 

of the viral reservoir, followed by a delay in virus rebound at 
the cessation of ART compared to the untreated group (126). 
Furthermore, administration of auranofin together with the 
experimental chemotherapeutic agent buthionione sulfoximine 
(BSO) prior to ART cessation resulted in a rebound of VLs fol-
lowed by control of the virus to undetectable levels and minimal 
immune activation for 2 years following ART cessation (127, 128).

Simian immunodeficiency virus-infected RMs were also used 
for testing protein kinase C (PKC) activators, such as prostratin 
or bryostatin. While, to date, there are no published studies 
reporting these results, PKC activators have been shown to have 
therapeutic effects at doses that are very close to toxic levels 
and cannot be administered for prolonged rounds of treatment 
without substantial toxicity or even death of the animals. Thus, 
PKC activators need further testing to conclude their usefulness 
for virus reactivation strategies.

All these experiments demonstrate that the NHP models 
proved their usefulness for testing virus reactivation strategies 
and will continue to be used for future studies. Particularly for 
the field of virus reactivation experiments, the use of the macaque 
models in which virus control occurs either spontaneously 
or posttreatment may be very useful for screening LRAs in an 
environment with functional immune responses and without the 
complexity of ART (52).

Use of NHP Models to Test 
Transplantation Strategies
One avenue of cure research currently being explored is stem cell 
transplant following total body irradiation in an effort to mimic 
the cure seen by the Berlin patient (44). To this end, RMs were 
infected with SHIV and treated with ART to reduce viral replica-
tion prior to total body irradiation and engraftment of autologous 
hematopoietic stem cells isolated from the respective RMs prior 
to infection. At 40–75 days post-graft, ART was stopped. In two 
of three RMs, rapid viral rebound occurred, with the third RM 
exhibiting no plasma viral RNA 2  weeks following ART inter-
ruption (129). While the therapeutic success was limited, this 
study demonstrated that the replacement of the hematopoietic 
compartment was insufficient to eliminate host viral reservoirs. 
Even more important, it provided a new model for studying 
eradication strategies.

Use of NHP Models to Test Strategies 
Aimed at Controlling Persistent immune 
Activation
Chronic inflammation and immune activation were reported to 
be the key obstacles for cure research. Chronic immune activa-
tion persists in patients on ART (35, 130). The pool of activated 
cells represents one of the key sources of residual viremia 
(“homeostatic proliferation”) (1). Furthermore, activated CD4+ 
T cells are susceptible to infection, and increasing the pool of 
susceptible cells may favor reservoir reseeding, thus representing 
a key determinant of viral persistence (1).

The sources of chronic immune activation and inflammation 
in patients receiving ART are not completely known. While the 
virus clearly induces immune activation itself, it is also controlled 
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with ART. Other major triggers of chronic immune activation are 
microbial translocation, coinfections with cytomegalovirus and 
other copathogens, or ART toxicity (131). Depletion of CD4+ T 
cells (through either T cell activation and apoptosis or through 
direct effect of the virus itself) may be responsible for inflamma-
tion (132). Thus, CD4+ T cell loss leads to further mucosal dam-
age, resulting in increased microbial translocation and immune 
activation (133). In the pool of the CD4+ cells that are depleted, 
Th17 cells that are responsible for gut integrity and defense 
against microorganisms are preferentially targeted by HIV/SIV 
infection, resulting in the disruption of mucosal integrity and 
increased microbial translocation (134–136).

In addition to contributing to the virus reservoir, Tregs like-
wise play a role in both peripheral tolerance as well as control-
ling immune activation (137). Administration of Ontak, a drug 
that partially depletes Tregs to chronically SIV-infected AGMs, 
boosted both viral replication and immune activation, suggesting 
that Tregs may play a role in controlling the virus (138). Other 
studies have shown that Tregs critically contribute to the devel-
opment of fibrosis and that Treg blockade with an anti-CTLA-4 
antibody results in increased effector functions for CD4+ and 
CD8+ T cells in SIV-infected RMs (139, 140). Further studies are 
needed to understand the impact of Treg on the outcome of HIV/
SIV infections.

Various treatments to reduce or minimize residual immune 
activation are being tested, and NHP models are central for such 
studies (141). Several studies have investigated the usefulness 
of interleukin (IL)-7 treatment to limit cell depletion when 
administered alone or with IFN-α. These studies have shown that 
IL-7 effectively prevented the complete depletion of CD4+ T cells 
when administered during acute infection (142). IL-7 increased 
proliferative capabilities and induced sustained increases of 
PBMC counts when administered in “clustered” doses (143); 
finally, IL-7 treatment prevented lymphopenia associated with 
IFN-α treatment while stimulating CD8+ CTLs against SIV (144).

Another potential therapeutic intervention is the use of IL-21 
to restore/preserve T helper 17 (Th17) cells, which are responsible 
for mucosal integrity (135, 145). IL-21 administration to ART-
suppressed RMs infected with SIVmac restored Th17 and Th22 
cells, reduced immune activation in the blood and rectum, and 
decreased levels of CD4+ T cells harboring replication-competent 
virus (146). Also, IL-21 administration was reported to reduce 
the size of the viral reservoir (146). Another study showed that 
the administration of IL-21 combined with probiotics to ART-
treated SIV-infected RMs improved recovery and maintenance of 
Th17 cells, contributing to reduced microbial translocation (147). 
Similarly, when probiotics were administered to SIV-infected 
PTMs on ART, levels and functionality of gut CD4+ T cells and 
APCs were increased, with a noticeable decrease in fibrosis in 
colonic lymphoid follicles (148).

In addition to cytokine treatment for control of immune 
activation, other strategies directly target microbial transloca-
tion and the potential impact on chronic immune activation 
and inflammation. Such strategies involved lipopolysaccharide 
(LPS)-sequestering in the gut with sevelamer (149). Sevelamer 
administration to acutely infected macaques resulted in a 
reduction of immune activation, inflammation, and coagulation 

biomarkers (72). The second strategy involves administration 
of intraluminal antibiotics, such as rifaximin (a semisynthetic, 
broad-spectrum antibiotic with poor bioavailability and is 
currently used to treat traveler’s diarrhea and hepatic encepha-
lopathy) (150, 151). Rifaximin administration, in combination 
with the anti-inflammatory agent sulfasalazine, to acutely 
SIV-infected PTMs transiently and moderately improved the 
key parameters of SIV infection. (152). There is no information 
regarding the efficacy of these treatments in chronically infected 
RMs on ART. For these studies aimed at controlling microbial 
translocation-induced immune activation, PTMs are probably 
a better model than RMs, as gut damage is more extensive in 
SIV-infected PTMs. Moreover, PTMs have a higher propensity 
for gastrointestinal disease, even in the absence of SIV infection 
(153). Considering that previously published studies reported a 
relatively limited duration of therapeutic effect and that chroni-
cally infected patients will need to receive these therapies as life-
lasting interventions, it is likely that the therapeutic applicability 
of these interventions will be limited. Overall, these studies point 
to the NHP models as critical tools for testing various treatments 
to reduce immune activation.

Use of NHP Models for vaccine Studies 
with Applicability to Cure Research
Development of an AIDS vaccine is considered the ultimate 
approach in order to control the epidemic. However, in spite of 
significant progress over the last decade, a vaccine against HIV 
is not available. In the early 2000s, it was considered that even 
a vaccine that does not prevent the infection but will control 
viral replication may be useful for controlling the epidemic 
(154). With the renewed interest in cure research, this concept 
was translated to the cure field. Vaccines that control virus 
replication are considered useful and will enable us to study 
the mechanisms of the functional cure of HIV infection. The 
only vaccine currently available proven to induce functional 
cure in RMs is based on the use of the cytomegalovirus (CMV) 
vectors. The concept behind the use of the CMV vectors is that 
infection with CMVs is benign in immunocompetent patients 
and results in persistent, life-long, and highly biased T cell effec-
tor memory (TEM) CD4+ and CD8+ T cell responses (155, 156). 
The replicative nature of the CMV vector and its subsequent 
TEM stimulation, along with the fact that TEM are the major T 
cell type found at mucosal effector sites (157), make the CMV 
vectors ideal candidate HIV vaccines. Indeed, rhesus CMV 
(RhCMV)/SIV vectors expressing SIV Gag, Rev/Nef/Tat, and 
Env administered to RMs prior to low-dose intrarectal infection 
with SIVmac239 conferred some protection to SIV challenge 
(156). More importantly, 50% of the RMs vaccinated with the 
RhCMV vectors, after experiencing an initial burst of viremia 
following first challenge, rapidly controlled infection through 
an immune-mediated partial control of SIV (158) and were 
functionally cured of SIV. Virus control was very robust, result-
ing in undetectable levels of vRNA in multiple tissues. In these 
RMs, CD8+ cell depletion did not result in a virus rebound nor 
did transfusion of 30 × 106 cells from the cured RMs to naïve 
RMs result in infection. It has now been shown the RhCMV/
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TABLe 3 | Different mouse models utilized in cure research.a

Hiv/SCiD-hu Hiv/hu-HSC Hiv/BLT

Methods for 
production

SCID mice 
implanted with 
fetal human 
thymus/live

NOD/NSG 
mice irradiated, 
injected with 
human HSCs

NOD/SCID mice 
irradiated, implanted 
with fetal human 
thymus/live, injected 
with HSCs

Timeframe 
needed 
for mouse 
production 
(prior to 
infection)

5–7 months 
from time of 
birth

2–3 months 
from time of 
birth

5–7 months from time 
of birth

Cellular 
composition 
following 
reconstitution

T cells T and B cells 
and DCs

T and B cells, 
monocytes, 
macrophages, NK cells, 
DCs

Degree of 
colonization

Limited to 
thymus/live 
implant

Murine lymph 
organs and 
bone marrow

Murine lymph organs, 
rectum, vagina, gut, 
bone marrow

Length 
infection 
maintained

Grafts last 
approx. 1 year

6–7 months >1 year

Plasma vRNA 104–105 Up to 107 104–105

aTraggiai et al. (164), Bonyhadi and Kaneshima (165), Brainard et al. (166), McCune 
et al. (167), Nischang et al. (168), Baenziger et al. (169), Berges et al. (170), and 
Pettoello-Mantovani et al. (171).
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SIV vector elicits distinct patterns of CD8+ T cell epitope rec-
ognition not normally seen during SIV infection (159). As such, 
RMs vaccinated with RhCMV-based SIV vaccines are an ideal 
setting for the study of the correlates of the functionally cured 
SIV infection.

USe OF MiCe FOR CURe ReSeARCH

Humanized mice represent an important tool for HIV cure 
research. Of the various types of humanized mice developed 
to date, the most commonly used types are severe combined 
immune deficiency human (SCID-hu), human hematopoietic 
stem cells (hu-HSC), and bone-liver-thymus (BLT) (Table  3). 
All three models are readily infected following HIV-1 challenge. 
SCID-hu mice are generated when fetal human thymus and liver 
fragments are implanted into mice lacking B and T cells, thus 
preventing rejection of the human tissue. Following implanta-
tion, the SCID-hu mouse is reconstituted with human thymo-
cytes and naïve T cells. The drawbacks of the SCID-hu mouse 
model are the following: major surgery with human fetal tissue is 
required, the mice lack a primary immune response, reconstitu-
tion with human cells is focused around the implant, and the 
reconstituted cells do not efficiently spread into the periphery 
(50). Hu-HSC mice are sublethally irradiated non-obese diabetic 
(NOD) or NOD SCID gamma (NSG) that are then injected with 
human HSC, allowing for a more thorough reconstitution with 
human cells than SCID-hu mice. These mice are able to generate 
a near complete human immune system. The immune responses 
generated in this model are, however, neither robust nor HLA-
restricted (50). BLT mice are a combination of SCID-hu and 

hu-HSC mice, whereby NOD or NSG mice are sublethally irra-
diated, implanted with fetal human liver and thymus fragments, 
and then injected with human HSC. This results in a thorough 
reconstitution of human HLA-restricted cells throughout the 
mice in most organs, with improved mucosal immunity and a 
more robust immune response compared to SCID-hu and hu-
HSC mice (160–162). There are several limitations of the BLT 
mouse model, which are as follows: (i) it requires major surgery 
and the implantation of human fetal tissue, (ii) a long waiting 
period is needed until full reconstitution is observed, (iii) the 
development of graft-versus-host disease occurs approximately 
6  months post-engraftment, and (iv) BLT mice are unable to 
develop high levels of hypermutated, class-switched IgG anti-
bodies (163).

SCID-hu mice have played an important role in elucidating 
the characteristics of latency development during the early stages 
of infection. The exact mechanisms behind the development of 
viral latency have yet to be established, but one theory is that 
activated CD4+ T cells become infected by the virus but transi-
tion into a resting state before the host immune response or the 
virus itself kills the cell (172, 173). SCID-hu mice have been used 
to prove viral latency, which can also occur when thymic CD4+ 
CD8+ T cells are infected by HIV-1 and transited into CD4+ T 
cells (174). Furthermore, this model has been instrumental in the 
initial understanding of latently infected cells and was the vehicle 
utilized in the earliest latency-depleting experiments (175–178). 
It was shown that prostratin and IL-7, both of which are currently 
tested as LRAs, could activate HIV-1 from latently infected cells 
in the SCID-hu model (175, 176). Furthermore, it was shown that 
these drug-induced activated cells could be targeted for elimina-
tion with an anti-HIV envelope immunotoxin, one of the earliest 
“shock and kill” experiments (177).

Hu-HSC mice have significantly advanced research on 
understanding HIV latency. Choudhary et  al. have shown that 
replication-competent HIV-1 persists in CD4+ T cells in mice 
receiving ART, providing an avenue for strategies targeting the 
viral reservoir (179). Further, the hu-HSC mouse model was 
utilized to test the effectiveness of a CCR5-targeting zinc-finger 
nuclease in controlling HIV-1 infection. Zinc-finger nuclease-
expressing CD34+ cells were inserted into HIV-1-infected hu-HSC 
mice resulting in a selection of the virus for CCR5-negative cells, 
a reduction of HIV-1 (VLs), and a preservation of human cells 
(180). Hu-HSC mice were also used to test human T cell-targeted 
small interfering RNA (siRNA) constructs that deliver anti-CD4, 
-CCR5, -vif, and -tat siRNAs. It was shown that the infected 
hu-HSC mice which received the constructs had 30-fold lower 
VLs compared to the control group (181). Finally, it was shown 
that treatment with both anti-HIV envelope antibodies and three 
types of HIV latency reversing agents (vorinostat, I-BET151, and 
CTLA) resulted in mice controlling VLs and a decrease in the 
rebound frequency of the virus (182). As such, hu-HSC mice have 
been a useful model for identifying potential LRAs.

Unlike SCID-hu and hu-HSC mice, BLT mice are able to 
recapitulate a primary immune response against HIV-1 infection 
while remaining susceptible, thus representing the most efficient 
and complete mouse model for HIV studies. The BLT mouse 
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model is readily infected by HIV-1; VLs can be readily controlled 
with intensive ART regimens in this model, with return of VLs 
upon ART cessation; and PBMCs isolated from the mice can be 
induced to express virus ex vivo (183, 184). Similar to humans 
and macaques, CD4+ T cell depletion is strain-dependent 
(185). BLT mice have also been used to test a CCR5-targeted 
RNA-interference (RNAi) treatment that provided a protective 
effect against HIV-1 replication (186). It was also shown that a 
targeted, cytotoxic anti-HIV immunotoxin therapy dramatically 
depleted the number of productively infected cells in various 
organs when combined with ART in BLT mice (187). Recently, 
engineered mice have been developed to contain exclusively T 
lymphocytes (TOM) or macrophages (MOM). As such, these 
models can be used to better assess the in vivo distribution of 
the reservoir (188).

Altogether, mouse models can be used to address quintes-
sential questions of cure research, but come with a specific set 
of limitations, including (1) incomplete colonization of murine 
tissues with human cells, especially at the mucosal sites (albeit 
at a lesser degree in the BLT model); (2) a more limited deple-
tion of CD4+ T cells in tissues (185); (3) long waiting periods for 
reconstitution with human cells following surgery; and (4) size 
limitations relative to experimental demand. This last limitation 
is particularly important vis-à-vis cure research, as the assessment 
of the reservoir virus and its inducibility can only be performed 
on large amounts of cells, normally an order of magnitude higher 
than what can be routinely obtained from mice. As such, the 
demand for more frequent and larger samples offsets the lower 
cost of the model by necessitating the sacrificing of a larger num-
ber of mice. Overall, the advantages of the models offset these 
limitations, but still necessitate the use of larger animal models 
for specific experiments.

OTHeR MODeLS FOR CURe ReSeARCH

Feline immunodeficiency virus (FIV) infection in domestic 
felines represents a large-animal model of lentiviral-induced 
immunodeficiency and shares similarities in pathogenesis with 
that of HIV-1 in humans (51, 189, 190). Furthermore, the FIV 
model represents the only naturally occurring model of immu-
nodeficiency (191). Infected felines exhibit high acute viremia, 
depleted CD4+ and CD8+ cells, and the establishment of chronic 
infection, whereby the virus is controlled naturally (189). Similar 
to HIV-1-infected patients, CD4 counts continue to decrease 
until terminal illness, whereby cell-free viral RNA levels increase, 
immune dysfunction occurs, and opportunistic infections appear 
as the cat develops feline AIDS (FAIDS) (189). The FIV model 
had some value for the development and testing of antiretroviral 
drugs, particularly nucleoside reverse transcriptase inhibitors 
(NRTIs) (192). The FIV model can be also used to explore the 
potentiality of host restriction factors, as evidenced by transgen-
esis of the RM TRIMCyp into the cat germline resulting in feline 
resistance to FIV replication (193). This model has also been used 
to test the effectiveness of the LRA SAHA, observing increased 

levels of cell-associated viral RNA, one measurable point of cell-
free RNA, and decreased levels of viral DNA (194).

Though progress has been made in understanding the FIV 
model, it has its own set of limitations, including the absence 
of certain accessory genes in FIV that are seen in HIV-1 (while 
encoding its own set of open reading frames not present in 
primate lentiviruses) (195); FIV utilizes CD134 instead of 
CD4 as the main binding receptor (196), 134, allowing FIV to 
infect B cells and CD8+ T cells in addition to CD4+ T cells and 
macrophages (197). As such, the target cells of FIV and HIV/
SIV are different and with the structure of the reservoir being 
different, the applicability of the FIV model for cure research is 
likely limited.

CONCLUSiON

There is an acute need for an HIV cure and ART cannot provide 
it. Novel research with LRAs and other strategies is bringing us 
closer to a functional cure. Use of animal models as critical tools 
for cure research permits preclinical testing of the plethora of 
interventions that are currently contemplated for a cure strat-
egy. The vast majority of these new strategies are tested in the 
various existing animal models for HIV-1. Humanized mouse 
models infected with HIV-1 allow for lower maintenance costs 
in a genetically identical model that directly mimics the human 
immune system but are difficult to produce, unable to be bred, 
and have limitations in tissue colonization and tissue demand 
relative to size. FIV infection of cats has only a limited applicabil-
ity for cure research due to the key differences in the structure of 
the reservoir. SIV-infected monkeys are larger than both mouse 
and feline models, offering both a natural host of infection as 
well as a pathogenic model with a similar physiology and disease 
progression to HIV-infected humans but at the price of higher 
maintenance costs, harder acquisition of susceptible species, 
and the use of a different, yet genetically similar virus strains. 
Fine tuning of each model type, combined with novel research 
techniques aimed at “shocking and killing” latent virus and the 
development of immune-based therapies, may fuel HIV cure 
research.

AUTHOR CONTRiBUTiONS

BP, IP, and CA conceived, wrote, and edited the manuscript.

ACKNOwLeDGMeNTS

We would like to thank Daniel Douek, Jeffrey Lifson, and John W. 
Mellors for helpful discussion.

FUNDiNG

This manuscript was funded in part by the following grants: RO1 
AI119346 (CA), P01AI088564 (CA), R01HL117715 (IP), and 
RO1 HL123096 (IP). BP is supported by the RO1AI104373 grant.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


January 2016 | Volume 7 | Article 1210

Policicchio et al. Animal Models for HIV Cure Research

Frontiers in Immunology | www.frontiersin.org

ReFeReNCeS

1. Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, Chomont N, et al. 
Towards an HIV cure: a global scientific strategy. Nat Rev Immunol (2012) 
12(8):607–14. doi:10.1038/nri3262 

2. Hogg R, Lima V, Sterne J, Grabar S, Battegay M, Monforte A, et  al. Life 
expectancy of individuals on combination antiretroviral therapy in high-in-
come countries: a collaborative analysis of 14 cohort studies. Lancet (2008) 
372(9635):293–9. doi:10.1016/S0140-6736(08)61113-7 

3. Shen L, Siliciano RF. Viral reservoirs, residual viremia, and the potential of 
highly active antiretroviral therapy to eradicate HIV infection. J Allergy Clin 
Immunol (2008) 122(1):22–8. doi:10.1016/j.jaci.2008.05.033 

4. Pomerantz RJ, Zhang H. Residual HIV-1 persistence during suppressive 
HAART. Curr Clin Top Infect Dis (2001) 21:1–30. 

5. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab 
B, et al. HIV reservoir size and persistence are driven by T cell survival and 
homeostatic proliferation. Nat Med (2009) 15(8):893–900. doi:10.1038/
nm.1972 

6. Smith DM, Wong JK, Shao H, Hightower GK, Mai HT, Moreno JM, et al. 
Long-term persistence of transmitted HIV drug resistance in male genital 
tract secretions: implications for secondary transmission. J Infect Dis (2007) 
196(3):356–60. doi:10.1086/519164 

7. Chavez L, Calvanese V, Verdin E. HIV latency is established directly and 
early in both resting and activated primary CD4 T cells. PLoS Pathog (2015) 
11(6):e1004955. doi:10.1371/journal.ppat.1004955 

8. Ruelas DS, Greene WC. An integrated overview of HIV-1 latency. Cell (2013) 
155(3):519–29. doi:10.1016/j.cell.2013.09.044 

9. Zink MC, Brice AK, Kelly KM, Queen SE, Gama L, Li M, et al. SIV-infected 
macaques treated with highly active antiretroviral therapy (HAART) have 
reduced CNS virus replication and inflammation but persistence of viral 
DNA. J Infect Dis (2010) 202(1):161–70. doi:10.1086/653213 

10. Clements JE, Li M, Gama L, Bullock B, Carruth LM, Mankowski JL, 
et  al. The central nervous system is a viral reservoir in simian immu-
nodeficiency virus-infected macaques on combined antiretroviral 
therapy: a model for human immunodeficiency virus patients on 
highly active antiretroviral therapy. J Neurovirol (2015) 11(2):180–9. 
doi:10.1080/13550280590922748-1 

11. Damouche A, Lazure T, vettand-Fènoël VA, Huot N, Dejucq-Rainsford N, 
Satie AP, et al. Adipose tissue is a neglected viral reservoir and an inflam-
matory site during chronic HIV and SIV infection. PLoS Pathog (2015) 
11(9):e1005153. doi:10.1371/journal.ppat.1005153 

12. North TW, Higgins J, Deere JD, Hayes TL, Villalobos A, Adamson L, et al. 
Viral sanctuaries during highly active antiretroviral therapy in a nonhu-
man primate model for AIDS. J Virol (2010) 84(6):2913–22. doi:10.1128/
JVI.02356-09 

13. Kline C, Ndjomou J, Franks T, Kiser R, Coalter V, Smedley J, et al. Persistence 
of viral reservoirs in multiple tissues after antiretroviral therapy suppression 
in a macaque RT-SHIV model. PLoS One (2013) 8(12):e84275. doi:10.1371/
journal.pone.0084275 

14. Xu H, Xiaolei W, Naomi M, Pyone PA, Xavier A, Andrew AL, et al. Persistent 
SIV infection drives differentiation, aberrant accumulation, and latent infec-
tion of germinal center follicular T helper cells. J Virol (2015) 90(3):1578–87. 
doi:10.1128/JVI.02471-15 

15. Buzon MJ, Sun H, Li C, Shaw A, Seiss K, Ouyang Z, et al. HIV-1 persistence 
in CD4+ T cells with stem cell-like properties. Nat Med (2014) 20(2):139. 
doi:10.1038/nm.3445 

16. Jaafoura S, de Goër de Herve MG, Hernandez-Vargas EA, Hendel-Chavez 
H, Abdoh M, Mateo MC, et  al. Progressive contraction of the latent HIV 
reservoir around a core of less-differentiated CD4+ memory T cells. Nat 
Commun (2014) 5:5407. doi:10.1038/ncomms6407 

17. Tran TA, de Goër de Herve MG, Hendel-Chavez H, Dembele B, Névot EL, 
Abbed K, et  al. Resting regulatory CD4 T cells: a site of HIV persistence 
in patients on long-term effective antiretroviral therapy. PLoS One (2008) 
3(10):e3305. doi:10.1371/journal.pone.0003305 

18. Igarashi T, Brown CR, Endo Y, Buckler-White A, Plishka R, Bischofberger 
N, et  al. Macrophage are the principal reservoir and sustain high virus 
loads in rhesus macaques after the depletion of CD4+ T cells by a highly 
pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): 

implications for HIV-1 infections of humans. Proc Natl Acad Sci U S A (2001) 
98(2):658–63. doi:10.1073/pnas.98.2.658 

19. Brown D, Mattapallil JJ. Gastrointestinal tract and the mucosal macrophage 
reservoir in HIV infection. Clin Vaccine Immunol (2014) 21(11):1469. 
doi:10.1128/CVI.00518-14 

20. Micci L, Alvarez X, Iriele RI, Ortiz AM, Ryan ES, McGary CS, et al. CD4 deple-
tion in SIV-infected macaques results in macrophage and microglia infection 
with rapid turnover of infected cells. PLoS Pathog (2014) 10(10):e1004467. 
doi:10.1371/journal.ppat.1004467 

21. Jochems SP, Jacquelin B, Chauveau L, Huot N, Petitjean G, Lepelley A, et al. 
Plasmacytoid dendritic cell infection and sensing capacity during pathogenic 
and nonpathogenic simian immunodeficiency virus infection. J Virol (2015) 
89(13):6918–27. doi:10.1128/JVI.00332-15 

22. Donaghy H, Gazzard B, Gotch F, Patterson S. Dysfunction and infection 
of freshly isolated blood myeloid and plasmacytoid dendritic cells in 
patients infected with HIV-1. Blood (2003) 101(11):4505–11. doi:10.1182/
blood-2002-10-3189 

23. Fong L, Mengozzi M, Abbey NW, Herndier BG, Engleman EG. Productive 
infection of plasmacytoid dendritic cells with human immunodeficiency 
virus type 1 is triggered by CD40 ligation. J Virol (2002) 76(21):11033–41. 
doi:10.1128/JVI.76.21.11033-11041.2002 

24. Patterson S, Rae A, Hockey N, Gilmour J, Gotch F. Plasmacytoid dendritic 
cells are highly susceptible to human immunodeficiency virus type 1 infec-
tion and release infectious virus. J Virol (2001) 75(14):6710–3. doi:10.1128/
JVI.75.14.6710-6713.2001 

25. Smed-Sörensen A, Loré K, Vasudevan J, Louder MK, Andersson J, Mascola 
JR, et al. Differential susceptibility to human immunodeficiency virus type 
1 infection of myeloid and plasmacytoid dendritic cells. J Virol (2005) 
79(14):8861–9. doi:10.1128/JVI.79.14.8861-8869.2005 

26. Calantone N, Wu F, Klase Z, Deleage C, Perkins M, Matsuda K, et al. Tissue 
myeloid cells in SIV-infected primates acquire viral DNA through phago-
cytosis of infected T cells. Immunity (2014) 41(3):493–502. doi:10.1016/j.
immuni.2014.08.014 

27. Dinoso JB, Rabi S, Blankson JN, Gama L, Mankowski JL, Siliciano RF, et al. 
A simian immunodeficiency virus-infected macaque model to study viral 
reservoirs that persist during highly active antiretroviral therapy. J Virol 
(2009) 83(18):9247–57. doi:10.1128/JVI.00840-09 

28. Gandhi RT, Bosch RJ, Aga E, Albrecht M, Demeter LM, Dykes C, et al. No 
evidence for decay of the latent reservoir in HIV-1-infected patients receiving 
intensive enfuvirtide-containing antiretroviral therapy. J Infect Dis (2010) 
201(2):293–6. doi:10.1086/649569 

29. Luzuriaga K, Gay H, Ziemniak C, Sanborn KB, Somasundaran M, Rainwater-
Lovett K, et al. Viremic relapse after HIV-1 remission in a perinatally infected 
child. N Engl J Med (2015) 372(8):786–8. doi:10.1056/NEJMc1413931 

30. Fidler S, Porter K, Ewings F, Frater J, Ramjee G, Cooper D, et  al. Short-
course antiretroviral therapy in primary HIV infection. N Engl J Med (2013) 
368(3):207–17. doi:10.1056/NEJMoa1110039 

31. Hocqueloux L, Prazuck T, vettand-Fenoel VA, Lafeuillade A, Cardon B, Viard 
JP, et al. Long-term immunovirologic control following antiretroviral therapy 
interruption in patients treated at the time of primary HIV-1 infection. AIDS 
(2010) 24(10):1598–601. doi:10.1097/QAD.0b013e32833b61ba 

32. Hamlyn E, Ewings FM, Porter K, Cooper DA, Tambussi G, Schechter M, 
et  al. Plasma HIV viral rebound following protocol-indicated cessation of 
ART commenced in primary and chronic HIV infection. PLoS One (2012) 
7(8):e43754. doi:10.1371/journal.pone.0043754 

33. Pennings PS. Standing genetic variation and the evolution of drug resistance 
in HIV. PLoS Comput Biol (2012) 8(6):e1002527. doi:10.1371/journal.
pcbi.1002527 

34. Rothenberger MK, Keele BF, Wietgrefe SW, Fletcher CV, Beilman GJ, Chipman 
JG, et al. Large number of rebounding/founder HIV variants emerge from 
multifocal infection in lymphatic tissues after treatment interruption. Proc 
Natl Acad Sci U S A (2015) 112(10):E1126–34. doi:10.1073/pnas.1414926112 

35. Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual 
immune dysregulation syndrome in treated HIV infection. Adv Immunol 
(2013) 119:51–83. doi:10.1016/B978-0-12-407707-2.00002-3 

36. Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health 
during chronic HIV infection. Immunity (2013) 39(4):633–45. doi:10.1016/j.
immuni.2013.10.001 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1038/nri3262
http://dx.doi.org/10.1016/S0140-6736(08)61113-7
http://dx.doi.org/10.1016/j.jaci.2008.05.033
http://dx.doi.org/10.1038/nm.1972
http://dx.doi.org/10.1038/nm.1972
http://dx.doi.org/10.1086/519164
http://dx.doi.org/10.1371/journal.ppat.1004955
http://dx.doi.org/10.1016/j.cell.2013.09.044
http://dx.doi.org/10.1086/653213
http://dx.doi.org/10.1080/13550280590922748-1
http://dx.doi.org/10.1371/journal.ppat.1005153
http://dx.doi.org/10.1128/JVI.02356-09
http://dx.doi.org/10.1128/JVI.02356-09
http://dx.doi.org/10.1371/journal.pone.0084275
http://dx.doi.org/10.1371/journal.pone.0084275
http://dx.doi.org/10.1128/JVI.02471-15
http://dx.doi.org/10.1038/nm.3445
http://dx.doi.org/10.1038/ncomms6407
http://dx.doi.org/10.1371/journal.pone.0003305
http://dx.doi.org/10.1073/pnas.98.2.658
http://dx.doi.org/10.1128/CVI.00518-14
http://dx.doi.org/10.1371/journal.ppat.1004467
http://dx.doi.org/10.1128/JVI.00332-15
http://dx.doi.org/10.1182/blood-2002-10-3189
http://dx.doi.org/10.1182/blood-2002-10-3189
http://dx.doi.org/10.1128/JVI.76.21.11033-11041.2002
http://dx.doi.org/10.1128/JVI.75.14.6710-6713.2001
http://dx.doi.org/10.1128/JVI.75.14.6710-6713.2001
http://dx.doi.org/10.1128/JVI.79.14.8861-8869.2005
http://dx.doi.org/10.1016/j.immuni.2014.08.014
http://dx.doi.org/10.1016/j.immuni.2014.08.014
http://dx.doi.org/10.1128/JVI.00840-09
http://dx.doi.org/10.1086/649569
http://dx.doi.org/10.1056/NEJMc1413931
http://dx.doi.org/10.1056/NEJMoa1110039
http://dx.doi.org/10.1097/QAD.0b013e32833b61ba
http://dx.doi.org/10.1371/journal.pone.0043754
http://dx.doi.org/10.1371/journal.pcbi.1002527
http://dx.doi.org/10.1371/journal.pcbi.1002527
http://dx.doi.org/10.1073/pnas.1414926112
http://dx.doi.org/10.1016/B978-0-12-407707-2.00002-3
http://dx.doi.org/10.1016/j.immuni.2013.10.001
http://dx.doi.org/10.1016/j.immuni.2013.10.001


January 2016 | Volume 7 | Article 1211

Policicchio et al. Animal Models for HIV Cure Research

Frontiers in Immunology | www.frontiersin.org

37. Pandrea I, Landay A, Wilson C, Stock J, Tracy R, Apetrei C. Using the 
pathogenic and nonpathogenic nonhuman primate model for studying non-
AIDS comorbidities. Curr HIV/AIDS Rep (2015) 12(1):54–67. doi:10.1007/
s11904-014-0245-5 

38. Dinoso JB, Kim SY, Wiegand AM, Palmer SE, Gange SJ, Cranmer L, et al. 
Treatment intensification does not reduce residual HIV-1 viremia in patients 
on highly active antiretroviral therapy. Proc Natl Acad Sci U S A (2009) 
106(23):9403–8. doi:10.1073/pnas.0903107106 

39. Gandhi RT, Zheng L, Bosch RJ, Chan ES, Margolis DM, Read S, et al. 
The effect of raltegravir intensification on low-level residual viremia 
in HIV-infected patients on antiretroviral therapy: a randomized 
controlled trial. PLoS Med (2010) 7(8):e1000321. doi:10.1371/journal.
pmed.1000321 

40. Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M, Chun TW, et al. Absence 
of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J 
Med (2013) 369(19):1828–35. doi:10.1056/NEJMoa1302976 

41. Siliciano JD, Siliciano RF. Rekindled HIV infection. Science (2014) 
345(6200):1005–6. doi:10.1126/science.1259452 

42. Rouzioux C, Hocqueloux L, Sáez-Cirión AS. Posttreatment controllers: 
what do they tell us? Curr Opin HIV AIDS (2015) 10(1):29–34. doi:10.1097/
COH.0000000000000123 

43. Sáez-Cirión A, Bacchus C, Hocqueloux L, vettand-Fenoel VA, Girault I, 
Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virolog-
ical remission after the interruption of early initiated antiretroviral therapy 
ANRS VISCONTI study. PLoS Pathog (2013) 9(3):e1003211. doi:10.1371/
journal.ppat.1003211 

44. Hütter G, Nowak D, Mossner M, Ganepola S, Müßig A, Allers K, et al. Long-
term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. N 
Engl J Med (2009) 360(7):692–8. doi:10.1056/NEJMoa0802905 

45. Henrich TJ, Hu Z, Li JZ, Sciaranghella G, Busch MP, Keating SM, et  al. 
Long-term reduction in peripheral blood HIV type 1 reservoirs following 
reduced-intensity conditioning allogeneic stem cell transplantation. J Infect 
Dis (2013) 207(11):1694–702. doi:10.1093/infdis/jit086 

46. Check Hayden E. Hopes of HIV cure in ‘Boston patients’ dashed. Nat News 
(2015). doi:10.1038/nature.2013.14324 

47. Fauci AS, Desrosiers RC. Pathogenesis of HIV and SIV. In: John MC, Stephen 
HH, Harold HV, editors. Retroviruses. New York: Cold Spring Harbor 
Laboratory Press (1997). Available from: http://www.ncbi.nlm.nih.gov/
books/NBK19359/

48. Evans DT, Silvestri G. Non-human primate models in AIDS research. Curr 
Opin HIV AIDS (2013) 8(4):255–61. doi:10.1097/COH.0b013e328361cee8 

49. Del Prete GQ, Lifson JD. Considerations in the development of nonhuman 
primate models of combination antiretroviral therapy for studies of AIDS 
virus suppression, residual virus, and curative strategies. Curr Opin HIV 
AIDS (2013) 8(4):262–72. doi:10.1097/COH.0b013e328361cf40 

50. Akkina R. New generation humanized mice for virus research: comparative 
aspects and future prospects. Virology (2013) 435(1):14–28. doi:10.1016/j.
virol.2012.10.007 

51. McDonnel SJ, Sparger EE, Murphy BG. Feline immunodeficiency virus 
latency. Retrovirology (2013) 10(July):69. doi:10.1186/1742-4690-10-69 

52. Apetrei C, Pandrea I, Mellors JW. Nonhuman primate models for HIV 
cure research. PLoS Pathog (2012) 8(8):e1002892. doi:10.1371/journal.
ppat.1002892 

53. Sui Y, Gordon S, Franchini G, Berzofsky JA. Non-human primate models for 
HIV/AIDS vaccine development. Curr Protoc Immunol (2013) 102(12.14):1–
30. doi:10.1002/0471142735.im1214s102 

54. Van Rompay KKA. Evaluation of antiretrovirals in animal models 
of HIV infection. Antiviral Res (2010) 85(1):159–75. doi:10.1016/j.
antiviral.2009.07.008 

55. Gardner MB, Luciw PA. Macaque models of human infectious disease. ILAR 
J (2008) 49(2):220–55. doi:10.1093/ilar.49.2.220 

56. Haase AT. Early events in sexual transmission of HIV and SIV and oppor-
tunities for interventions. Annu Rev Med (2011) 62(1):127–39. doi:10.1146/
annurev-med-080709-124959 

57. Lackner AA, Veazey RS. Current concepts in AIDS pathogenesis: insights 
from the SIV/macaque model. Annu Rev Med (2007) 58(1):461–76. 
doi:10.1146/annurev.med.58.082405.094316 

58. Demberg T, Brocca-Cofano E, Xiao P, Venzon D, Vargas-Inchaustegui D, Mi 
Lee E, et al. Dynamics of memory B-cell populations in blood, lymph nodes, 

and bone marrow during antiretroviral therapy and envelope boosting in 
simian immunodeficiency virus SIVmac251-infected rhesus macaques. J 
Virol (2012) 86(23):12591–604. doi:10.1128/JVI.00298-12 

59. Horiike M, Iwami S, Kodama M, Sato A, Watanabe Y, Yasui M, et al. Lymph 
nodes harbor viral reservoirs that cause rebound of plasma viremia in 
SIV-infected macaques upon cessation of combined antiretroviral therapy. 
Virology (2012) 423(2):107–18. doi:10.1016/j.virol.2011.11.024 

60. Pandrea I, Gaufin T, Gautam R, Kristoff J, Mandell D, Montefiori D, et al. 
Functional cure of SIVagm infection in rhesus macaques results in complete 
recovery of CD4+ T cells and is reverted by CD8+ cell depletion. PLoS Pathog 
(2011) 7(8):e1002170. doi:10.1371/journal.ppat.1002170 

61. Ma D, Xu C, Cillo AR, Policicchio B, Kristoff J, Haret-Richter G, et  al. 
Simian immunodeficiency virus SIVsab infection of rhesus macaques as a 
model of complete immunological suppression with persistent reservoirs of 
replication-competent virus: implications for cure research. J Virol (2015) 
89(11):6155–60. doi:10.1128/JVI.00256-15 

62. Uberla K, Stahl-Hennig C, Böttiger D, ätz-Rensing KM, Kaup FJ, Li J, et al. 
Animal model for the therapy of acquired immunodeficiency syndrome 
with reverse transcriptase inhibitors. Proc Natl Acad Sci U S A (1995) 
92(18):8210–4. doi:10.1073/pnas.92.18.8210 

63. North TW, Koen KA, Rompay V, Higgins J, Matthews TB, Wadford DA, et al. 
Suppression of virus load by highly active antiretroviral therapy in rhesus 
macaques infected with a recombinant simian immunodeficiency virus 
containing reverse transcriptase from human immunodeficiency virus type 
1. J Virol (2005) 79(12):7349. doi:10.1128/JVI.79.12.7349-7354.2005 

64. Kauffman RC, Villalobos A, Bowen JH, Adamson L, Schinazi RF. Residual 
viremia in an RT-SHIV rhesus macaque HAART model marked by the 
presence of a predominant plasma clone and a lack of viral evolution. PLoS 
One (2014) 9(2):e88258. doi:10.1371/journal.pone.0088258 

65. Monceaux V, Viollet L, Petit F, Cumont MC, Kaufmann GR, Aubertin AM, 
et  al. CD4+ CCR5+ T-cell dynamics during simian immunodeficiency 
virus infection of Chinese rhesus macaques. J Virol (2007) 81(24):13865–75. 
doi:10.1128/JVI.00452-07 

66. Ling B, Veazey RS, Luckay A, Penedo C, Xu K, Lifson JD, et al. SIVmac patho-
genesis in rhesus macaques of Chinese and Indian origin compared with 
primary HIV infections in humans. J Med Primatol (2002) 31(4–5):154–63. 
doi:10.1034/j.1600-0684.2002.02001.x 

67. Ling B, Piatak M Jr, Rogers L, Johnson A-M, Russell-Lodrigue K, Hazuda DJ, 
et al. Effects of treatment with suppressive combination antiretroviral drug 
therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic 
acid; (SAHA) on SIV-infected Chinese rhesus macaques. PLoS One (2014) 
9(7):e102795. doi:10.1371/journal.pone.0102795 

68. Klatt NR, Canary LA, Vanderford TH, Vinton CL, Engram JC, Dunham RM, 
et al. Dynamics of simian immunodeficiency virus SIVmac239 infection in 
pigtail macaques. J Virol (2012) 86(2):1203–13. doi:10.1128/JVI.06033-11 

69. Canary LA, Vinton CL, Morcock DR, Pierce JB, Estes JD, Brenchley JM, et al. 
Rate of AIDS progression is associated with gastrointestinal dysfunction in 
SIV-infected pigtail macaques. J Immunol (2013) 190(6):2959. doi:10.4049/
jimmunol.1202319 

70. Hirsch VM, Dapolito G, Johnson PR, Elkins WR, London WT, Montali RJ, 
et al. Induction of AIDS by simian immunodeficiency virus from an African 
green monkey: species-specific variation in pathogenicity correlates with the 
extent of in vivo replication. J Virol (1995) 69(2):955–67. 

71. Mandell DT, Kristoff J, Gaufin T, Gautam R, Ma D, Sandler N, et  al. 
Pathogenic features associated with increased virulence upon simian immu-
nodeficiency virus cross-species transmission from natural hosts. J Virol 
(2014) 88(12):6778–92. doi:10.1128/JVI.03785-13 

72. Kristoff J, Haret-Richter G, Ma D, Ribeiro RM, Xu C, Cornell E, et al. Early 
microbial translocation blockade reduces SIV-mediated inflammation and 
viral replication. J Clin Invest (2014) 124(6):2802–6. doi:10.1172/JCI75090 

73. Ambrose Z, Palmer S, Boltz VF, Kearney M, Larsen K, Polacino P, et  al. 
Suppression of viremia and evolution of human immunodeficiency virus 
type 1 drug resistance in a macaque model for antiretroviral therapy. J Virol 
(2007) 81(22):12145–55. doi:10.1128/JVI.01301-07 

74. Shao W, Kearney M, Maldarelli F, Mellors JW, Stephens RM, Lifson JD, et al. 
RT-SHIV subpopulation dynamics in infected macaques during anti-HIV ther-
apy. Retrovirology (2009) 6(November):101. doi:10.1186/1742-4690-6-101 

75. Kearney M, Spindler J, Shao W, Maldarelli F, Palmer S, Hu S-L, et al. Genetic 
diversity of simian immunodeficiency virus encoding HIV-1 reverse 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1007/s11904-014-0245-5
http://dx.doi.org/10.1007/s11904-014-0245-5
http://dx.doi.org/10.1073/pnas.0903107106
http://dx.doi.org/10.1371/journal.pmed.1000321
http://dx.doi.org/10.1371/journal.pmed.1000321
http://dx.doi.org/10.1056/NEJMoa1302976
http://dx.doi.org/10.1126/science.1259452
http://dx.doi.org/10.1097/COH.0000000000000123
http://dx.doi.org/10.1097/COH.0000000000000123
http://dx.doi.org/10.1371/journal.ppat.1003211
http://dx.doi.org/10.1371/journal.ppat.1003211
http://dx.doi.org/10.1056/NEJMoa0802905
http://dx.doi.org/10.1093/infdis/jit086
http://dx.doi.org/10.1038/nature.2013.14324
http://www.ncbi.nlm.nih.gov/books/NBK19359/
http://dx.doi.org/10.1097/COH.0b013e328361cee8
http://dx.doi.org/10.1097/COH.0b013e328361cf40
http://dx.doi.org/10.1016/j.virol.2012.10.007
http://dx.doi.org/10.1016/j.virol.2012.10.007
http://dx.doi.org/10.1186/1742-4690-10-69
http://dx.doi.org/10.1371/journal.ppat.1002892
http://dx.doi.org/10.1371/journal.ppat.1002892
http://dx.doi.org/10.1002/0471142735.im1214s102
http://dx.doi.org/10.1016/j.antiviral.2009.07.008
http://dx.doi.org/10.1016/j.antiviral.2009.07.008
http://dx.doi.org/10.1093/ilar.49.2.220
http://dx.doi.org/10.1146/annurev-med-080709-124959
http://dx.doi.org/10.1146/annurev-med-080709-124959
http://dx.doi.org/10.1146/annurev.med.58.082405.094316
http://dx.doi.org/10.1128/JVI.00298-12
http://dx.doi.org/10.1016/j.virol.2011.11.024
http://dx.doi.org/10.1371/journal.ppat.1002170
http://dx.doi.org/10.1128/JVI.00256-15
http://dx.doi.org/10.1073/pnas.92.18.8210
http://dx.doi.org/10.1128/JVI.79.12.7349-7354.2005
http://dx.doi.org/10.1371/journal.pone.0088258
http://dx.doi.org/10.1128/JVI.00452-07
http://dx.doi.org/10.1034/j.1600-0684.2002.02001.x
http://dx.doi.org/10.1371/journal.pone.0102795
http://dx.doi.org/10.1128/JVI.06033-11
http://dx.doi.org/10.4049/jimmunol.1202319
http://dx.doi.org/10.4049/jimmunol.1202319
http://dx.doi.org/10.1128/JVI.03785-13
http://dx.doi.org/10.1172/JCI75090
http://dx.doi.org/10.1128/JVI.01301-07
http://dx.doi.org/10.1186/1742-4690-6-101


January 2016 | Volume 7 | Article 1212

Policicchio et al. Animal Models for HIV Cure Research

Frontiers in Immunology | www.frontiersin.org

transcriptase persists in macaques despite antiretroviral therapy. J Virol 
(2011) 85(2):1067–76. doi:10.1128/JVI.01701-10 

76. Benlhassan-Chahour K, Penit C, Dioszeghy V, Vasseur F, Janvier G, Rivière Y, 
et al. Kinetics of lymphocyte proliferation during primary immune response 
in macaques infected with pathogenic simian immunodeficiency virus 
SIVmac251: preliminary report of the effect of early antiviral therapy. J Virol 
(2003) 77(23):12479–93. doi:10.1128/JVI.77.23.12479-12493.2003 

77. Mannioui A, Bourry O, Sellier P, Delache B, Brochard P, Andrieu T, 
et  al. Dynamics of viral replication in blood and lymphoid tissues during 
SIVmac251 infection of macaques. Retrovirology (2009) 6(1):106. 
doi:10.1186/1742-4690-6-106 

78. Sellier P, Mannioui A, Bourry O, Dereuddre-Bosquet N, Delache B, Brochard 
P, et  al. Antiretroviral treatment start-time during primary SIV(mac) 
infection in macaques exerts a different impact on early viral replication 
and dissemination. PLoS One (2010) 5(5):e10570. doi:10.1371/journal.
pone.0010570 

79. Reimann KA, Parker RA, Seaman MS, Beaudry K, Beddall M, Peterson L, 
et al. Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P 
and SIVmac is attenuated in cynomolgus macaques and associated with 
early T-lymphocyte responses. J Virol (2005) 79(14):8878. doi:10.1128/
JVI.79.14.8878-8885.2005 

80. Budde ML, Greene JM, Chin EN, Ericsen AJ, Scarlotta M, Cain BT, et  al. 
Specific CD8+ T cell responses correlate with control of simian immunode-
ficiency virus replication in Mauritian cynomolgus macaques. J Virol (2012) 
86(14):7596. doi:10.1128/JVI.00716-12 

81. Pandrea I, Apetrei C. Where the wild things are: pathogenesis of SIV infec-
tion in African nonhuman primate hosts. Curr HIV/AIDS Rep (2010) 7(1):28. 
doi:10.1007/s11904-009-0034-8 

82. VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring 
T-lymphotropic lentiviruses. Clin Microbiol Rev (2006) 19(4):728–62. 
doi:10.1128/CMR.00009-06 

83. Sodora DL, Allan JS, Apetrei C, Brenchley JM, Douek DC, Else JG, et  al. 
Toward an AIDS vaccine: lessons from natural simian immunodeficiency 
virus infections of African nonhuman primate hosts. Nat Med (2009) 
15(8):861–5. doi:10.1038/nm.2013 

84. Chahroudi A, Bosinger SE, Vanderford TH, Paiardini M, Silvestri G. Natural 
SIV hosts: showing AIDS the door. Science (2012) 335(6073). doi:10.1126/
science.1217550 

85. Nishimura Y, Sadjadpour R, Mattapallil JJ, Igarashi T, Lee W, Buckler-
White A, et  al. High frequencies of resting CD4+ T cells containing 
integrated viral DNA are found in rhesus macaques during acute lentivirus 
infections. Proc Natl Acad Sci U S A (2009) 106(19):8015–20. doi:10.1073/
pnas.0903022106 

86. Shen AM, Zink C, Mankowski JL, Chadwick K, Margolick JB, Carruth LM, 
et  al. Resting CD4+ T lymphocytes but not thymocytes provide a latent 
viral reservoir in a simian immunodeficiency virus-Macaca nemestrina 
model of human immunodeficiency virus type 1-infected patients on highly 
active antiretroviral therapy. J Virol (2003) 77(8):4938–49. doi:10.1128/
JVI.77.8.4938-4949.2003 

87. Crise B, Li Y, Yuan C, Morcock DR, Whitby D, Munroe DJ, et  al. Simian 
immunodeficiency virus integration preference is similar to that of human 
immunodeficiency virus type 1. J Virol (2005) 79(19):12199–204. doi:10.1128/
JVI.79.19.12199-12204.2005 

88. Barber SA, Gama L, Dudaronek JM, Voelker T, Tarwater PM, Clements JE. 
Mechanism for the establishment of transcriptional HIV latency in the brain 
in a simian immunodeficiency virus-macaque model. J Infect Dis (2006) 
193(7):963–70. doi:10.1086/500983 

89. Shen A, Yang H-C, Zhou Y, Chase AJ, Boyer JD, Zhang H, et al. Novel path-
way for induction of latent virus from resting CD4+ T cells in the simian 
immunodeficiency virus/macaque model of human immunodeficiency virus 
type 1 latency. J Virol (2007) 81(4):1660–70. doi:10.1128/JVI.01396-06 

90. Bourry O, Mannioui A, Sellier P, Roucairol C, Durand-Gasselin L, 
Dereuddre-Bosquet N, et al. Effect of a short-term HAART on SIV load in 
macaque tissues is dependent on time of initiation and antiviral diffusion. 
Retrovirology (2010) 7:78. doi:10.1186/1742-4690-7-78 

91. Chen, Zheng W, Craiu A, Shen L, Kuroda MJ, Iroku UC, et al. Simian immuno-
deficiency virus evades a dominant epitope-specific cytotoxic T lymphocyte 
response through a mutation resulting in the accelerated dissociation of viral 

peptide and MHC class I. J Immunol (2000) 164(12):6474–9. doi:10.4049/
jimmunol.164.12.6474 

92. Goulder PJR, Watkins DI. HIV and SIV CTL escape: implications for vaccine 
design. Nat Rev Immunol (2004) 4(8):630–40. doi:10.1038/nri1417 

93. Ren J, Bird LE, Chamberlain PP, Stewart-Jones GB, Stuart DI, Stammers 
DK. Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the 
mechanism of resistance to non-nucleoside inhibitors. Proc Natl Acad Sci U 
S A (2002) 99(22):14410–5. doi:10.1073/pnas.222366699 

94. Debyser Z, De Vreese K, Pauwels R, Yamamoto N, Anne J, De Clercq E, 
et al. Differential inhibitory effects of TIBO derivatives on different strains 
of simian immunodeficiency virus. J Gen Virol (1992) 73(7):1799–804. 
doi:10.1099/0022-1317-73-7-1799 

95. Witvrouw M, Pannecouque C, Van Laethem K, Desmyter J, De Clercq 
E, Vandamme AM. Activity of non-nucleoside reverse transcriptase 
inhibitors against HIV-2 and SIV. AIDS (1999) 13(12):1477–83. 
doi:10.1097/00002030-199908200-00006 

96. Hatziioannou T, Evans DT. Animal models for HIV/AIDS research. Nat Rev 
Microbiol (2012) 10(12):852–67. doi:10.1038/nrmicro2911 

97. Shytaj IL, Norelli S, Chirullo B, Corte AD, Collins M, Yalley-Ogunro J, et al. 
“A highly intensified ART regimen induces long-term viral suppression 
and restriction of the viral reservoir in a simian AIDS model.” Edited by 
Guido Silvestri. PLoS Pathog (2012) 8(6):e1002774. doi:10.1371/journal.
ppat.1002774 

98. Witvrouw M, Pannecouque C, Switzer WM, Folks TM, De Clercq E, Heneine 
W. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: 
implications for treatment and postexposure prophylaxis. Antivir Ther (2004) 
9(1):57–65. 

99. Gaufin T, Gautam R, Kasheta M, Ribeiro R, Ribka E, Barnes M, et al. Limited 
ability of humoral immune responses in control of viremia during infection 
with SIVsmmD215 strain. Blood (2009) 113(18):4250–61. doi:10.1182/
blood-2008-09-177741 

100. Brandariz-Nuñez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, 
Brojatsch J, et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 
and SIVmac. Retrovirology (2012) 9(June):49. doi:10.1186/1742-4690-9-49 

101. Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, et al. 
SAMHD1 restricts HIV-1 infection in resting CD4+ T Cells. Nat Med (2012) 
18(11). doi:10.1038/nm.2964 

102. Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, et al. 
SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. 
Retrovirology (2012) 9(October):87. doi:10.1186/1742-4690-9-87 

103. Goujon C, Rivière L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix 
J-L, et  al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a 
proteasome-dependent restriction pathway present in human dendritic cells. 
Retrovirology (2007) 4(January):2. doi:10.1186/1742-4690-4-2 

104. Tristem M, Marshall C, Karpas A, Hill F. Evolution of the primate lentiviruses: 
evidence from Vpx and Vpr. EMBO J (1992) 11(9):3405–12. 

105. Goujon C, Jarrosson-Wuillème L, Bernaud J, Rigal D, Darlix J-L, Cimarelli 
A. With a little help from a friend: increasing HIV transduction of mono-
cyte-derived dendritic cells with virion-like particles of SIVMAC. Gene Ther 
(2006) 13(12):991–4. doi:10.1038/sj.gt.3302753 

106. Sunseri N, O’Brien M, Bhardwaj N, Landau NR. Human immunodeficiency 
virus type 1 modified to package Simian immunodeficiency virus Vpx effi-
ciently infects macrophages and dendritic cells. J Virol (2011) 85(13):6263–74. 
doi:10.1128/JVI.00346-11 

107. Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and 
mechanisms of viral escape. Nat Immunol (2015) 16(6):546–53. doi:10.1038/
ni.3156 

108. Ling B, Rogers L, Johnson A-M, Piatak M, Lifson J, Veazey RS. Effect of 
combination antiretroviral therapy on Chinese rhesus macaques of simian 
immunodeficiency virus infection. AIDS Res Hum Retroviruses (2013) 
29(11):1465–74. doi:10.1089/AID.2012.0378 

109. Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M, Spelman 
JP, et al. High viral load in the cerebrospinal fluid and brain correlates with 
severity of simian immunodeficiency virus encephalitis. J Virol (1999) 
73(12):10480–8. 

110. Graham DR, Gama L, Queen SE, Li M, Brice AK, Kelly KM, et al. Initiation 
of HAART during acute simian immunodeficiency virus infection rapidly 
controls virus replication in the CNS by enhancing immune activity and 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1128/JVI.01701-10
http://dx.doi.org/10.1128/JVI.77.23.12479-12493.2003
http://dx.doi.org/10.1186/1742-4690-6-106
http://dx.doi.org/10.1371/journal.pone.0010570
http://dx.doi.org/10.1371/journal.pone.0010570
http://dx.doi.org/10.1128/JVI.79.14.8878-8885.2005
http://dx.doi.org/10.1128/JVI.79.14.8878-8885.2005
http://dx.doi.org/10.1128/JVI.00716-12
http://dx.doi.org/10.1007/s11904-009-0034-8
http://dx.doi.org/10.1128/CMR.00009-06
http://dx.doi.org/10.1038/nm.2013
http://dx.doi.org/10.1126/science.1217550
http://dx.doi.org/10.1126/science.1217550
http://dx.doi.org/10.1073/pnas.0903022106
http://dx.doi.org/10.1073/pnas.0903022106
http://dx.doi.org/10.1128/JVI.77.8.4938-4949.2003
http://dx.doi.org/10.1128/JVI.77.8.4938-4949.2003
http://dx.doi.org/10.1128/JVI.79.19.12199-12204.2005
http://dx.doi.org/10.1128/JVI.79.19.12199-12204.2005
http://dx.doi.org/10.1086/500983
http://dx.doi.org/10.1128/JVI.01396-06
http://dx.doi.org/10.1186/1742-4690-7-78
http://dx.doi.org/10.4049/jimmunol.164.12.6474
http://dx.doi.org/10.4049/jimmunol.164.12.6474
http://dx.doi.org/10.1038/nri1417
http://dx.doi.org/10.1073/pnas.222366699
http://dx.doi.org/10.1099/0022-1317-73-7-1799
http://dx.doi.org/10.1097/00002030-199908200-00006
http://dx.doi.org/10.1038/nrmicro2911
http://dx.doi.org/10.1371/journal.ppat.1002774
http://dx.doi.org/10.1371/journal.ppat.1002774
http://dx.doi.org/10.1182/blood-2008-09-177741
http://dx.doi.org/10.1182/blood-2008-09-177741
http://dx.doi.org/10.1186/1742-4690-9-49
http://dx.doi.org/10.1038/nm.2964
http://dx.doi.org/10.1186/1742-4690-9-87
http://dx.doi.org/10.1186/1742-4690-4-2
http://dx.doi.org/10.1038/sj.gt.3302753
http://dx.doi.org/10.1128/JVI.00346-11
http://dx.doi.org/10.1038/ni.3156
http://dx.doi.org/10.1038/ni.3156
http://dx.doi.org/10.1089/AID.2012.0378


January 2016 | Volume 7 | Article 1213

Policicchio et al. Animal Models for HIV Cure Research

Frontiers in Immunology | www.frontiersin.org

preserving protective immune responses. J Neurovirol (2011) 17(1):120–30. 
doi:10.1007/s13365-010-0005-2 

111. Balzarini J, Weeger M, Camarasa MJ, Declercq E, Uberla K. Sensitivity/
resistance profile of a simian immunodeficiency virus containing the reverse 
transcriptase gene of human immunodeficiency virus type 1 (HIV-1) toward 
the HIV-1-specific non-nucleoside reverse transcriptase inhibitors. Biochem 
Biophys Res Commun (1995) 211(3):850–6. doi:10.1006/bbrc.1995.1890 

112. Del Prete GQ, Ailers B, Moldt B, Keele BF, Estes JD, Rodriguez A, et  al. 
Selection of unadapted, pathogenic SHIVs encoding newly transmitted 
HIV-1 envelope proteins. Cell Host Microbe (2014) 16(3):412–8. doi:10.1016/j.
chom.2014.08.003 

113. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC, et al. Stimulation 
of HIV-1-specific cytolytic T-lymphocytes facilitates elimination of latent 
viral reservoir after virus reactivation. Immunity (2012) 36(3):491–501. 
doi:10.1016/j.immuni.2012.01.014 

114. Ma D, Jasinska AJ, Feyertag F, Wijewardana V, Kristoff J, He T, et al. Factors 
associated with siman immunodeficiency virus transmission in a natural 
African nonhuman primate host in the wild. J Virol (2014) 88(10):5687–705. 
doi:10.1128/JVI.03606-13 

115. Del Prete GQ, Smedley J, Macallister R, Jones G, Li B, Hattersley J, et  al. 
Comparative evaluation of co-formulated injectable combination antiret-
roviral therapy regimens in SIV-infected rhesus macaques. AIDS Res Hum 
Retroviruses (2015) 31:1–6. doi:10.1089/AID.2015.0130 

116. Whitney JB, Hill AL, Sanisetty S, MacMaster PP, Liu J, Shetty M, et al. Rapid 
seeding of the viral reservoir prior to SIV viremia in rhesus monkeys. Nature 
(2014) 512(7512):74–7. doi:10.1038/nature13594 

117. Hilldorfer BB, Cillo AR, Besson GJ, Bedison MA, Mellors JW. New 
tools for quantifying HIV-1 reservoirs: plasma RNA single copy assays 
and beyond. Curr HIV/AIDS Rep (2012) 9(1):91–100. doi:10.1007/
s11904-011-0104-6 

118. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, 
et  al. Latent infection of CD4+ T cells provides a mechanism for lifelong 
persistence of HIV-1, even in patients on effective combination therapy. Nat 
Med (1999) 5(5):512–7. doi:10.1038/8394 

119. Shiu C, Cunningham CK, Greenough T, Muresan P, Sanchez-Merino V, 
Carey V, et  al. Identification of ongoing human immunodeficiency virus 
type 1 (HIV-1) replication in residual viremia during recombinant HIV-1 
poxvirus immunizations in patients with clinically undetectable viral loads 
on durable suppressive highly active antiretroviral therapy. J Virol (2009) 
83(19):9731–42. doi:10.1128/JVI.00570-09 

120. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, Brun SC, et al. 
Low-level viremia persists for at least 7 years in patients on suppressive 
antiretroviral therapy. Proc Natl Acad Sci U S A (2008) 105(10):3879–84. 
doi:10.1073/pnas.0800050105 

121. Bailey, Justin R, Ahmad R, Sedaghat, Tara Kieffer, Timothy Brennan, et al. 
Residual human immunodeficiency virus Type 1 viremia in some patients 
on antiretroviral therapy is dominated by a small number of invariant clones 
rarely found in circulating CD4+ T cells. J Virol (2006) 80(13):6441–57. 
doi:10.1128/JVI.00591-06 

122. Ambrose Z, Boltz VF, Palmer S, Coffin JM, Hughes SH, KewalRamani 
VN. In vitro characterization of a simian immunodeficiency virus-human 
immunodeficiency virus (HIV) chimera expressing HIV type 1 reverse 
transcriptase to study antiviral resistance in pigtail macaques. J Virol (2004) 
78(24):13553–61. doi:10.1128/JVI.78.24.13553-13561.2004 

123. Kearney MF, Anderson EM, Coomer C, Smith L, Shao W, Johnson N, 
et al. Well-mixed plasma and tissue viral populations in RT-SHIV-infected 
macaques implies a lack of viral replication in the tissues during antiretroviral 
therapy. Retrovirology (2015) 12:93. doi:10.1186/s12977-015-0212-2 

124. Prete GQ, Shoemaker DR, Oswald K, Lara A, Trubey CM, Fast R, et al. Effect 
of suberoylanilide hydroxamic acid (SAHA) administration on the residual 
virus pool in a model of combination antiretroviral therapy-mediated sup-
pression in SIVmac239-infected Indian rhesus macaques. Antimicrob Agents 
Chemother (2014) 58(11):6790–806. doi:10.1128/AAC.03746-14 

125. Jones RB, O’Connor R, Mueller S, Foley M, Szeto GL, Karel D, et al. “Histone 
deacetylase inhibitors impair the elimination of HIV-infected cells by 
cytotoxic T-lymphocytes.” Edited by Guido Silvestri. PLoS Pathog (2014) 
10(8):e1004287. doi:10.1371/journal.ppat.1004287 

126. Lewis MG, DaFonseca S, Chomont N, Palamara AT, Tardugno M, Mai A, 
et al. Gold drug auranofin restricts the viral reservoir in the monkey AIDS 

model and induces containment of viral load following ART suspension. 
AIDS (2011) 25(11):1347–56. doi:10.1097/QAD.0b013e328347bd77 

127. Shytaj IL, Nickel G, Arts E, Farrell N, Biffoni M, Pal R, et  al. A two-year 
follow-up of macaques developing intermittent control of the HIV homolog 
SIVmac251 in the chronic phase of the infection. J Virol (2015) 89(15):7521–
35. doi:10.1128/JVI.00396-15 

128. Shytaj IL, Chirullo B, Wendeline Wagner, Maria G, Ferrari, Rossella 
Sgarbanti, et  al. Investigational treatment suspension and enhanced cell- 
mediated immunity at rebound followed by drug-free remission of simian 
AIDS. Retrovirology (2013) 10(1):71. doi:10.1186/1742-4690-10-71 

129. Mavigner M, Watkins B, Lawson B, Lee ST, Chahroudi A, Kean L, et  al. 
Persistence of virus reservoirs in ART-treated SHIV-infected rhesus 
macaques after autologous hematopoietic stem cell transplant. PLoS Pathog 
(2014) 10(9):e1004406. doi:10.1371/journal.ppat.1004406 

130. Volberding PA, Deeks SG. Antiretroviral therapy and management 
of HIV infection. Lancet (2010) 376(9734):49–62. doi:10.1016/
S0140-6736(10)60676-9 

131. Deeks SG, Lewin SR, Havlir DV. The end of AIDS: HIV infection as 
a chronic disease. Lancet (2013) 382(9903):1525–33. doi:10.1016/
S0140-6736(13)61809-7 

132. Li Q, Duan L, Estes JD, Ma Z-M, Rourke T, Wang Y, et al. Peak SIV replication 
in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. 
Nature (2005) 434(7037):1148–52. doi:10.1038/nature03513 

133. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. 
Microbial translocation is a cause of systemic immune activation in chronic 
HIV infection. Nat Med (2006) 12(12):1365–71. doi:10.1038/nm1511 

134. Favre D, Lederer S, Kanwar B, Ma Z-M, Proll S, Kasakow Z, et al. Critical loss 
of the balance between Th17 and T regulatory cell populations in pathogenic 
SIV infection. PLoS Pathog (2009) 5(2):e1000295. doi:10.1371/journal.
ppat.1000295 

135. Raffatellu M, Santos RL, David E, Verhoeven, Michael D, George R, et  al. 
Simian immunodeficiency virus-induced mucosal interleukin-17 defi-
ciency promotes Salmonella dissemination from the gut. Nat Med (2008) 
14(4):421–8. doi:10.1038/nm1743 

136. Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, 
et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpatho-
genic lentiviral infections. Blood (2008) 112(7):2826–35. doi:10.1182/
blood-2008-05-159301 

137. Moreno-Fernandez ME, Presicce P, Chougnet CA. Homeostasis and function 
of regulatory T cells in HIV/SIV infection. J Virol (2012) 86(19):10262. 
doi:10.1128/JVI.00993-12 

138. Pandrea I, Gaufin T, Brenchley JM, Gautam R, Monjure C, Gautam A, et al. 
Cutting edge: experimentally induced immune activation in natural hosts 
of simian immunodeficiency virus induces significant increases in viral 
replication and CD4+ T cell depletion. J Immunol (2008) 181(10):6687. 
doi:10.4049/ jimmunol.181.10.6687

139. Cecchinato V, Tryniszewska E, Ma ZM, Vaccari M, Boasso A, Tsai W-P, et al. 
Immune activation driven by CTLA-4 blockade augments viral replication at 
mucosal sites in simian immunodeficiency virus infection. J Immunol (2008) 
180(8):5439–47. doi:10.4049/jimmunol.180.8.5439 

140. Estes JD, Wietgrefe S, Schacker T, Southern P, Beilman G, Reilly C, et al. Simian 
immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by 
transforming growth factor beta 1-positive regulatory T cells and begins in 
early infection. J Infect Dis (2007) 195(4):551–61. doi:10.1086/510852 

141. Pandrea I, Landay AL. Chapter 3 – implications for therapy. In: Pancino G, 
SilvestriKeith CFR, editors. Models of Protection Against HIV/SIV. Boston: 
Academic Press (2012). p. 81–132.

142. Vassena L, Miao H, Cimbro R, Malnati MS, Cassina G, Proschan MA, et al. 
Treatment with IL-7 prevents the decline of circulating CD4+ T cells during 
the acute phase of SIV infection in rhesus macaques. PLoS Pathog (2012) 
8(4):e1002636. doi:10.1371/journal.ppat.1002636 

143. Leone A, Rohankhedkhar M, Okoye A, Legasse A, Axthelm MK, 
Villinger F, et  al. Increased CD4+ T cell levels during IL-7 adminis-
tration of ART treated SIV+ macaques are not dependent on strong 
proliferative responses. J Immunol (2010) 185(3):1650–9. doi:10.4049/
jimmunol.0902626 

144. Parker R, Dutrieux J, Beq S, Lemercier B, Rozlan S, Fabre-Mersseman V, 
et  al. Interleukin-7 treatment counteracts IFN-α therapy-induced lymph-
openia and stimulates SIV-specific cytotoxic T lymphocyte responses in 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1007/s13365-010-0005-2
http://dx.doi.org/10.1006/bbrc.1995.1890
http://dx.doi.org/10.1016/j.chom.2014.08.003
http://dx.doi.org/10.1016/j.chom.2014.08.003
http://dx.doi.org/10.1016/j.immuni.2012.01.014
http://dx.doi.org/10.1128/JVI.03606-13
http://dx.doi.org/10.1089/AID.2015.0130
http://dx.doi.org/10.1038/nature13594
http://dx.doi.org/10.1007/s11904-011-0104-6
http://dx.doi.org/10.1007/s11904-011-0104-6
http://dx.doi.org/10.1038/8394
http://dx.doi.org/10.1128/JVI.00570-09
http://dx.doi.org/10.1073/pnas.0800050105
http://dx.doi.org/10.1128/JVI.00591-06
http://dx.doi.org/10.1128/JVI.78.24.13553-13561.2004
http://dx.doi.org/10.1186/s12977-015-0212-2
http://dx.doi.org/10.1128/AAC.03746-14
http://dx.doi.org/10.1371/journal.ppat.1004287
http://dx.doi.org/10.1097/QAD.0b013e328347bd77
http://dx.doi.org/10.1128/JVI.00396-15
http://dx.doi.org/10.1186/1742-4690-10-71
http://dx.doi.org/10.1371/journal.ppat.1004406
http://dx.doi.org/10.1016/S0140-6736(10)60676-9
http://dx.doi.org/10.1016/S0140-6736(10)60676-9
http://dx.doi.org/10.1016/S0140-6736(13)61809-7
http://dx.doi.org/10.1016/S0140-6736(13)61809-7
http://dx.doi.org/10.1038/nature03513
http://dx.doi.org/10.1038/nm1511
http://dx.doi.org/10.1371/journal.ppat.1000295
http://dx.doi.org/10.1371/journal.ppat.1000295
http://dx.doi.org/10.1038/nm1743
http://dx.doi.org/10.1182/blood-2008-05-159301
http://dx.doi.org/10.1182/blood-2008-05-159301
http://dx.doi.org/10.1128/JVI.00993-12
http://dx.doi.org/10.4049/jimmunol.181.10.6687
http://dx.doi.org/10.4049/jimmunol.180.8.5439
http://dx.doi.org/10.1086/510852
http://dx.doi.org/10.1371/journal.ppat.1002636
http://dx.doi.org/10.4049/jimmunol.0902626
http://dx.doi.org/10.4049/jimmunol.0902626


January 2016 | Volume 7 | Article 1214

Policicchio et al. Animal Models for HIV Cure Research

Frontiers in Immunology | www.frontiersin.org

SIV-infected rhesus macaques. Blood (2010) 116(25):5589–99. doi:10.1182/
blood-2010-03-276261 

145. Xu H, Wang X, Veazey RS. Th17 cells coordinate with Th22 cells 
in maintaining homeostasis of intestinal tissues and both are 
depleted in SIV-infected macaques. J AIDS Clin Res (2014) 5(5):302. 
doi:10.4172/2155-6113.1000302 

146. Micci L, Ryan ES, Fromentin R, Bosinger SE, Harper JL, He T, et  al. 
Interleukin-21 combined with ART reduces inflammation and viral res-
ervoir in SIV-infected macaques. J Clin Invest (2015) 125(12):4497–513. 
doi:10.1172/JCI81400 

147. Ortiz AM, Klase ZA, DiNapoli SR, Vujkovic-Cvijin I, Carmack K, Perkins 
MR, et al. IL-21 and probiotic therapy improve Th17 frequencies, microbial 
translocation, and microbiome in ARV-Treated, SIV-infected macaques. 
Mucosal Immunol (2015). doi:10.1038/mi.2015.75 

148. Klatt NR, Canary LA, Sun X, Vinton CL, Funderburg NT, Morcock DR, et al. 
Probiotic/prebiotic supplementation of antiretrovirals improves gastrointes-
tinal immunity in SIV-infected macaques. J Clin Invest (2013) 123(2):903–7. 
doi:10.1172/JCI66227 

149. Perianayagam MC, Jaber BL. Endotoxin-binding affinity of sevelamer hydro-
chloride. Am J Nephrol (2008) 28(5):802–7. doi:10.1159/000135691 

150. DuPont HL. Therapy for and prevention of traveler’s diarrhea. Clin Infect Dis 
(2007) 45(Suppl 1):S78–84. doi:10.1086/518155 

151. Lawrence KR, Klee JA. Rifaximin for the treatment of hepatic encephalop-
athy. Pharmacotherapy (2008) 28(8):1019–32. doi:10.1592/phco.28.8.1019 

152. Pandrea I, Xu C, Stock JL, Frank DN, Ma D, Policicchio BB, et al. Antibiotic 
and antiinflammatory therapy transiently reduces inflammation and hyper-
coagulation in acutely SIV-infected pigtailed macaques. PLoS Pathog (2016) 
12(1):e1005384. doi:10.1371/journal.ppat.1005384 

153. Klatt NR, Harris LD, Vinton CL, Sung H, Briant JA, Tabb B, et al. Compromised 
gastrointestinal integrity in pigtail macaques is associated with increased 
microbial translocation, immune activation, and IL-17 production in the 
absence of SIV infection. Mucosal Immunol (2010) 3(4):387–98. doi:10.1038/
mi.2010.14 

154. Amara RR, Robinson HL. A new generation of HIV vaccines. Trends Mol 
Med (2002) 8(10):489–95. doi:10.1016/S1471-4914(02)02401-2 

155. Powers C, Früh K. Rhesus CMV: an emerging animal model for human 
CMV. Med Microbiol Immunol (2008) 197(2):109–15. doi:10.1007/
s00430-007-0073-y 

156. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond 
DD, et al. Effector-memory T cell responses are associated with protection of 
rhesus monkeys from mucosal SIV challenge. Nat Med (2009) 15(3):293–9. 
doi:10.1038/nm.1935 

157. Picker LJ, Reed-Inderbitzin EF, Hagen SI, Edgar JB, Hansen SG, Legasse A, 
et  al. IL-15 induces CD4+ effector memory T cell production and tissue 
emigration in nonhuman primates. J Clin Invest (2006) 116(6):1514–24. 
doi:10.1172/JCI27564 

158. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, 
et al. Profound early control of highly pathogenic SIV by an effector memory 
T-cell vaccine. Nature (2011) 473(7348):523–7. doi:10.1038/nature10003 

159. Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, et  al. 
Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. 
Science (2013) 340(6135):1237874. doi:10.1126/science.1237874 

160. Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, et  al. 
Rapid evolution of HIV-1 to functional CD8+ T Cell responses in 
humanized BLT mice. Sci Transl Med (2012) 4(143):ra98–143. doi:10.1126/
scitranslmed.3003984 

161. Olesen R, Wahl A, Denton PW, Garcia JV. Immune reconstitution of the 
female reproductive tract of humanized BLT mice and their susceptibility 
to human immunodeficiency virus infection. J Reprod Immunol (2011) 
88(2):195–203. doi:10.1016/j.jri.2010.11.005 

162. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, et al. Intrarectal 
transmission, systemic infection, and CD4+ T cell depletion in humanized 
mice infected with HIV-1. J Exp Med (2007) 204(4):705–14. doi:10.1084/
jem.20062411 

163. Karpel ME, Boutwell CL, Allen TM. BLT humanized mice as a small 
animal model of HIV infection. Curr Opin Virol (2015) 13(August):75–80. 
doi:10.1016/j.coviro.2015.05.002 

164. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti J-C, Lanzavecchia 
A, et al. Development of a human adaptive immune system in cord blood 

cell-transplanted mice. Science (2004) 304(5667):104–7. doi:10.1126/
science.1093933 

165. Bonyhadi ML, Kaneshima H. The SCID-hu mouse: an in  vivo model for 
HIV-1 infection in humans. Mol Med Today (1997) 3(6):246–53. doi:10.1016/
S1357-4310(97)01046-0 

166. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, et al. 
Induction of robust cellular and humoral virus-specific adaptive immune 
responses in human immunodeficiency virus-infected humanized BLT mice. 
J Virol (2009) 83(14):7305–21. doi:10.1128/JVI.02207-08 

167. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman 
IL. The SCID-Hu mouse: murine model for the analysis of human hema-
tolymphoid differentiation and function. Science (1988) 241(4873):1632–9. 
doi:10.1126/science.2971269 

168. Nischang M, Gers-Huber G, Audigé A, Akkina R, Speck RF. Modeling 
HIV infection and therapies in humanized mice. Swiss Med Week (2012) 
142:w13618. doi:10.4414/smw.2012.13618 

169. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, 
Kurrer MO, et  al. Disseminated and sustained HIV infection in CD34+ 
cord blood cell-transplanted Rag2−/−γc−/− mice. Proc Natl Acad Sci U S A 
(2006) 103(43):15951–6. doi:10.1073/pnas.0604493103 

170. Berges BK, Akkina SR, Remling L, Akkina R. Humanized Rag2−/− 
γc−/− (RAG-Hu) mice can sustain long-term chronic HIV-1 infection 
lasting more than a year. Virology (2010) 397(1):100–3. doi:10.1016/j.
virol.2009.10.034 

171. Pettoello-Mantovani M, Kollmann TR, Katopodis NF, Raker C, Kim 
A, Yurasov S, et  al. Thy/liv-SCID-Hu mice: a system for investigating 
the in  vivo effects of multidrug therapy on plasma viremia and human 
immunodeficiency virus replication in lymphoid tissues. J Infect Dis (1998) 
177(2):337–46. doi:10.1086/514214 

172. Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication 
is controlled at the level of T cell activation and proviral integration. EMBO 
J (1990) 9(5):1551–60. 

173. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen ISY. HIV-1 entry 
into quiescent primary lymphocytes: molecular analysis reveals a labile, latent 
viral structure. Cell (1990) 61(2):213–22. doi:10.1016/0092-8674(90)90802-L 

174. Brooks DG, Kitchen SG, Kitchen CMR, Scripture-Adams DD, Zack JA. 
Generation of HIV latency during thymopoiesis. Nat Med (2001) 7(4):459–64. 
doi:10.1038/86531 

175. Scripture-Adams DD, Brooks DG, Korin YD, Zack JA. Interleukin-7 induces 
expression of latent human immunodeficiency virus type 1 with minimal 
effects on T-cell phenotype. J Virol (2002) 76(24):13077–82. doi:10.1128/
JVI.76.24.13077-13082.2002 

176. Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA. Effects of prostratin on 
T-cell activation and human immunodeficiency virus latency. J Virol (2002) 
76(16):8118–23. doi:10.1128/JVI.76.16.8118-8123.2002 

177. Brooks DG, Hamer DH, Arlen PA, Gao L, Bristol G, Kitchen CM, et  al. 
Molecular characterization, reactivation, and depletion of latent HIV. 
Immunity (2003) 19(3):413–23. doi:10.1016/S1074-7613(03)00236-X 

178. Arlen PA, Brooks DG, Gao LY, Vatakis D, Brown HJ, Zack JA. Rapid 
expression of human immunodeficiency virus following activation 
of latently infected cells. J Virol (2006) 80(3):1599–603. doi:10.1128/
JVI.80.3.1599-1603.2006 

179. Choudhary SK, Archin NM, Cheema M, Dahl NP, Garcia JV, Margolis DM. 
Latent HIV-1 infection of resting CD4+ T cells in the humanized Rag2−/− 
γc−/− mouse. J Virol (2012) 86(1):114–20. doi:10.1128/JVI.05590-11 

180. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Zinc finger 
nuclease-mediated CCR5 knockout hematopoietic stem cell transplantation 
controls HIV-1 in  vivo. Nat Biotechnol (2010) 28(8):839–47. doi:10.1038/
nbt.1663 

181. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specific 
siRNA delivery suppresses HIV-1 infection in humanized mice. Cell (2008) 
134(4):577–86. doi:10.1016/j.cell.2008.06.034 

182. Halper-Stromberg A, Lu C-L, Klein F, Horwitz JA, Bournazos S, Nogueira 
L, et al. Broadly neutralizing antibodies and viral inducers decrease rebound 
from HIV-1 latent reservoirs in humanized mice. Cell (2014) 158(5):989–99. 
doi:10.1016/j.cell.2014.07.043 

183. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, 
et  al. Generation of HIV latency in humanized BLT mice. J Virol (2012) 
86(1):630–4. doi:10.1128/JVI.06120-11 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1182/blood-2010-03-276261
http://dx.doi.org/10.1182/blood-2010-03-276261
http://dx.doi.org/10.4172/2155-6113.1000302
http://dx.doi.org/10.1172/JCI81400
http://dx.doi.org/10.1038/mi.2015.75
http://dx.doi.org/10.1172/JCI66227
http://dx.doi.org/10.1159/000135691
http://dx.doi.org/10.1086/518155
http://dx.doi.org/10.1592/phco.28.8.1019
http://dx.doi.org/10.1371/journal.ppat.1005384
http://dx.doi.org/10.1038/mi.2010.14
http://dx.doi.org/10.1038/mi.2010.14
http://dx.doi.org/10.1016/S1471-4914(02)02401-2
http://dx.doi.org/10.1007/s00430-007-0073-y
http://dx.doi.org/10.1007/s00430-007-0073-y
http://dx.doi.org/10.1038/nm.1935
http://dx.doi.org/10.1172/JCI27564
http://dx.doi.org/10.1038/nature10003
http://dx.doi.org/10.1126/science.1237874
http://dx.doi.org/10.1126/scitranslmed.3003984
http://dx.doi.org/10.1126/scitranslmed.3003984
http://dx.doi.org/10.1016/j.jri.2010.11.005
http://dx.doi.org/10.1084/jem.20062411
http://dx.doi.org/10.1084/jem.20062411
http://dx.doi.org/10.1016/j.coviro.2015.05.002
http://dx.doi.org/10.1126/science.1093933
http://dx.doi.org/10.1126/science.1093933
http://dx.doi.org/10.1016/S1357-4310(97)01046-0
http://dx.doi.org/10.1016/S1357-4310(97)01046-0
http://dx.doi.org/10.1128/JVI.02207-08
http://dx.doi.org/10.1126/science.2971269
http://dx.doi.org/10.4414/smw.2012.13618
http://dx.doi.org/10.1073/pnas.0604493103
http://dx.doi.org/10.1016/j.virol.2009.10.034
http://dx.doi.org/10.1016/j.virol.2009.10.034
http://dx.doi.org/10.1086/514214
http://dx.doi.org/10.1016/0092-8674(90)90802-L
http://dx.doi.org/10.1038/86531
http://dx.doi.org/10.1128/JVI.76.24.13077-13082.2002
http://dx.doi.org/10.1128/JVI.76.24.13077-13082.2002
http://dx.doi.org/10.1128/JVI.76.16.8118-8123.2002
http://dx.doi.org/10.1016/S1074-7613(03)00236-X
http://dx.doi.org/10.1128/JVI.80.3.1599-1603.2006
http://dx.doi.org/10.1128/JVI.80.3.1599-1603.2006
http://dx.doi.org/10.1128/JVI.05590-11
http://dx.doi.org/10.1038/nbt.1663
http://dx.doi.org/10.1038/nbt.1663
http://dx.doi.org/10.1016/j.cell.2008.06.034
http://dx.doi.org/10.1016/j.cell.2014.07.043
http://dx.doi.org/10.1128/JVI.06120-11


January 2016 | Volume 7 | Article 1215

Policicchio et al. Animal Models for HIV Cure Research

Frontiers in Immunology | www.frontiersin.org

184. Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R, et al. 
HIV latency in the humanized BLT mouse. J Virol (2012) 86(1):339–47. 
doi:10.1128/JVI.06366-11 

185. Watkins RL, Foster JL, Garcia JV. In vivo analysis of Nef ’s role in HIV-1 
replication, systemic T cell activation and CD4+ T cell loss. Retrovirology 
(2015) 12:61. doi:10.1186/s12977-015-0187-z 

186. Shimizu S, Ringpis G-E, Marsden MD, Cortado RV, Wilhalme HM, Elashoff 
D, et  al. RNAi-mediated CCR5 knockdown provides HIV-1 resistance to 
memory T cells in humanized BLT mice. Mol Ther Nucleic Acids (2015) 
4(2):e227. doi:10.1038/mtna.2015.3 

187. Denton PW, Long JM, Wietgrefe SW, Sykes C, Spagnuolo RA, Snyder OD, 
et al. “Targeted cytotoxic therapy kills persisting HIV infected cells during 
ART.” Edited by Daniel C. Douek. PLoS Pathog (2014) 10(1):e1003872. 
doi:10.1371/journal.ppat.1003872 

188. Honeycutt JB, Wahl A, Archin N, Choudhary S, Margolis D, Garcia J. HIV-1 
infection, response to treatment and establishment of viral latency in a novel 
humanized T cell-only mouse (TOM) model. Retrovirology (2013) 10:121. 
doi:10.1186/1742-4690-10-121 

189. Burkhard MJ, Dean GA. Transmission and immunopathogenesis 
of FIV in cats as a model for HIV. Curr HIV Res (2003) 1(1):15–29. 
doi:10.2174/1570162033352101 

190. Kanzaki LI, Looney DJ. Feline immunodeficiency virus: a concise review. 
Front Biosci (2004) 9(January):370–7. doi:10.2741/1235 

191. Elder JH, Lin Y-C, Fink E, Grant CK. Feline immunodeficiency virus (FIV) 
as a model for study of lentivirus infections: parallels with HIV. Curr HIV Res 
(2010) 8(1):73–80. doi:10.2174/157016210790416389 

192. Mohammadi H, Bienzle D. Pharmacological inhibition of feline immunode-
ficiency virus (FIV). Viruses (2012) 4(5):708–24. doi:10.3390/v4050708 

193. Wongsrikeao P, Saenz D, Rinkoski T, Otoi T, Poeschla E. AIDS virus restric-
tion factor transgenesis in the domestic cat. Nat Methods (2011) 8(10):853–9. 
doi:10.1038/nmeth.1703 

194. McDonnel SJ, Liepnieks ML, Murphy BG. Treatment of chronically FIV-
infected cats with suberoylanilide hydroxamic acid. Antiviral Res (2014) 
108(August):74–8. doi:10.1016/j.antiviral.2014.05.014 

195. Sparger EE. “FIV as a model for HIV: an overview.” In vivo models 
of HIV disease and control. In: Friedman H, Specter S, Bendinelli M, 
editors. Infectious Diseases and Pathogenesis. US: Springer (2006). p. 
149–237.

196. Shimojima M, Miyazawa T, Ikeda Y, McMonagle EL, Haining H, Akashi H, 
et al. Use of CD134 as a primary receptor by the feline immunodeficiency 
virus. Science (2004) 303(5661):1192–5. doi:10.1126/science.1092124 

197. Dean GA, Reubel GH, Moore PF, Pedersen NC. Proviral burden and infection 
kinetics of feline immunodeficiency virus in lymphocyte subsets of blood and 
lymph node. J Virol (1996) 70(8):5165–9. 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Policicchio, Pandrea and Apetrei. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is 
permitted, provided the original author(s) or licensor are credited and that 
the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1128/JVI.06366-11
http://dx.doi.org/10.1186/s12977-015-0187-z
http://dx.doi.org/10.1038/mtna.2015.3
http://dx.doi.org/10.1371/journal.ppat.1003872
http://dx.doi.org/10.1186/1742-4690-10-121
http://dx.doi.org/10.2174/1570162033352101
http://dx.doi.org/10.2741/1235
http://dx.doi.org/10.2174/157016210790416389
http://dx.doi.org/10.3390/v4050708
http://dx.doi.org/10.1038/nmeth.1703
http://dx.doi.org/10.1016/j.antiviral.2014.05.014
http://dx.doi.org/10.1126/science.1092124
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Animal Models for HIV Cure Research
	Introduction
	NHP Models for Cure Research: Strains, Systems, and Limitations
	NHP Models for Cure Research: Applications
	Use of the NHP Models to Establish Pathogenesis Paradigms
	Use of NHP Models to Test Latency Reversal Agents
	Use of NHP Models to Test Transplantation Strategies
	Use of NHP Models to Test Strategies Aimed at Controlling Persistent Immune Activation
	Use of NHP Models for Vaccine Studies with Applicability to Cure Research

	Use of Mice for Cure Research
	Other Models for Cure Research
	Conclusion
	Author Contributions
	Acknowledgments
	Funding
	References


