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GPR41 and GPR43 are a pair of mammalian G protein-coupled receptors (GPCRs)
expressed in human adipocytes, colon epithelial cells, and peripheral blood mononu-
clear cells. These receptors are activated by short-chain fatty acids (SCFAs) such as 
acetate, propionate, and butyrate – which are produced during dietary fiber fermentation 
by resident gut bacteria. This unique ligand specificity suggests that GPR41 and GPR43 
may mediate the interaction between the human host and the gut microbiome. Indeed, 
studies on knockout mice implicate GPR41 and GPR43 in chronic inflammatory disor-
ders such as obesity, colitis, asthma and arthritis. However, whether GPR41 and GPR43 
are protective or causative is inconsistent between studies. This discrepancy may be 
due to differences in the disease models used, the inbred mouse strains, or non-specific 
knockout effects. Here, we review the latest findings on GPR41 and GPR43, highlighting 
contradictory observations. With GPR41 and GPR43 being considered as drug targets, 
it is pertinent that their role is fully elucidated. We propose that future studies on human 
tissues, ex vivo, may allow us to confirm the role of GPR41 and GPR43 in humans, be 
it protective or causative.
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GUT MiCROBiOTA-DeRiveD SHORT-CHAin FATTY ACiDS in 
MeTABOLiSM AnD iMMUniTY

The intestinal microbiota has been linked to a number of beneficial functions: modulating immune 
development, metabolic function, and preventing diseases such as allergies, colon cancer, and 
inflammatory bowel disease (1, 2). Some of these effects are at least partly mediated by the short-
chain fatty acids (SCFAs), consisting predominantly of acetate, propionate, and butyrate (3), which 
are produced in millimolar concentrations (around 60, 20, and 20 mM, respectively) in the colonic 
lumen during the anaerobic fermentation of dietary fiber by saccarolytic gut bacteria (3, 4). In addi-
tion to being an important energy source (5), SFCAs have also been shown to affect blood glucose 
and lipid levels, the colonic environment, and immune functions (6–8).

SHORT-CHAin FATTY ACiDS ACTivATe THe MAMMALiAn 
ReCePTORS, GPR41 AnD GPR43

While the exact mechanisms for the action of SCFAs are still being investigated, a few have been 
described thus far. Both butyrate and propionate reportedly inhibit histone deacetylases (9–13) while 
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butyrate also activates GPR109A (14). Most notable among the 
SCFA targets is the mammalian G protein-coupled receptor pair 
of GPR41 and GPR43, which shares around 42% in aligned pep-
tide sequence identity. The three most abundant SCFAs, namely 
acetate, propionate, and butyrate, are the most potent agonists for 
GPR41 and GPR43, with an EC50 of around 0.5 mM (15–17). The 
millimolar concentrations of SCFAs required to activate GPR41 
and GPR43 suggest a low potency, especially when compared 
to other known G protein-coupled receptor (GPCR) ligands 
such as the chemokine receptor, CCR2, which is activated by 
the CCL2 chemokine with an EC50 of around 1  nM (18). This 
low potency may restrict the activation of GPR41 and GPR43 
to specific locations within the human body, such as in the gut 
lumen where SCFA concentrations are in the range of 20–60 mM 
(3). While both GPR41 and GPR43 are activated by SCFA ligands, 
the downstream G protein coupling specificities differ. GPR41 
couples to Gi/G0 protein while GPR43 acts via both Gq/11 and 
Gi/G0 proteins (15–17).

GPR41 AnD GPR43 eXPReSSiOn iS 
TiSSUe-SPeCiFiC

The expression of GPR41 and GPR43 has been detected in a 
variety of tissues; GPR41 mRNA is detected in adipose tissue, 
pancreas, spleen, lymph nodes, bone marrow, and peripheral 
blood mononuclear cells including monocytes (15, 16). GPR41 
protein is translated from the bicistronic mRNA encoding 
GPR40 and GPR41, where an internal ribosome entry site 
(IRES) is utilized for the GPR41 coding sequence downstream 
of GPR40 (19). GPR43 mRNA, on the other hand, is found in 
cells of the distal ileum, colon, and adipose tissue, with the high-
est expression found in immune cells such as monocytes and 
neutrophils (15–17). GPR43 expression appears to be modulated 
during inflammation as immune challenge by lipopolysaccha-
ride (LPS) or tumor necrosis factor (TNF), or treatment with 
granulocyte-macrophage colony stimulating factor (GM-CSF), 
was found to raise GPR43 transcript levels in human monocytes 
(20, 21). Consistently, luciferase reporter assays have identified 
inflammation-associated NF-κB (22) and XBP1 (21) transcrip-
tion factor-binding sites within the GPR43 promoter.

Current data on GPR41 and GPR43 expression is based 
almost entirely on mRNA measurements, which may not cor-
relate with the expression levels of the functional protein. A few 
reports do exist on the detection of GPR41 and GPR43 proteins 
via immunohistochemistry (IHC) with polyclonal antibodies. 
Through IHC staining, the GPR41 protein is reportedly found 
in human colon mucosa enterocytes and enteroendocrine cells 
(23), as well as in mouse autonomic and somatic sensory ganglia 
(24); while GPR43 has been detected in human and mouse 
colon epithelial cells (25–27). However, we note that additional 
controls [such as the use of GPR41/43 knockout mice tissues 
or multiple antibodies targeting the same receptor but against 
different epitopes (28)] are required to validate the specificity of 
the staining. The IHC controls used thus far included a Western 
blot (25, 26) (which does not demonstrate specificity during 
IHC since epitope conformations may differ between the two 

methods) and the absorption test (25, 26) (which may fail to 
account for non-specific binding by the antigen recognition 
site). The IHC staining of GPR41 in mouse autonomic and 
somatic sensory ganglia, as described by Nøhr et al. (24), is per-
haps the most convincing as the authors showed colocalization 
with mRFP under the control of the GPR41 promoter. While the 
lack of reliable antibodies remains a major challenge toward the 
further characterization of GPR41 and GPR43, the current data 
suggest that GPR41 and GPR43 expression is widespread and 
that these receptors may be involved in a variety of physiological 
functions.

GPR41 AnD GPR43 AS POTenTiAL 
THeRAPeUTiC TARGeTS FOR OBeSiTY, 
COLiTiS, ASTHMA, AnD ARTHRiTiS

As receptors specific for SCFAs, the activation of GPR41 and 
GPR43 may account for some of the physiological effects of the 
gut microbiome. This is consistent with the findings of some 
recent knockout mice studies that have implicated GPR41 and 
GPR43 in the etiology of SCFA-associated chronic inflammatory 
diseases such as colitis, asthma, and arthritis in mice (Table 1) 
(29–37). GPR43 has also been associated with diet-induced obe-
sity (34–36, 38–40). These findings have resulted in considerable 
interest in GPR43 and GPR41 as therapeutic targets (41). In fact, 
some early synthetic allosteric agonists for GPR43 and GPR41 
have already been reported (42, 43).

RePORTS On GPR41 AnD GPR43 
KnOCKOUT MiCe PHenOTYPeS ARe 
inCOnSiSTenT

Despite the growing interest in GPR41 and GPR43, many ques-
tions regarding their functions remain unanswered. Notably, 
while knockout mice studies generally agree upon the importance 
of GPR41 and GPR43 in chronic inflammatory diseases such as 
colitis, asthma, and arthritis (29–37); the same studies fail to 
agree on whether GPR41 and GPR43 is protective or causative of 
these conditions, with both outcomes being reported (Table 1). 
The inconsistent knockout phenotypes may be due to a variety of 
factors such as differences in the disease models used, the inbred 
mouse strains or non-specific knockout effects.

In mouse colitis models, Maslowski et  al. (29), Masui et  al. 
(33), and Smith et  al. (32) reported that GPR43 knockout 
increases the severity of colitis; while Sina et al. (30) and Kim 
et al. (31), on the other hand, conveyed the opposite. The incon-
sistent knockout phenotypes may be attributable to differences 
in the protocols used to induced colitis – Maslowski et al. (29) 
(2.5% DSS for 7  days), Masui et  al. (33) (2% DSS for 7  days), 
Sina et al. (30) (4% DSS for 6 days), Kim et al. (31) (EtOH and 
TNBS), and Smith et al. (32) (T cell transfer model of colitis). 
GPR43 knockout is also demonstrated by Maslowski et al. (29) 
to exacerbate the mouse ovalbumin (OVA)-induced model of 
asthma while Trompette et al. (37) reported no apparent effect in 
a house dust mite (HDM)-induced model. Of the two reports on 
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TABLe 1 | Contradictory findings on the inflammation phenotypes of 
Gpr43−/− and Gpr41−/− mice.

Gpr43−/− mice display increased chronic inflammation

Maslowski et al. (29) Exacerbated colitis, arthritis, and asthma
Reduced neutrophil recruitment

Smith et al. (32) Exacerbated colitis
Reduced Treg cell count

Masui et al. (33) Exacerbated colitis

Macia et al. (44) Exacerbated colitis
Reduced IL-18 expression presumably due to 
reduced inflammasome activation in epithelial cells

Gpr43−/− mice display reduced chronic inflammation
Sina et al. (30) Reduced colitis

Increased neutrophil recruitment

Kim et al. (31) Reduced colitis
Reduced ERK and p38 activation in epithelial cells

Vieira et al. (45) Reduced joint inflammation in mouse model of gout
Impaired inflammasome formation in macrophages

Gpr43−/− mice display increased obesity markers
Ge et al. (38) Increased lipolysis and plasma free fatty acids

Tolhurst et al. (35) Impaired glucagon-like peptide-1 secretion and 
glucose tolerance

Kimura et al. (36) Increased fat accumulation and obesity on a normal 
diet

McNelis et al. (39) Glucose intolerance due to defective insulin 
secretion
Reduced beta cell mass and expression of 
differentiation genes

Priyadarshini et al. (40) Marginal reduction in glucose-stimulated insulin 
secretion

Gpr43−/− mice display reduced obesity markers
Bjursell et al. (34) Improved glucose control and reduced body fat 

mass on a high-fat diet

Gpr41−/− mice display increased inflammation
Trompette et al. (37) Exacerbated asthma

Impaired dendritic cell generation

Gpr41−/− mice display reduced inflammation
Kim et al. (31) Reduced colitis

Reduced ERK and p38 activation in epithelial cells

Gpr41−/−Gpr43−/− mice display reduced obesity markers
Tang et al. (46) Increased insulin secretion and improved glucose 

tolerance in type 2 diabetes
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the involvement of GPR41 in inflammation thus far, Trompette 
et  al. (37) described exacerbated asthma in GPR41 knockout 
mice while Kim et al. (31) described GPR41 knockout mice to 
show reduced colitis. By contrast, knockout mice studies on 
GPR43 in energy metabolism appear to have consistent findings. 
With the exception of one study (34), the remaining five groups 
reported that GPR43 protects against diet-induced-obesity in 
mice (35, 36, 38–40).

Questions also persist regarding the cell type and pathways 
responsible for the effect of GPR43. Bone marrow chimera mice 
studies from Maslowski et al. (29) and Kim et al. (31) suggest that 
both marrow-derived cells and non-marrow-derived cells con-
tributed toward the colitis phenotype. However, while Maslowski 
et al. found that marrow-derived cells play a larger role, Kim et al. 
reported the opposite. Maslowski et al. (29) suggested that GPR43 
signaling reduced immune cell recruitment and expression 

of inflammatory mediators to attenuate colitis, asthma, and 
arthritis. Sina et al. (30) proposed that the activation of GPR43 
and the downstream p38 mitogen-activated protein kinase in 
polymorphonuclear leukocytes led to increased cell migration 
to the colon, exacerbating colitis. Kim et al. (31) described the 
activation of extracellular signal-regulated kinase 1/2 and p38 
mitogen-activated protein kinase signaling pathways in epithelial 
cells by GPR41 and GPR43 to induce the production of cytokines, 
exacerbating colitis. The study by Smith et al. (32) described that 
GPR43 was required for T-cell recruitment to attenuate colitis 
(which may be due to the fact that a T cell transfer model of 
colitis was used). Interestingly, Macia et al. (44) suggested that 
GPR43 was required for the induction of IL-18 expression to 
reduce colitis severity presumably via increased inflammasome 
activation in epithelial cells while Vieira et  al. (45) suggested 
that GPR43 exacerbated joint inflammation in a mouse model 
of gout by inducing inflammasome formation in macrophages. 
Together, these studies suggest that GPR41 and GPR43 may exert 
both pro- and anti-inflammatory effects, which are dependent on 
the disease model used. This lack of consensus, coupled with the 
limitations of the mouse model (which we discuss in detail in the 
following section), suggest that the consequences of pharmaceu-
tically targeting GPR41 and GPR43 (41) are not fully understood.

HUMAn AnD MOUSe GPR41 AnD GPR43 
MAY Be FUnCTiOnALLY DiveRGenT

Confirming the role of GPR41 and GPR43 in human physiol-
ogy is necessary as current published findings are based almost 
entirely on knockout mice models which often fail to fully mimic 
human diseases. For example, mutations in the retinoblastoma 
tumor suppressor gene (RB) in humans are causative of, as the 
name suggests, retinoblastoma. On the other hand, Rb+/− mice 
show no increased incidence of retinoblastoma (47). Another 
notable example is in the null mutation of the dystrophin gene, 
which reduces the lifespan of individuals with Duchenne muscu-
lar dystrophy (DMD) by ~75%; while dystrophin-deficient mice 
display minimal clinical symptoms and only a ~25% reduction 
in lifespan (48). More recently, a systematic comparison of 
human and mouse gene expression patterns during inflamma-
tion revealed a poor correlation (49). This may also explain why 
current mouse models are unable to fully represent human IBD 
symptoms (50, 51).

Findings from human and mouse cells cultured ex vivo, already 
point to the possibility of a difference in function among species. 
GPR43 agonists induced the differentiation of mouse (52) but 
not human (53) adipocytes. Mouse but not human islets secrete 
insulin upon GPR43 agonist treatment (40). While these ex vivo 
studies suggest a certain level of functional divergence between 
human and mouse GPR43 signaling, whether these differences 
would lead to species-specific responses to SCFAs in vivo remain 
unknown. The task of confirming human GPR41 and GPR43 
functions in  vivo is challenging. A possible avenue may be to 
employ humanized mouse models or to perform studies using 
primate models, which are expected to more closely resemble 
human physiology.
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FUTURe PeRSPeCTiveS

Finally, we propose that future studies on human tissues ex vivo 
or in humanized mouse models, may resolve some of these 
controversies by allowing us to identify the genuine functions 
of human GPR41 and GPR43, be it pro- or anti-inflammatory. 
This knowledge will inform current ongoing efforts to develop 
pharmacological therapies targeting these receptors (41) and may 
warn of potentially detrimental side effects.
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