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The complement system consists of effector proteins, regulators, and receptors that par-
ticipate in host defense against pathogens. Activation of the complement system, via the 
classical pathway (CP), has long been recognized in immune complex-mediated tissue 
injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete defi-
ciency of an early component of the CP, as evidenced by homozygous genetic deficiencies 
reported in human, are strongly associated with the risk of developing SLE or a lupus-like 
disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation 
and/or the presence of autoantibodies directed against a CP component or a regulatory 
protein that result in an acquired deficiency are relatively common in SLE patients. Applying 
accurate assay methodologies with rigorous data validations, low GCNs of total C4, and 
heterozygous and homozygous deficiencies of C4A have been shown as medium to large 
effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective 
factors, of European and East-Asian SLE. Here, we summarize the current knowledge 
related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, 
C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for 
other systemic autoimmune diseases. As the complement system is increasingly found to 
be associated with autoimmune diseases and immune-mediated diseases, it has become 
an attractive therapeutic target. We highlight the recent developments and offer a balanced 
perspective concerning future investigations and therapeutic applications with a focus on 
early components of the CP in human systemic autoimmune diseases.

Keywords: systemic lupus erythematosus, complement C1q, complement C4, autoimmune diseases, complement 
C2, complement C1s, complement C1r, classical pathway

ACTivATiON OF THe COMPLeMeNT SYSTeM

The complement system is a humoral recognition and effector system that facilitates in the elimination 
of invading pathogens. The activation pathways of the complement system converge at C3 and pro-
gress to the formation of the membrane attack complexes (MAC or C5b–C9) on a target membrane. 
The cascades of complement system are mediated and adjusted according to the type of initiator 
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FiGURe 1 | The activation pathways of the complement system. The three activation pathways of the complement system are shown according to evolution 
and physiologic sequences. Pathway 1 is known as the alternative pathway. It is activated through a tick-over mechanism because of continuous hydrolysis of the 
thioester bond in C3, which enables the formation with factor B to form a weak C3 convertase. Pathway 2 is known as the MBL or lectin pathway. It is initiated 
through the binding of mannan-binding lectin (MBL) or ficolin to arrays of simple sugar molecules in glycosylated antigens on microbes. This is a pattern recognition 
mechanism characteristic of the innate immune system. Pathway 3 is known as the classical pathway and is initiated through the binding of specific antibodies IgM 
or IgG to antigens. It is an effector arm of the humoral adaptive immune system. Each activation pathway engages the formation of a multi-molecular initiation 
complex, followed by the assembly of a C3 convertase and a C5 convertase for activation of C3 and C5, respectively and culminates in the formation of membrane 
attack complexes (MAC) on the target membrane. All three pathways can be amplified through a positive feedback mechanism, as C3b (in blue) generated by any 
C3 convertase can feed to the alternative pathway through association with factor B to form new C3 convertase after activation by factor D (pathway 1). 
Anaphylatoxins C3a and C5a are produced during the activation process. For brevity, by-products generated during the activation of C2 and factor B are not shown. 
Red arrows show activation of component proteins through cleavage by serine proteases. A dotted horizontal arrow denotes multiple steps are involved in the 
formation of the membrane attack complex. Early components of the classical pathway C1q, C1r, C1s, and C4 are engaged in the differentiation of immunity and 
autoimmunity, as genetic or acquired deficiency in any of these components are linked to pathogenesis of SLE. Complement C2 is also involved in the protection 
against autoimmunity but its effect size is smaller [modified from Ref. (2)].
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and the microenvironment in which complement activation is 
occurring. Proteins of the complement system cooperate and 
coordinate to differentiate among invading microbes, immune 
complexes, apoptotic cells, cellular debris, and physiologic host 
cells (1–4).

Three distinct pathways trigger cascades of activation through 
proteolysis of zymogens or precursors present in the circulation 
(Figure 1). The classical pathway (CP) is predominantly triggered 
by IgM or IgG immune complexes. The formation of antigen–
antibody complexes exposes binding sites for C1q on Fc-regions 
of immunoglobulins, triggering the assembly and activation of 
the multi-molecular C1 complex, C1q–C1r2–C1s2 (pathway 
3, Figure  1). Conformational changes in the C1 complex are 
induced upon binding of C1q to antibody, leading to activation 
of the serine protease subunits C1r and then C1s. As a result, C1s 
next activates C4 and C2, leading to the formation of the CP C3 
convertase (abbreviated C4b2a). Following the early components 
activation, later components of the complement cascade form 
the MAC, which perturbs membranes, including the creation 
of pores across the target membrane, inducing cell lysis, loss of 
cytoplasm, and osmotic shock.

In the mid-1950s, Pillemer and colleagues of Case Western 
Reserve University observed that complement activation could 
occur in the absence of a specific antibody (5). The existence of 
such an “alternative” pathway (AP) of activation was challenged 
but was confirmed more than two decades later (6). Specific 
protein factors involved in this AP are named factors, such as 
factor B, factor D, factor H (FH), and factor P (properdin). This 

pathway is initiated by a “tick-over” mechanism, in which a small 
proportion of complement C3 in the circulation is continuously 
hydrolyzed at slow rate (~1–2%/h) by water to form C3(H2O). 
C3(H2O) binds to factor B, which is activated by factor D, to form 
C3(H2O)Bb. C3(H2O)Bb accordingly acts as a relatively labile C3 
convertase, constantly initiating C3 cleavage. Properdin stabilizes 
the short-lived C3 convertase. Under the appropriate circum-
stances, a C5 convertase (C3bBbP) is formed, and the cascade 
progresses to MAC formation on a foreign cell surface, similar to 
that of the CP (pathway 1, Figure 1). The binding of P to C3bBb 
on a microbial (or protected) surface will stabilize and protect 
the convertase from inactivation by regulatory proteins, thereby 
enhancing the convertase activity. The AP actually represents an 
ancient mechanism of innate immune host defense. The tick-
over mechanism of complement activation enables a continuous 
surveillance for the host, executing the first line of defense against 
foreign invaders. With the development of a circulatory system, 
a system of host defense that both worked in seconds and was 
pathogen-destructing became mandatory.

A third pathway of complement activation involves the 
specific pattern recognition of biomolecules. One strategy for 
organisms to achieve species-specific diversity is by modification 
of biomolecules such as glycolipids and glycoproteins with dif-
ferent complexities of sugars. Typically, carbohydrate moieties on 
glycoproteins among vertebrates consist of complex sugars with 
secondary modifications (biantennary type) and ending with 
sialic acids. By contrast, the carbohydrate moieties in prokary-
otes generally consist of simpler polymers of saccharides such 
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as mannose. Pattern recognition of biomolecules is a universal 
theme of innate immunity. This pathway of complement activa-
tion is initiated by the binding of pattern recognition molecules 
including mannan-binding lectin (MBL) or ficolins to a bacterial 
membrane that express arrays of simple carbohydrates such as 
mannose and N-acetylglucosamine (7, 8). Such binding triggers 
the assembly of MBL/MASP2 and ficolin/MASP2 or MBL/MASP1 
and ficolin/MASP1 complexes (pathway 2, Figure 1). MASP2 and 
MASP1 are both serine proteases. MASP2, associated with MBL 
or ficolin, activates both C4 and C2. As a result, a C3 convertase 
identical to that generated by the CP is formed.

Thus, all three complement activation pathways pass through 
the focal point on the activation of C3 to C3a and C3b, and then 
C5a and C5b, leading to the assembly of sublytic or lytic complexes 
on target membrane. It is noteworthy that all three activation 
pathways can be amplified by the positive feedback mechanism 
of the AP. In addition to cell lysis, effects of complement activa-
tion include opsonization to enhance phagocytosis of target 
cells, clearance of apoptotic bodies, solubilization and removal 
of immune complexes, stimulation of cytokine production, and 
anaphylatoxin-mediated effects. To summarize, the complement 
system has been designed in evolution primarily to activate on the 
membranes of bacteria and certain viruses. Opsonization via C3b 
and cellular activation via the anaphylatoxins C3a and C5a are its 
two primary functions.

ReGULATiON OF THe COMPLeMeNT 
SYSTeM

Because the activated complement components C4b, C3b, and 
C5b67 can attach to any nearby cell surfaces including host cells, 
regulatory mechanisms have evolved to contain complement acti-
vation to damaged self and foreign targets. Inherently, all activated 
complement proteins spontaneously undergo intrinsic decay or 
inactivation when not stabilized by other pathway components 
or factors. In addition, several regulatory proteins in plasma or 
on the cell membrane can dissociate (decay) multi-molecular 
(activated) complexes and also proteolytically degrade the anchor 
proteins such as C4b and C3b. Upon initiation of classical or lectin 
pathways, C1-inhibitor (C1-INH) is a serine protease inhibitor 
that mimics the substrates for C1s in the C1 complex, and MASP2 
or MASP1 in the MBL or ficolin complex. C1-INH forms a com-
plex with activated C1r and C1s leading to the dissociation of the 
enzymatic C1r/C1s subunit from the recognition C1q subunit 
and preventing further activation of C4 and C2.

Importantly, there are also key strategies of regulation that act 
upon the assembly and stability of the C3 convertases. Fluid phase 
proteins, C4b-binding protein (C4bp) and FH and membrane 
proteins complement receptor 1 (CR1) and decay accelerating fac-
tor (DAF) all dissociate the recognition and enzymatic subunits 
of C3 convertases. Moreover, C4bp, CR1, and membrane cofactor 
protein (MCP) serve as cofactor proteins for factor I-mediated 
degradation of C4b, while FH, CR1, and MCP each serves as a 
cofactor for the factor I-mediated proteolysis of C3b. Notably, 
C4bp and FH recognize exposed host glycoproteins with glycosa-
minoglycans and sialic acids. The presence of such regulatory 
molecules on self-surfaces, but absence from most foreign particle 

surfaces, allows the regulators to prevent activation on host tissues 
while restricting complement activity to designated, foreign tar-
gets. Dysfunctional or uncontrolled complement activation can 
lead to destruction of body cells, overt release of inflammatory 
mediators, and tissue damage, as evidenced by clinical complica-
tions experienced by systemic lupus erythematosus (SLE) patients.

COMPLeMeNT iN SYSTeMiC LUPUS 
eRYTHeMATOSUS

Serum C4 and C3 Levels
Systemic lupus erythematosus patients commonly present with 
evidence of complement consumption leading to low serum 
levels of C4 and C3 (9, 10). Initially, up to one-half of SLE patients 
will have low C4 and C3. In most established patients, serum C4 
levels are biomarkers for lupus disease activity; low levels correlate 
with a flare, while normal levels correspond with remission (11). 
Longitudinal studies of serum C4 protein levels in SLE patients 
revealed different expression profiles characterized by three dis-
tinct groups (Figure 2) (12). The first group exhibited persistently 
low C4 levels throughout the course of the study, and many of 
these patients had a low copy number of C4 genes. The second 
group featured periodic fluctuations of C4 that paralleled disease 
activity while the third group had normal C4 levels most of the 
time. The typical pattern in active SLE patients is that both C4 
and C3 are low simultaneously. However, exceptions occur. C3 
levels are usually three- to sixfold higher than C4 levels; therefore, 
consumption of complement by immune complexes could reduce 
C4 below normal but leave C3 in the normal range. With a positive 
response to treatment, both C4 and C3 levels will rise. As noted, 
up to one-half of SLE patients will present with serum C4 and C3 
in a normal range, which obviously does not rule out a lupus diag-
nosis. The CH50 and AP50 measure the lysis of red blood cells by 
the respective pathway and thus are functional tests. Furthermore, 
in vivo complement activation can also be assayed by testing for 
complexes or split products formed during activation (3).

Copy-number variation (CNV) of C4 can affect serum C4 
protein concentrations. In an American Caucasian populations, 
about 60% of individuals have four copies of the C4 gene, 28.5% 
have three (or less), and 12.5% have five (or more). In lupus, the 
number of patients with three or less C4 genes may increase to 
42.2% (13). If an individual has low copy of C4 genes, the baseline 
C4 antigenic level may be 12–18 (~6 to 8 mg/dL per copy of a C4 
gene). In this situation, it does not take much activation to lower 
the C4 out of the normal range. Additionally, a subject’s body 
mass index (BMI) is positively associated with serum C4 or C3 
protein concentrations (14, 15). All things considered, the care 
of each patient must be individualized. Repeated, longitudinal 
serum measurements of C3 and C4 are usually clinically utilized.

Cell-Bound C4d as a Biomarker of 
Complement Activation for Humoral 
immunity, Alloreactivity, and Autoimmunity
In the past decade, cell-bound levels of processed complement 
activation products (CBCAPS), especially erythrocyte-bound 
C4 (E-C4d), has been proposed to assist in the diagnosis and 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 2 | Typical serial serum protein profiles of complement C4 
and C3 in human SLe patients. Serum C4 (red, solid line) and C3 
(green, dashed line) protein levels tend to go up and down together in 
most SLE patients. The horizontal dotted line indicates the low level of 
serum C4 (<10 mg/dL), below which usually requires clinical attention. 
The profiles shown are taken from three individual patients over a 
24-month period and represent three common profiles typically observed 
in SLE patients. In the first profile (A), levels of C4 and C3 were chronically 
low. In some patients, even if C3 levels rose to normal range, C4 levels 
remained low. Patients with this profile are often characterized by low 
copy-number of C4 genes. (B) The second profile had frequent and 
parallel fluctuations of serum C3 and C4. Patients with this profile had 
active disease, and low C3 and low C4 roughly correlated with disease 
activity. In the third profile (C), C4 and C3 protein levels stayed in the 
normal range most of the time, except at the time of diagnosis and during 
a disease relapse. Patients with this profile had relatively inactive disease. 
Patients with the second and third profiles have normal gene copy-
number of total C4 but may have a heterozygous deficiency of C4A 
[modified from Reference (12)].
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clinical monitoring of SLE (16, 17). E-C4d is a stable, proteolytic 
end fragment of C4, which is covalently bound to the surface of 
erythrocytes following activation of the CP or MBL pathway. On 
cell surfaces, the activated C4b is processed to the cell-bound 
C4d with the release of soluble C4c through factor-I mediated 
proteolysis in the presence of a cofactor (i.e., CR1 or MCP on the 
plasma membrane or C4bp from plasma). In 2004, Manzi et al. 
found that erythrocytes from SLE patients had markedly higher 
levels of E-C4d when compared to healthy controls or patients 
with other diseases (16). Additional studies explored the utility 
of CBCAPS on T and B lymphocytes, platelets, and reticulocytes 
in SLE (18–21). The levels of C4d bound to the membrane of 
these cells were significantly higher in SLE than healthy controls 
or patients with other diseases. In a study of 304 SLE patients, 285 
patients with other rheumatic diseases and 205 healthy controls, 
Putterman and colleagues reported that CBCAPS on erythrocytes 
or B cells had higher sensitivity than standard complement levels 
(serum C3 and C4) and anti-dsDNA measurements when dis-
tinguishing between SLE and non-SLE, suggesting that CBCAPS 
could be more specific and sensitive biomarkers for diagnosis and 
prognosis of SLE (17). However, given the relative simplicity and 
low cost of serum C4 and C3 measurements, it remains to be seen 
how assessment of cell-bound C4d and C3d will contribute to the 
clinical care of patients with SLE.

Historically, cell-bound complement activation proteins, 
particularly those of C4d, have offered clues to several important 
discoveries. Between 1960 and 1990, it was found that blood group 
antigens, Chido (Ch) and Rodgers (Rg), were polymorphic vari-
ants of complement C4 (22–24). Alloantibodies generated against 
Ch/Rg antigens after blood transfusion in certain recipients were 
mostly directed against polymorphic amino acids present in the 
C4d region of C4B and C4A proteins, respectively. The mapping 
of the Ch/Rg variants to the HLA contributed to the understand-
ing of MHC genetics. The polymorphisms of C4A and C4B 
protein allotypes are readily demonstrated by immunofixation 
of EDTA-plasma resolved by high voltage, agarose gel electro-
phoresis based on gross differences of electric charge of protein 
molecules resulting in variations in electrophoretic mobilities 
(25–27). Using an assay that involved an overlay of “sensitized” 
sheep red blood cells on the described C4-allotyping gels, it was 
found that C4B proteins are functionally 4–10 times more active 
on the hemolysis of sheep red blood cells (26, 28, 29). While most 
C4A are associated with Rg antigens and C4B with Ch antigens, 
reverse associations such as C4A1 with Ch and C4B5 with Rg were 
demonstrated (23, 30). It was the cloning and sequencing of those 
functional and serological variants that enabled the identification 
of specific isotype residues at positions 1120–1125, PCPVLD for 
C4A and LSPVIH for C4B, encoded by exon 26 of the C4 gene 
(31, 32). The major epitopes for Rg and Ch blood groups were 
mapped to positions 1207–1210, VDLL for Rg and ADLR for Ch, 
encoded by exon 28 of C4 genes (32). Detailed characterization 
of C4A and C4B genetic polymorphisms unraveled a surprising 
phenomenon: CNVs and gene size dichotomy among human 
subjects with specific distribution patterns among different racial 
populations (13–15, 33, 34).
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In parallel to the discovery of common CNV for C4A and C4B 
genes that contribute to quantitative and qualitative phenotypic 
diversities of innate immunity and associations with autoimmune 
diseases, another far-reaching observation related to application 
to cell-bound C4d occurred in the field of organ transplantation. 
The deposition of C4d on the endothelium of capillaries for renal, 
heart, and lung grafts is recognized to be a diagnostic biomarker or 
“immunohistochemical imprint” of alloantibody-mediated com-
plement activation that leads to graft rejection. In transplant recipi-
ents, preexisting or de novo donor specific alloantibodies binding to 
graft cells may activate complement and cause graft injury. In acute 
and chronic rejections of renal grafts, peritubular capillary (PTC) 
deposition of C4d occurred in about 30% of biopsy specimens and 
detection of diffuse PTC-C4d often associates with poor renal graft 
outcome. Reviews of C4d-deposition on graft capillaries as a result 
of humoral alloreactivity can be found in Ref. (35–37).

HeReDiTARY GeNeTiC DeFiCieNCieS  
OF eARLY COMPLeMeNT COMPONeNTS 
iN SLe

Deficiencies or genetic polymorphisms of early complement 
components are strongly associated with increased risk of 
developing SLE or a lupus-like disease (Figure 3). Complement 
deficiencies are hypothesized to be associated with increased 
susceptibility of SLE for several reasons. Functionally, the role 
of complement includes the identification, opsonization, and 
proper disposal of apoptotic cells and immune complexes formed 
regularly between antibodies and foreign or self-antigens (1, 38). 
An inability to efficiently clear apoptotic cells could render them 
a source of autoantigens and thereby drive autoantibody produc-
tion. Impaired clearance of immune complexes and “self ” debris 
provides a logical explanation for complement deficiency in the 
induction of SLE (39). While there are multiple complement 
pathways to assist the host with clearance of these types of materi-
als that accumulate continuously in healthy subjects, the CP is 
essential through at least C4, and to a lesser degree C2, to properly 
handle and dispose of immune complexes and apoptotic debris.

Another hypothesis that attempts to explain the association of 
complement deficiency with SLE suggests that the complement 
system is involved in immune tolerance (44). In other words, 
early components of the CP are engaged in the “cross-talk” to 
the adaptive immune system to achieve tolerance against self-
antigens, or in the discrimination of “self ” versus “non-self.” A 
complement deficiency that results in a breach of self-tolerance 
provides a reasonable explanation for association with SLE 
(45, 46). Normally, complement receptor 1 (CR1/CD35) and 
complement receptor 2 (CR2/CD21) on follicular dendritic cells 
of peripheral lymphoid tissues (such as the spleen and lymph 
nodes) bind to and deliver self-antigens coated with complement 
fragments to the autoreactive B-cells, which are anergized or kept 
away from germinal center reactions. Previously, it was demon-
strated in mouse models that complement was necessary for the 
elimination of self-reactive lymphocytes during the maturation 
of the immune system (46). Specifically, Prodeus et al. showed 
that deficiency of either CD21/CD35 or of C4 in a well-defined 

mouse model of peripheral tolerance resulted in high titers of 
anti-nuclear antibodies (ANAs) and a severe lupus-like disease.

These two concepts of debris clearance and regulation of 
self-tolerance are not exclusive and likely overlap, or together are 
responsible for the development of SLE in humans deficient in 
early components of the CP.

In the following sections, we will describe genetic complement 
deficiency states associated with SLE for each component of the 
early CP (C1q, C1r, C1s, C4, and C2).

Complement C1q Deficiency
Three different genes (C1qA, C1qB, C1qC) closely linked on the 
short arm of chromosome 1 encode for the C1q protein, which is 
composed of 18 polypeptide chains. Inter-chain disulfide bonds 
are formed via the cysteine residue in the N-terminal region of 
each chain. Following the N-terminal region is a collagen-like 
region (CLR) of ~81 residues. One A chain and one B chain 
form a heterodimer during biosynthesis, and two C chains form 
a homodimer, both through disulfide linkages via conserved 
cysteine residues. Two A–B heterodimers associate with one C–C 
homodimer to form a hexameric structure, of the composition 
ABC–CBA. Three of these hexamers, with a total of 18 polypep-
tide chains together, form the tulip-like structure of C1q with 
a collagenous tail and six globular regions, each with globular 
heads ghA, ghB, and ghC.

The CP of activation is initiated by the C1 complex, of which 
C1q is the first subcomponent. When C1q in the C1 complex 
binds to IgM or IgG present in an immune complex, a binding site 
of C1r/C1s is exposed, allowing further activation of the comple-
ment pathway (47–49). C1q is an important opsonin to promote 
phagocytosis of apoptotic cells or debris, which can be archived 
directly without complement activation through binding at the 
collagenous region of C1q to calreticulin (CRT) in apoptotic cell 
blebs and to CD91 on phagocytes; or indirectly with activation 
of the CP as C1q binds to CRP ligated to phosphorylcholine/
phosphatidylserine or to SAP ligated to fragmented chromatin 
from apoptotic cells, generating processed products C4b, C3b, 
iC3b, C3dg, and C3d that are ligands for CR3 and CR4 on myeloid 
cells to initiate phagocytosis.

The number of reported cases of homozygous deficiency of 
C1q has increased to 74 (3, 50–52). Among the reported C1q-
deficient subjects, the median age of (any) disease onset was 
6 years. The clinical presentations among C1q-deficient patients 
varied considerably, but the two common observations were: 
(a) SLE or lupus-like disease in 88% and (b) recurrent bacterial 
infections in 41% (40, 52). Some patients (17%) died at a young 
age secondary to septicemia. Among the C1q-deficient patients 
with SLE or lupus-like disease, cutaneous disorders, especially 
photosensitivity, were prominent with a frequency of 84%. 
Glomerulonephritis and neurologic disease affected about 30 and 
19% of patients, respectively. Oral ulceration occurred in 22% and 
arthritis/arthralgia in 16%. Immunologically, most C1q-deficient 
patients had normal serum levels of complement C4 and C3, 
high frequency of ANAs (particularly anti-Ro/SSA) but a low 
frequency of anti-dsDNA.

Several different causative mutations have been identified in 
patients with complete C1q deficiency. A variety of mutations 
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FiGURe 3 | SLe patients with a homozygous deficiency of early components for the classical pathway of complement activation. Severe cutaneous 
lesions are common clinical presentations in SLE patients with a complete complement deficiency. (A) A homozygous C1q-deficient male child with cutaneous 
infection (upper panel) and with discoid lupus erythematosus and scarring lesions on face when he was 22 years old (lower panel). (B) A male child with discoid 
lupus at 16-month old with homozygous C1r-deficiency. This patient experienced generalized seizures, developed a scissoring gait with toe walking, spasticity and 
weakness of the legs. At 18 years old, he was diagnosed with class IV lupus nephritis and progressed to end-stage renal disease. (C) A complete C4-deficient girl at 
3 years old with butterfly rash and cheilitis (upper panel), and osteomyelitis of the femur at 10 years old (lower panel). This patient died at age 12 because of 
pulmonary infection and cardiovascular failure. (D) A homozygous C2-deficient young woman with acute cutaneous lupus erythematosus. The upper panel shows 
the butterfly rash, and the lower panel shows photosensitive lesions on sun-exposed areas [adopted from Ref. (40–43)].
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(including non-sense, frameshift indels, and splice site) result in 
the absence of biosynthesis of one of the three C1q (A, B, or C) 
chains. Other mechanisms have been identified by which C1q 
protein is defective in secretion, structure, or function. In Table 1, 
the molecular basis of the genetic mutations leading to complete 
absence or complete functional deficiency of C1q protein for 
which genetic information is reported, as well as the accompany-
ing clinical manifestations.

Most of the causative mutations associated with homozygous 
C1q genetic deficiency are the result of a consanguineous marriage. 
The affected patients are likely close descendants of ancestors car-
rying the specific deleterious mutation. Surprisingly, screening 
of large SLE cohorts from those countries with reported cases of 
C1q deficiency to determine the prevalence of C1q deleterious 
mutations have yielded negative results (59, 78), suggesting that 
the mutations are “private” and rare but with very large effect size, 
as documented in many complex diseases (79, 80).

Complement C1r and C1s Deficiency
The genes for human C1s and C1r are located on the short arm 
of chromosome 12 (81). According to bioinformatics studies 
and previous publications (82), C1r and C1s are configured in a 

tail-to-tail orientation with their 3′ ends separated by ~9 kb. The 
DNA sequence for the genomic region harboring human C1s and 
C1r coding sequences is still incomplete in the Reference Genome 
(Annotation release 106, January 2015) and consists of gaps.

C1r and C1s are paralogous proteins that share 38% identity 
and 55% similarity. Each mature protein is a proenzyme consist-
ing of six distinct modules: two CUB domains separated by an 
EGF domain with a binding site for Ca2+, followed by two com-
plement controlling protein repeats CCP1 and CCP2, a linker 
segment and then a chymotrypsin-like serine protease domain SP 
at the carboxyl-terminus region. In circulation, C1r and C1s are 
proenzymes that exist as a tetrameric structure, C1s–C1r–C1r–
C1s, which assembles in the presence of Ca2+ with C1q to form 
the multi-molecular C1 complex. Upon activation of C1q (e.g., 
through binding of its globular heads to the Fc-regions of IgG or 
IgM in an immune complex), the tetramer interacts with the hinge 
region of C1q to form the activated C1 complex. Autoactivation 
of the two C1r by proteolytic cleavages between Arg-463 and 
Ile-464 is followed by activation of C1s by proteolysis between 
Arg438 and Ile-439, which release the enzymatic activity of the 
nascent C1 complex. The C1s in this C1 complex activates C4 
and then C2 which together form the CP C3 convertase, C4b2a.
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TABLe 1 | Complete deficiency of A, B, or C chain genes of C1q.

Location Mutation Molecular defect Age of onset 
(years), sex, 

ethnicity

Clinical presentations Reference

1 C1qA M1R Start codon mutation; no 
detectable protein

nk, M, 
African-Americana

SLE (53)

2 C1qA M1R As above nk, M, 
African-Americana

Lupus, premature death (53)

3 C1qA Q208X Nonsense mutation 10, M, Turkish History of ear and oral infections, recurrent skin 
lesions, premature death at age 10 from septicemia

(54–56)

4 C1qA Q208X As above 4, F, Turkishb Malar rash, stomatitis, ANA, premature death at 
age 6 from sepsis

(56, 57)

5 C1qA Q208X As above 6, F, Turkishb Facial swelling, hematuria (56, 57)
6 C1qA Q208X As above nk, F, Turkish Asymptomatic at age 22 (58)
7 C1qA Q208X As above 3, F, Turkishc SLE, glomerulonephritis, arthralgias, 

photosensitivity, anti-Ro autoantibodies
(59)

8 C1qA Q208X As above 15, F, Turkishc Photosensitive rash, microscopic hematuria, IgA 
nephropathy

(59)

9 C1qA Q208X As above 4, M, Turkish SLE-like disease, meningitis, pneumonia, 
meningococcal sepsis, ANA

(60)

10 C1qA Q208X As above 1, M, Turkish Rash, recurrent upper respiratory tract infections, 
low ANA

(61)

11 C1qA Q208X As above 1, M, Iraqi Erythematous rashes, otitis media, 
glomerulonephritis, fatigue, photosensitivity, ANA

(52)

12 C1qA W216X Nonsense mutation 0.5, F, Sudanesed SLE, cutaneous lupus, bacterial meningitis, ANA (52)
13 C1qA W216X As above 3, M, Sudanesed SLE, cutaneous lupus, bacterial meningitis, 

bacterial keratitis, polyarthritis, ANA
(52)

14 C1qA 1-bp deletion; 
Q64X

Frameshift 
mutation → premature 
stop codon

3, M, Caucasian Photosensitivity, malar rash (52)

15 C1qB Point mutation 
(RFLP analysis 
only)

Premature stop codon; 
functionally deficient 
protein

4, M, Pakistani SLE-like disease, history of fever, 
glomerulonephritis, discoid facial lesions, ANA, 
premature death at age 8

(62, 63)

16 C1qB G42D Glycine mutation; LMW 
C1q; complete functional 
deficiency

16, F, Moroccane SLE, arthralgia (64, 65)

17 C1qB G42D As above 23, M, Moroccane SCLE, ANA, anti-Sm autoantibodies (64, 65)
18 C1qB G42D As above 3, M, Moroccane SLE, ANA, anti-ds DNA autoantibodies, 

thrombocytopenia, growth retardation
(64, 65)

19 C1qB G42D As above nk, M, Moroccane Asymptomatic at age 42 (64, 65)
20 C1qB G244R Glycine mutation; no 

detectable protein
3, F, Inuitf DLE, photosensitive malar rash, ANA, recurrent skin 

and mucosal lesions
(66)

21 C1qB G244R As above 14, F, Inuitf SLE, ANA, arthritis (66)
22 C1qB G244R As above 2, F, Inuitf Lupus erythematosus, vasculitis, pneumonia, ANA (66)
23 C1qB G63S Missense mutation; C1q 

unable to associate with 
C1r and C1s

20, M, Arabian SLE, CNS involvement, recurrent infections; 
premature death due to bacteria-induced septic 
shock

(67)

24 C1qB 6251A > C Splice site mutation; no 
detectable protein

2, M, Caucasian Recurrent upper airway infections, history of fever 
and seizures

(68)

25 C1qB 187G > T Splice site mutation; 
complete functional 
deficiency

4, F, Japanese DLE, history of fever, facial erythema, joint pain, oral 
ulcerations

(69)

26 C1qC G34R Glycine mutation; LMW 
C1q; complete functional 
deficiency

4, F, Indiang DLE, photosensitivity, ANA (70)

27 C1qC G34R As above 0.8, M, Indiang Umbilical sepsis, erythematous rash, ANA, parotitis, 
anti-Ro autoantibodies

(70)

28 C1qC G34R As above 0.5, F, Arabian SLE-like disease with CNS involvement, 
recurrent bacterial infections, ANA, anti-dsDNA 
autoantibodies, hyper-IgM syndrome

(71)

29 C1qC G34R As above 21, F, Caucasian Adult-onset of SLE-like disease, history of fever, 
oral ulcerations, bacterial meningitis, ANA, anti-Ro 
autoantibodies

(72)

(Continued)
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Location Mutation Molecular defect Age of onset 
(years), sex, 

ethnicity

Clinical presentations Reference

30 C1qC R69X Nonsense mutation 9, F, Caucasian Severe SLE, with cutaneous and CNS involvement, 
ANA, anti-Sm and anti-Ro autoantibodies, 
cytomegalovirus retinitis, premature death at age 28 
from CNS involvement

(70, 73)

31 C1qC R69X As above 10, M, Kosova Malar and discoid rash, ANA, oral ulcerations (52)
32 C1qC G76R Glycine mutation; no 

detectable protein
8, F, Turkish Recurrent meningitis, pneumonia (74)

33 C1qC delC43 fs108X Frameshift premature 
stop codon at 108

1, M, Yugoslavianh SLE-like disease, photosensitivity, butterfly rash, 
glomerulonephritis, ear infections, ANA, anti-Sm 
and anti-Ro autoantibodies

(70, 75)

34 C1qC delC43 fs108X As above 3, M, Yugoslavianh SLE-like disease, cutaneous vasculitis, ANA (70, 75)
35 C1qC 1bp 

deletion → 83X
Frameshift mutation 
premature stop codon 
at 83

6, F, Pakistani Erythematosus rash, recurrent urinary and 
respiratory infections, ANA, anti-Sm autoantibodies

(76, 77)

a–hIndividuals marked with matching superscripts are from the same family.
nk, age of onset is not known; DLE, discoid lupus erythematosus; SCLE, subacute cutaneous lupus erythematosus; SLE, systemic lupus erythematosus; LMW, low molecular 
weights; ANA, antinuclear antibodies.

TABLe 1 | Continued
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Deficiencies in subcomponents C1r and C1s were among 
the earliest reports linking complement deficiency with human 
glomerulonephritis or a lupus-like disease (83–85). A total of 
20 cases of C1r and/or C1s deficiencies have been reported, 
which include 12 cases of C1r deficiency from eight families 
and eight cases of C1s deficiency from five families. Among 
the C1r-deficient patients, there was a consistent reduction in 
the serum protein levels of C1s to 30% of its normal level, but 
highly elevated serum protein levels of C4, C2, and C1-inhibitor 
(200–400% of their corresponding normal ranges). C3 was 
also elevated by ~50%, but C1q levels were normal. A similar 
phenomenon was observable among C1s-deficient patients; 
C1s-deficient patients had greatly reduced serum levels of C1r, 
markedly elevated levels of C4, C2, C1-inhibitor, and C3, and 
normal levels of C1q.

Among the C1r/C1s deficient subjects, all but three had recur-
rent bacterial, viral, or fungal infections (85%), and many patients 
died at young age because of a severe infection. Thirteen subjects 
(65%) developed SLE or a lupus-like disease. The prevalence of 
ANA among these patients was about 60%. Mortality at young age 
from infections likely explains the slightly lower frequency of lupus 
disease association compared to C1q deficiency. Most C1r/C1s defi-
cient patients had severe cutaneous lesions (Figure 3). Eight patients 
(40%) had renal disease due to lupus nephritis. Such presentations 
underscore the inter-dependence of C1r and C1s in sustaining a 
stable tetrameric structure that would otherwise be susceptible to a 
high turnover rate. A deficiency of C1r or C1s prevents the forma-
tion of the C1 complex and diminishes the need for engagement of 
C1-inhibitor and other regulators of complement activation. When 
C1 is not functional, the CP is not activated, and consumption of 
C4, C2, and C3 is greatly reduced, resulting in high levels of these 
proteins in the circulation (41). This and other results strongly 
indicate a chronic turnover of component proteins for the CP (86).

The molecular defects leading to C1r or C1s deficiency 
have been determined in one case of C1r deficiency and seven 
cases of C1s deficiency (Table  2). Relative to C1r deficiency, 

the defect was a homozygous C to T substitution in exon 10 
resulting in the R380X non-sense mutation in the second CCP 
domain, resulting in no detectable protein in the serum (41). 
The proband developed SLE at 3 months of age and presented 
with reduced levels of C1s (similar to other C1r-deficient 
patients), but highly elevated protein levels of C4, C2, and C1 
inhibitor.

For C1s-deficiency, several deleterious mutations have been 
identified. A C→G mutation in exon 6 (Y204X) resulted in a 
premature stop codon and abrogated any protein production 
(87). This particular non-sense mutation was homozygous in 
four siblings, and all showed no detectable C1s protein, but 
only two developed SLE at the ages of 7 and 13 years. The other 
two siblings, at ages 10 and 20, did not have clinical symptoms 
of SLE. Significantly reduced levels of C1r and elevated serum 
C4 were detected in all four siblings. In another case report, a 
4-bp deletion (TTTG) in exon 10 that led to a frameshift and 
a non-sense mutation in exon 12 (E597X) was detected in a 
single patient (88, 89). This patient developed unique symptoms 
including virus-associated hemophagocytic syndrome and died 
after a long period of a comatose state. A mutation documented 
in another patient from the same family was a heterozygous 
G → T mutation in exon 12 leading to E597X and on the other 
allele, a novel missense mutation G630Q (90). This patient dis-
played symptoms that were similar to the other, related patient, 
including fever of unknown origin and short-term disturbances 
of consciousness. A second C1s genetic variant is a non-sense 
C  →  T mutation in exon 12 (R534X) (91). This patient had 
undetectable serum C1s, normal C1r and C1q, and absence of 
CH50 activity. The patient was 2 years of age and presented with 
several autoimmune diseases, including a lupus-like syndrome, 
Hashimoto’s thyroiditis, and autoimmune hepatitis. Each of 
these clinical observations and the similarities in autoimmune 
presentation with C1r/C1s deficiencies highlight the role of a 
dysfunction in the CP of complement leading to systemic auto-
immune disease.
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TABLe 2 | Molecular defects and clinical presentation of complete deficiency for C1s or C1r.

Location Mutation Molecular defect Age of onset (years), 
sex, ethnicity

Clinical Presentations Reference

1 C1s, Exon 6 Y204X Nonsense mutation; no 
detectable protein

7, F, Braziliana SLE, recurrent infections (pneumonia, 
septic arthritis, sinusitis), ANA, anti-Sm 
autoantibodies, arthritis, proteinuria, 
deposition of IgG and C1q on the glomeruli 

(87)

2 C1s, Exon 6 Y204X Nonsense mutation; no 
detectable protein

13, M, Braziliana SLE, arthritis, ANA, anti-Sm autoantibodies, 
photosensitivity 

(87)

3 C1s, Exon 6 Y204X Nonsense mutation; no 
detectable protein

nk, M, Braziliana Asymptomatic at age 20 (87)

4 C1s, Exon 6 Y204X Nonsense mutation; no 
detectable protein

nk, M, Braziliana Asymptomatic at age 10 (87)

5 C1s, Exon 10, 
Exon 12

4-bp 
deletion + E597X

Frameshift mutation leading 
to non-sense mutation; no 
detectable protein

4, M, Japaneseb Virus-associated hemophagocytic syndrome; 
history of fever; seizures with loss of 
consciousness leading to premature death 
at age 7

(88, 89)

6 C1s, Exon 12 G630Q + E597X Missense mutation; non-
sense mutation; truncated 
protein (functionally inactive) 
detectable at extremely low 
levels in serum

13, F, Japaneseb History of fever and pain, ANA, seizures, and 
periods of unconsciousness

(90)

7 C1s, Exon 12 R534X Nonsense mutation; no 
detectable protein

2, F, Caucasian Recurrent malar rash, mild fever, pain and 
swelling in joints, lupus-like syndrome, 
Hashimoto’s thyroiditis, autoimmune hepatitis

(91)

8 C1r R380X Nonsense mutation; no 
detectable protein

0.3, M, African 
American

SLE, discoid lupus rash, diffuse proliferative 
glomerulonephritis, transverse myelitis

(41)

a–bIndividuals marked with matching superscripts are from the same family.
nk, age of onset is not known; SLE, systemic lupus erythematosus.
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Complement C4 Gene Copy-Number 
variations and C4A or C4B isotype 
Deficiency
The complement C4 gene is located in the HLA class III region 
on the short arm of chromosome 6, telomeric of the C2 gene (92). 
Remarkably, there are extensive inter-individual gene CNVs for 
complement C4. Two to eight copies of C4 genes can be present 
in a diploid genome (93, 94) (Figure 4). Such common CNVs 
are an uncommon phenomenon in mammalian genetics, as they 
deviate from the conventional “one-to-one” concept for a gene 
and a polypeptide/gene product. Here, one to four copies of 
nearly identical genes co-exist on a single chromosome, thereby 
creating a gene dosage effect for a quantitative phenotype. 
Segmental duplications for C4 always include the RP (STK19) 
gene upstream of C4, and the downstream genes CYP21 and 
TNX (94). Each C4 gene either encodes for an acidic C4A or a 
basic C4B protein, with only four amino acid changes (PCPVLD 
1120–1125 for the C4A isotype and LSPVIH for the C4B 
isotype), but this results in substantial differences in chemical 
reactivity for peptide and carbohydrate antigens (28, 29, 31, 95). 
C4A favors binding to amino groups (i.e., immune complexes) 
while C4B favors binding to hydroxyl or carbohydrate-rich 
groups. Approximately 40 protein variants for complement C4 
have been documented (25). Technically, it is noteworthy to 
mention that the differential binding to hydroxyl- or amide-
group containing substrates/immune complexes, or hemolytic 
activities between activated C4A and C4B can be readily demon-
strated using purified component proteins or proteins resolved 

by gel electrophoresis, but not from sera when many regulatory 
proteins are present (15, 96).

The primary site for C4 biosynthesis is in the liver. However, 
multiple tissues also synthesize C4, presumably for local con-
sumption, particularly after stimulation by interferon-gamma 
(100). A thioester bond is present but hidden in native C4. A 
proteolytic cleavage by activated C1s removes a 74 amino acid 
C4a peptide and leads to a remarkable change of conformation 
in C4 (101). Consequently, the protected thioester bond becomes 
exposed to the exterior. In activated C4B, one of the four isotypic 
residues (Histidine-1125) serves as a catalyst and facilitates a 
rapid nucleophilic attack, resulting in formation of a covalent 
ester linkage between C4B and the target surface (102, 103). In 
activated C4A, Histidine-1125 is not present, and such a catalytic 
reaction does not occur. Instead, C4A reacts effectively with an 
amino group on an immune complex or a protein molecule 
to form a covalent amide bond. Such a difference in chemical 
reactivity appears to diversify the functional roles of C4A and 
C4B in the clearance of immune complexes and the propagation 
of activation pathways, respectively.

A complete or homozygous genetic deficiency of both com-
plement C4A and C4B has been reported in 28 individuals (42, 
104–107). The subjects came from 19 families with different racial 
backgrounds were characterized by 16 different HLA haplotypes. 
The female to male ratio was 1:1. SLE or lupus-like disease was 
diagnosed in 22 (78.6%) of the C4-deficient subjects, and four 
others had renal disease including glomerulonephritis. Early 
disease onset, severe photosensitive skin rash, the presence of 
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FiGURe 4 | Gene size dichotomy and gene copy-number variation of complement C4. A human C4 gene consists of 41 exons coding for a precursor 
protein of 1744 amino acids including a signal peptide of 19 amino acids. (A) There are two forms of C4 genes. The long gene is 20.6 kb, and the short gene is 
14.2 kb. In a long C4 gene, an endogenous retrovirus HERV-K (C4), which is 6.4 kb in size, integrated into its ninth intron. Among healthy subjects of European 
ancestry, 76% of C4 genes belong to the long form and 24% belong to the short form. (B) Among European subjects, one to four copies of C4 genes are present in 
the central region of the major histocompatibility complex (MHC) located on chromosome 6p21.3. Thus, there is a continuous variation in copy number of C4 genes 
from two to eight copies among different human subjects. (C) The duplication of a C4 gene occurs in a modular fashion, with a 0.9 kb fragment of RP (STK19) 
upstream of complement C4, a full steroid cytochrome P450 21-hydroxylase (CYP21) and a 4.0 kb fragment of the tenascin (TNX) at the downstream region of C4 
(known as a RCCX module). The duplication of CYP21 gene can be a pseudogene (CYP21A or CYP21A1P) or an intact functional gene (CYP21B or CYP21A2). 
Each C4 gene in the RCCX module may either code for an acidic C4A or a basic C4B. Each C4 gene may be either long or short [adopted from Ref. (97–99)].
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autoantibodies against ribonuclear protein Ro/SSA, and high 
titers of ANA were common clinical features of the subjects. 
Many of the C4-deficient patients also had severe proliferative 
glomerulonephritis. We have summarized the molecular basis of 
complete C4 deficiency determined in 15 cases (Table 3).

While a complete deficiency of C4 is rare, an isotype deficiency 
of either C4A or C4B is much more commonly observed and has 
been implicated in several autoimmune diseases (13, 110–113). To 
investigate the C4 genetic diversities in SLE, a study population 
consisting of 216 female SLE patients, 17 male SLE patients, 362 
first degree relatives, and 389 unrelated healthy female controls, 
and 128 male controls was investigated rigorously (13). In the study 
group of European Americans, total gene copy-number (GCN) of 
C4 ranged from 2 to 6 copies, GCN of C4A ranged from 0 to 5 
copies, and GCN of C4B ranged from 0 to 4 copies. In comparison 
to healthy controls, SLE patients had significant reductions of GCN 
of total C4 (Figure 5). Among the SLE patients, 9.3% had only two 
copies of C4 genes, compared to 1.5% in healthy controls. The effect 
size of SLE disease risk (or odds ratio) for subjects who had only 
two copies of C4 genes was 6.51. Of the two C4 isotypes C4A and 
C4B, there were no significant differences detected among GCN of 
C4B between SLE and controls. However, significant decreases of 
GCN of C4A were noted in SLE patients. Among SLE patients, 6.5% 
had a homozygous deficiency (i.e., 0 copy) of C4A and 26.4% had a 
heterozygous deficiency (i.e., 1 copy), compared to 1.3 and 18.2%, 
respectively, in healthy controls. The odds ratio for SLE for a subject 
with C4A homozygous deficiency of C4A was 5.27. In other words, 
a total C4 GCN = 2 or a C4A GCN = 0 (C4A deficiency) are large 
effect size genetic risk factors for human SLE. Moreover, family 
based association tests revealed that monomodular RCCX haplo-
types with a single short C4B gene and C4A deficiency were more 
frequently transmitted to the SLE patients than normal heritance 
pattern (p = 0.005). To date, no other common genetic variant has 
been identified to be so strongly associated with SLE. Remarkably, 
32.9% of SLE subjects carried the risk factor of low GCN of C4A. As 
with most common genetic variants associated with autoimmune 
disease, the risk factor is also present in the general population with 
considerable frequency (19.5% in this study).

From another way of statistical analysis, C4 GCN variations 
are continuous variations, and therefore, the mean of GCNs 
for total C4, C4A, C4B long genes and short genes can each be 
compared by Student’s t-test between patients and controls. The 
mean GCN (±SD) for total C4 between female controls and 
female patients were 3.81  ±  0.75 and 3.56  ±  0.77, respectively 
(p  =  0.0001). The mean C4A GCN (±SD) was 2.05  ±  0.79 in 
controls and 1.81 ± 0.89 in SLE (p = 0.0005). The mean long C4 
was 2.91 ± 1.03 in controls and 2.66 ± 1.14 in SLE (p = 0.005). In 
other words, when compared with controls, SLE showed reduc-
tions of 0.25 copies of total C4, 0.24 copies of C4A, or 0.25 copies 
of long C4. For C4B or short C4 genes, no significant differences 
were observed between the European American SLE and race-
matched controls.

As the first original publication to document the highly 
prevalent, multi-allelic gene CNVs of complement C4 in SLE, 
this work (13) went through independent and rigorous data 
generation and validation processes to confirm the CNV calls. 
Those processes included (a) pulsed-field gel electrophoresis to 

resolve PmeI-digested genomic DNA fragments and Southern 
blot analysis for long-range mapping to elucidate the physical 
size of RCCX modules in haplotypes; (b) TaqI restriction digests 
and genomic Southern blot analyses (restriction fragment length 
polymorphisms) to resolve the relative dosages of RP1-C4L 
(7.0 kb), RP1-C4S (6.4 kb), RP2-C4L (6.0 kb), RP2-C4S (5.4 kb), 
plus relative dosages of CYP21B to CYP21A, and relative dosages 
of TNXB to TNXA; (c) PshAI-PvuII digests of genomic DNA 
and Southern blot analysis to segregate C4A and C4B and yield 
their relative dosages; (d) immunofixation of EDTA-plasma for 
polymorphic variants of C4A and C4B proteins resolved by high 
voltage agarose gel electrophoresis, based on differences in electric 
charges of C4 allotypes; and (e) corroboration of C4 genotypes 
and phenotypes of study subjects from data of family members.

Subsequently, TaqMan-based quantitative PCR amplicons for 
total C4, C4A, C4B long genes and short genes were developed 
and applied for replication studies, particularly when quantities 
of genomic DNA for patients and controls are limiting. In this 
later case, internal data validation is achieved when GCNs of total 
C4 = GCNs of C4A + C4B = GCNs of C4 long + C4 short. Such 
qPCR strategy is sensitive and highly robust when the quality of 
genomic DNA is excellent, which can be reflected by internal 
data validation of the independent amplicons. Our experience 
suggested that genomic DNA samples at low concentrations 
(≤15 ng/μl) are relatively unstable in storage, particularly if they 
had gone through rounds of freeze-thaws, and tend to yield 
inconsistent data in analyses of multi-allelic CNVs. This makes 
individual internal data validation crucial for data accuracy.

Association of lower GCN of total C4 and C4A-deficiency as 
a risk factor of SLE have also been observed in three independ-
ent East-Asian studies (114–116). C4A deficiency in subjects of 
European ancestry is primarily attributed to the presence of a sin-
gle short C4B gene (mono-S) in the HLA that is predominantly 
in linkage disequilibrium with HLA A*01, B*08, and DRB1*0301 
that is dubbed ancestral haplotype 8.1 (AH8.1) (117). Intriguingly, 
such AH8.1 haplotype is basically absent among East-Asian 
subjects (Figure 6), supporting the evidence that C4A-deficiency 
association with SLE is not due to linkage disequilibrium with 
certain HLA haplotypes (e.g., DRB1*0301). Different mecha-
nisms leading to C4A deficiency in East Asians include 
(a) monomodular RCCX with a single long C4B gene, (b) 
bimodular RCCX haplotypes encoding C4B1-C4B96 or 
C4B1-C4B1 are prevalent in Asian SLE (116). Certainly other 
genetic or environmental risk factors, combined with the 
C4A deficiency, contributed to SLE development in geneti-
cally predisposed patients. Still, it is of interest to examine if 
restoring C4A in such (C4A-deficient) patients would result 
in positive therapeutic outcomes.

On a recent case/control study of British SLE (cases, 
N = 501; controls, N = 719), total C4 GCNs were determined by 
a paralog ratio test, which employed a set of primers (16-mer) 
that hybridized to and PCR-amplified the duplicated regions 
of complement C4 in the MHC plus a unique and non-variable 
region in chromosome 19 as reference control (for two copies). 
C4A and C4B were deduced from the ratios of C4A and C4B 
that is determined by NlaIV restriction digest of a different 
PCR product spanning the C4-isotypic site (158  bp for C4B 
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TABLe 3 | Molecular defects and clinical presentations of complete deficiency of complement C4A and C4B.

Location Mutation Age of onset (years), 
sex, race/ethnicity

Clinical presentations RCCX HLA Reference

1 Exon 20 Homozygous 1-bp 
C-deletion, codon 830; 
premature stop 

2, F, Swedish SLE-like disease, atypical rash, ANA, 
rheumatoid factor, persistent exanthem, 
glomerulonephritis

L (C4A) A30 B18 DR3 (107–109)

2 Exon 29 Heterozygous; identical 
2-bp insertion to 
codon 1232 of all three 
C4 genes

30, F, Finnisha Malar rash, photosensitivity, polyarthritis, 
leukopenia, ANA (1/320), anti-Sm (1/1280), 
weakly positive rheumatoid factor

LS (C4A-C4B)/L 
(C4A)

A2 B39 Cw7 
DRB1*1501/
A2 B40 Cw3 
DRB1*1501

(105)

3 Exon 29 As above nk, M, Finnisha Photosensitivity As above As above (105)
4 Exon 29; 

Exon 13
2-bp insertion in codon 
1232 of C4A; 1-bp 
deletion in codon 541 
of C4B 

9, M, US-French 
descentb

SLE, arthralgia, malar rash; photosensitivity; 
ANA (1/10240), positive for anti-Sm, 
anti-U1 ribonuclear protein, anti-
cardiolipins; class III nephritis, neurological 
disease, brain vasculitis; Sjogren’s 
syndrome, recurrent infections, Raynaud’s 
phenomenon; died at age 23

LS (C4A-C4B) A2 B12 DR6 (106)

5 Exon 29; 
Exon 13

As above 42, M, US-French 
descentb

Discoid rash, polyarthralgias, oral ulcers As above As above (106)

6 Exon 13 GT-deletion in codon 
516

10, M, Austrian/Italian History of fever, macrohematuria, mesangial 
GN; infection, nephrotic syndrome; 
membranous GN

L (C4A) A24 Cw7 B38 
DR13

(104)

7 Exon 13 As above 5, M, Austrian/Italianc Renal failure, mesangial GN; skin disease 
with facial rash; a brother died at 3 with 
cerebral vasculitis and sepsis

L (C4A) A24 Cw7 B38 
DR13

(104)

 8 Exon 13 As above 2, F, Austrian/Italianc SLE, history of fever, skin rash and lesions, 
oral ulcers, microscopic hematuria, 
mesangial GN; skin transplant

As above As above (104)

9 Intron 28, 
splice 
donor

g8127a (GT → AT) 
both C4B genes

17, M, Austrian/Italian Henoch-Schoenlein purpura, 
macrohematuria, nephrotic syndrome, 
mesangial GN; hemodialysis at 23; renal 
graft at 24; hematuria and proteinuria 
recurred at 26; mesangial GN; chronic 
allograft nephropathy; hemodialysis at 
28; second renal graft at 36. A younger 
brother with complete C4 deficiency (details 
unavailable)

SS (C4B-C4B) A30 B18 DR7 (104)

10 Intron 28, 
splice 
donor

g8127a (GT → AT) 
both C4B genes

6, F, Austrian/Italiand SLE, hypertension, erythema of face, hands 
and arms; microhematuria, proteinuria, 
membranoproliferative GN; chronic renal 
failure; hemodialysis at 26; renal graft at 31

SS (C4B-C4B) A30 B18 DR7 (104)

11 Intron 28, 
splice 
donor

As above 5, M, Austrian/Italiand SLE, skin lesions, microhematuria, 
proteinuria, MPGN; hemodialysis at 16, 
cadaveric renal transplant at 18; chronic 
renal graft nephropathy at 23, hemodialysis 
at 24; meningitis – Aspergillus fumigatus

As above As above (104)

12 Intron 28, 
splice 
donor

As above 5, F, Austrian/Italiand Hematuria and proteinuria, MPGN; facial 
maculopapular rash; biopsy-proven skin 
vasculitis; mental disorder, severe cerebral 
vasculitis

As above As above (104)

13 Exon 13 R559X 6, M, Moroccane SLE, malar rash, photosensitivity, discoid 
rash, ANA (1/1280), positive anti-Ro/SSA, 
proteinuria and microscopic hematuria, GN

L (C4A) A2 B17 
DRB1*07

(42)

14 Exon 13 As above 17, M, Moroccane Recurrent infections, hematuria L (C4A) A2 B17 
DRB1*07

(42)

15 Exon 36 4-bp (GACT) insertion 
at codon 1555, 
Y1556X; both C4A 
and C4B

12, F, Algerian Malar rash, ANA (1/1024); anti-Ro, anti-
Sm; moderate renal disease, recurrent 
lung infections, bacterial meningitis; 
osteomyelitis; died at age 12 related to 
cardiopulmonary complications

LS (C4A-C4B) A1 B17 
DRB1*13

(42)

a–eIndividuals marked with matching superscripts are from the same family.
nk, age of onset is not known; GN, glomerulonephritis; MPGN, membranoproliferative glomerulonephritis; SLE, systemic lupus erythematosus.
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FiGURe 6 | Race-specific distribution patterns of RCCX modules in human populations. The size dichotomy of C4 genes and copy-number variation of 
RCCX modules on an MHC haplotype together create a repertoire of length variants among different human subjects, which also exist with race-specific distribution 
patterns. (A) The most prevalent haplotypes of RCCX in Whites and Asian-Indians are the bimodular long-long (LL) and bimodular long-short (LS) in Blacks and 
East-Asians. (B) Notably, monomodular-short (mono-S or S) haplotypes with a single short C4B gene and C4A deficiency is relatively common in White and Black 
subjects but almost absent in Asians [modified from Ref. (118)].

FiGURe 5 | Comparisons of frequencies for total C4, C4A, and C4B gene copy-number groups in SLe (red) and controls (blue). SLE patients (N = 216) 
of European ancestry showed significantly higher frequencies for lower copy-numbers of total C4 (GCN = 2 or 3) and C4A (GCN = 0 or 1) compared to healthy, 
race-matched controls (N = 389). Mean GCN for Total C4 in SLE (3.56 ± 0.77) was significantly lower than in controls (3.84 ± 0.69; p = 5.3 × 10−6, t-test). Similarly, 
mean GCN for C4A in SLE (1.81 ± 0.89) was significantly lower than in controls (2.06 ± 0.76; p = 2.0 × 10−4, t-test) [modified from Ref. (13)].
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and 91  bp for C4A after NlaIV digest) and were resolved by 
capillary electrophoresis (119). While extensive GCN variations 
and associated polymorphisms were observable for complement 
C4, the difference on the mean copy number of total C4 between 
British SLE and controls was only marginal (3.79 ± 0.98 in SLE; 
3.89 ± 0.98 in controls; p = 0.046). On the other hand, the mean 
copy numbers of C4A (1.82 ± 0.93 in SLE, 2.08 ± 0.93 in controls; 
p < 0.001) and C4B (1.96 ± 0.93 in SLE and 1.81 ± 0.72 in con-
trols; p < 0.001) were both significantly reduced in SLE. However, 
in multiple logistic regression models, deficiencies of C4A or 
C4B both became insignificant in the presence of DRB1*03. This 
led the investigators to conclude that “…partial complement 
C4 deficiency states are not independent risk factors for SLE in 

UK….” It is notable that there were significant differences in the 
architecture of GCN group distributions between the British 
(119) and the US study populations (13).

Going through the previously mentioned Boteva study on 
C4-CNV determination, we note two issues that probably led to 
data misinterpretation. The first was a lack of an internal data 
validation for GCN calls. The second was an additional procedure 
to overcome the artifacts introduced by heteroduplex formation 
between multiple alleles during PCR, which would be resistant to 
restriction digest (NlaIV). Resistance to NlaIV digestions would 
therefore skew relative dosage of C4A and C4B and lead to mis-
interpretation of C4 copy-number calls (97, 120). As to dissecting 
the relative roles of C4-CNVs or C4A-deficiency and HLA-DRB1 
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alleles in SLE, the issues on the lack of internal validation for the 
reliability of C4-CNV calls cannot be ignored.

The unprecedented variations of GCNs with high frequencies 
of homozygous or heterozygous deficiency of C4A or C4B, and 
continuous variations in copy-numbers from one to four copies 
of C4 genes on each copy of chromosome 6 (or haplotype) among 
healthy subjects and SLE patients inevitably pose great challenges 
both technically and conceptually: the former for accurate data 
acquisition and the latter for accurate data interpretation. Without 
deliberate design and rigorous and independent validation strate-
gies, unfortunately, many studies were inherently tainted with 
misinterpretations or partially correct or inappropriate conclu-
sions. On determining the roles of common and multiallelic 
CNVs in health and disease such as those for complement C4A 
and C4B, immunoglobulin Fcγ receptors FCGR3A and FCBR3B, 
and neutrophil alpha-defensins DEFA3 and DEFA1, it is critically 
important to have meticulous experimental design and methods 
to acquire accurate and consistent data. Realization of the DNA 
sequence basis that causes a phenotype or functional diversity is 
essential for specific experimental method. As mentioned above, 
the heteroduplexes issue during the PCR process needs to be 
considered and resolved. Moreover, genetic studies of a complex 
disease usually require hundreds to thousands of genomic DNA 
samples from cases and controls, which are generally obtained 
from multiple sources. For determination of common and 
continuous CNVs, the high quality of genomic DNA samples 
is essential. Heterogeneous quality of DNA samples has a high 
tendency to yield inconsistent data. Under those conditions, 
independent replication and rigorous internal validation meth-
ods of samples from every subject becomes a necessity.

Complement C2 Deficiency
The complement C2 gene is located in the HLA class III region 
on the short arm of chromosome 6. Serum C2 is a precursor 
protein that is cleaved by activated C1 into two fragments: C2b 
and C2a. C2a is a serine protease and forms the C3 convertase 
along with C4b (denoted C4b2a) (38, 121). C2 also functions as 
a critical component in the lectin pathway. MBL or ficolins in 
complex with MASP-1 bind to relevant carbohydrate molecules 
and activate MASP-2, which then cleaves C2 and C4, forming a 
C3 convertase identical to that formed in the CP (122). Overall, 
C2 functions as a key component in the classical and lectin path-
way, thereby providing defense against microbial infection and 
assisting in removal of immune complexes.

Among individuals of European descent, C2 deficiency 
occurs with an estimated prevalence of 1/20,000, which probably 
accounts for <1% of SLE patients. There are two types of C2 defi-
ciency (123, 124). Type 1 C2 deficiency is caused by non-sense 
mutations leading to the absence of protein biosynthesis. The 
predominant form of such type 1 deficiency was a 28-bp deletion 
that removed 9 bp from the 3′ end of exon 6 and 19 bp from the 
5′ end of intron 6 in the C2 gene, leading to a skipping of exon 6 
in the C2 mRNA and generation of premature stop codon (123). 
Such 28-bp deletion is present in the HLA haplotype with A10 
(A25) and B18 in the class I region, BF-S, C2Q0, C4A4, and C4B2 
in the class III region, and DRB1*15 (DR2) in the class II region. 

The second form of Type 1 deficiency is present in HLA A3, B35, 
DR4, BF-F, C2Q0, C4A3, and C4A2 (125). The cause is a 2-bp 
deletion in exon 2 of C2 gene that leads to a non-sense mutation.

About 10% of C2 deficiency is secondary to the Type II defi-
ciency in which the C2 protein is synthesized but not secreted. 
The molecular defects identified as missense mutations are 
C111Y, S189F, and G444R (126, 127). It is not clear how these 
mutations block the secretion of C2 protein.

Unlike a deficiency of proteins for the C1 complex or C4 
described earlier, the penetrance of C2 deficiency on SLE is about 
10%. Similar to other risk factors for SLE, there is a female predomi-
nance for patients with C2 deficiency. C2-deficient SLE patients 
tend to have early childhood onset but a milder disease process 
with prominent photosensitive dermatologic manifestations, 
speckled ANAs (the autoantibody specificity is common for the 
Ro/SSA antigen), and a family history of SLE. Anti-DNA antibody 
tests are usually negative, and severe kidney disease is rare.

ACQUiReD DeFiCieNCieS AND 
AUTOANTiBODieS TO COMPLeMeNT 
COMPONeNTS

Autoantibodies have been reported that bind with high affinity 
to complement proteins, particularly in SLE patients (128). Most 
of these antibodies are not directed against native proteins, but 
instead directed against neoepitopes. Such epitopes becomes 
exposed in active or inactivated proteins or upon multi- molecular 
complex assembly in the activation process or following pro-
teolytic cleavage. The binding of these autoantibodies to comple-
ment proteins could lead to a state of an acquired deficiency and 
contribute to disease pathogenesis similar to the way genetic 
deficiencies do so. We will describe a series of autoantibodies that 
have been detected in systemic autoimmune disease against early 
components and regulators of the CP.

Anti-C1 Autoantibodies
Approximately 30% of SLE patients synthesize autoantibodies 
against C1q. Their presence correlates with anti-dsDNA, nephri-
tis, and low C4 and C3 in about 75% of such patients (129–131). A 
relevant question is whether the anti-C1q amplify the complement 
activation by immune complexes. The development of anti-C1q 
antibodies may arise in response to activation of the CP. Following 
CP activation, C1q remains attached to immune complexes and 
therefore is located at the site of inflammation. Proteases at the 
inflammatory site may degrade IgG and C1q (autoantigen), gen-
erating multiple proteolytic fragments of IgG and C1q. This may 
be an explanation for C1q antibodies and anti-IgG and anti-IgM 
(rheumatoid factors) that develop in SLE patients.

A large study was recently reported in which one objective 
was to assess the specificity of anti-C1q antibodies and their asso-
ciations with SLE manifestations and diagnostic tests (132). The 
authors confirmed the association of anti-C1q antibodies, low 
complement (C4 and C3), and anti-dsDNA antibodies. Further, 
this combination had the highest serological association with 
renal disease. Anti-C1q antibodies were detected in 28% of all 
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SLE patients, but were observed more frequently in patients with 
renal disease in ~68%. Anti-C1q autoantibodies were observed in 
5–10% of patients with related systemic rheumatic diseases. It was 
suggested that the presence of anti-C1q antibodies contributes to 
a nephritis flare (130).

The presence of autoantibodies against other components of 
the C1 complex is less well established. A report of 15 SLE patients 
demonstrated that seven of them had autoantibodies to C1s (133). 
The binding of these antibodies to C1s was shown to enhance its 
enzymatic activity for C4, providing possible additional explana-
tion for low serum C4.

Anti-C1 inhibitor Autoantibodies
An IgG autoantibody that inactivates C1-inhibitor (anti-C1-Inh) 
was initially described in a patient with the acquired angioedema 
(AAE) syndrome that mimics hereditary angioedema (134). 
Anti-C1-Inh autoantibodies have also been described in SLE, 
especially those exhibiting symptoms of angioedema (135, 136). 
Anti-C1-Inh antibodies bind and inactivate C1-Inh so that it is 
no longer available to participate in the regulation of C1. As a 
result, the CP is excessively activated, leading to development 
of angioedema as well as possibly more severe renal diseases. A 
more recent study of 202 SLE patients and 134 healthy controls 
detected anti-C1-Inh autoantibodies in 17% of SLE patients and 
4% of controls (137). In SLE patients, the anti-C1-Inh levels cor-
related with the duration and activity of SLE but did not correlate 
with SLE laboratory parameters, including serum levels of C3 and 
C4. Conversely, 1–2% of hereditary angioedema patients develop 
SLE, probably related to the chronically very low C4 and C2.

C3 and C4 Nephritic Factors
C3 and C4 nephritic factors are IgG autoantibodies that bind to 
and stabilize the AP C3 convertase and the CP C3 convertase, 
respectively. By binding the C3 convertases, C3 and C4 nephritic 
factors prolong the half-life by preventing the regulation of C3 
convertases. This results in uncontrolled complement activation 
and increased consumption and depletion of serum C3. C3 and 
C4 nephritic factors are associated with membranoproliferative 
glomerulonephritis, acquired partial lipodystrophy, and post-
infectious acute glomerulonephritis (138–140). Both of these 
autoantibodies have been detected in SLE patients, and suggested 
to be associated with renal disease, but their prevalence and role 
in pathogenesis of systemic autoimmune disease is not well 
documented (139–141).

THeRAPeUTiC POTeNTiALS OF 
COMPLeMeNT ABNORMALiTieS iN 
AUTOiMMUNe DiSeASe

Because the complement system is increasingly found to be asso-
ciated with autoimmune diseases, it is an attractive therapeutic 
target. However, as discussed earlier, complement deficiencies are 
overwhelmingly associated with increased susceptibility to auto-
immune disease, most notably SLE. Therefore, at first glance, the 
idea that treatment with complement inhibitors would provide 

a general relief in such diseases seems illogical. Processing of 
immune complexes is facilitated by deposition of complement 
fragments, the ensuing binding of complement-decorated 
immune complexes to CR1 on erythrocytes, and transfer to resi-
dent monocytes or macrophages for destruction and/or antigen 
presentation. For that reason, blocking any step up to and includ-
ing C3 could inhibit immune complex processing and possibly 
exacerbate disease in autoimmune patients. Moreover, inhibiting 
the complement system would further enhance susceptibility to 
infections, on top of the increased frequency of infections already 
observed in patients under immunosuppressive therapy.

On the other hand, complement activation is quite evident 
and partly responsible for tissue damage seen in autoimmune 
patients with established disease. In lupus, key mediators of 
tissue damage include C4b/C3b, C5a/C3a, and the MAC, all of 
which modulate membrane integrity or trigger inflammation 
in a setting where autoantibodies are already present in large 
amounts. Therapeutic goals should be aimed at inhibiting this 
cellular injury and preventing production of the proinflamma-
tory peptide fragments. In atypical hemolytic uremic syndrome 
(aHUS), endothelial damage is mediated by over-activation of 
the AP. Inhibition of C5 cleavage has proven to be an effective 
therapy (142). Anti-C5 therapy has been effective in treatment 
of antigen-induced arthritis or experimental autoimmune uveo-
retinitis in animal models (143, 144). Other studies in animal 
models of arthritis that showed success in reducing inflammation 
and preventing disease progression include treatment with CR1 
(145), antagonists of C3a receptor (146), and the complement 
regulator CD59 (147). Soluble CR1 prevented dysregulation of 
C3 convertase in sera from dense deposit disease patients (148). 
The same study reported that short-term use of soluble CR1 
in a pediatric patient with end-stage renal failure normalized 
the activity of the terminal complement pathway. Inhibition of 
complement activation specifically in SLE with renal diseases 
deserves to be assessed.

Another treatment approach is to replenish complement 
proteins in patients with a complete complement deficiency. As 
discussed earlier, complete genetic deficiencies of complement 
are quite rare, but isotype deficiency and functional or acquired 
deficiencies are quite common. An obvious approach seems to be 
supplement or replacement of the missing component, systemati-
cally or locally. Currently, however, purified or recombinant com-
plement proteins are not available for treatment purposes. One 
report indicated successful treatment of a C2-deficient patient 
with SLE using whole plasma preparations (149). Moreover, in 
patients with established disease and low C4 or C3, an increase 
in C4 and C3 is associated with a favorable response to treatment.

Fresh frozen plasma is able to restore C1q activity in C1q-
deficient patients temporarily, but such activity drops off rapidly 
within 2  weeks. Thus, weekly infusions of plasma become 
necessary, which is burdensome, and confers its own risk of 
infections and thrombotic complications (69). Unlike most other 
component proteins of complement in blood, the primary site of 
biosynthesis for C1q is not in the liver, but rather in myeloid cells 
including macrophages, monocytes, and dendritic cells, which 
originate in the bone marrow. The effect of restoring the C1q 
protein to reconstitute complement function has been tested in 
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mouse models. Bone marrow transplantation (BMT) of hemat-
opoietic stem cells from wild-type animals has been shown to be 
effective in treating C1q deficient animals (150, 151).

Recently, BMT for hematopoietic stem cell therapy (HSCT) 
has been performed in a single case of a Pakistani C1q-deficient 
patient (152). In this particular case, involving a consanguineous 
family, the father and five of his six sons had C1q-deficiency. The 
father died of chronic glomerulonephritis at age 38, and one of his 
sons died at age 17 months from Streptococcus pneumonia men-
ingitis. Another son was incapacitated by a CNS vasculopathy at 
17 years of age. The index patient is the third son who survived 
S. pneumonia-induced meningitis at age 3 but developed an acute 
CNS vasculopathy at age 10. At age 16, his disease was brought 
under control through treatment with intravenous cyclophos-
phamide (pulse therapy) and B-cell depletion with rituximab. 
However, he had a persistent lupus rash and increased levels of 
anti-Ro (SSA-60) in addition to anticardiolipin antibodies. In view 
of his poor prognosis, HSCT was performed using bone marrow 
from his HLA-matched healthy brother, with graft-versus-host 
disease prophylaxis. Restoration of hematopoiesis, myelopoiesis, 
platelet production, and complement function with normal levels 
of C1q and CH50 were observed 2–4 weeks after transplantation. 
Such a result gives hope to SLE-patients with a C1q deficiency and 
a severe clinical course, although further studies are desirable.

eARLY COMPLeMeNT COMPONeNTS iN 
OTHeR AUTOiMMUNe DiSeASeS

Complement activation products and genetic polymorphisms 
have been observed and shown to contribute to inflammation 
and tissue damage of autoimmune diseases besides SLE. We 
will briefly summarize findings of complement activation and 
involvement in a few other autoimmune diseases.

Antiphospholipid Syndrome
Anti-phospholipid syndrome (APS) is characterized by arte-
rial or venous thrombosis and recurrent pregnancy loss. The 
complement profile in general parallels that observed in SLE 
with CP activation being predominantly involved (153–156). 
Hypocomplementemia has been associated with fetal loss, pre-
term delivery, and low-birth weight (157). Serum complement 
levels were significantly lower in patients with primary APS 
compared to patients with APS associated with a connective 
tissue disease (155). The patients with primary APS also had 
higher levels of complement activation fragments C3a and C4a 
demonstrating that the hypocomplementemia is, as expected, due 
to complement consumption (154, 155).

Dermatomyositis
Of the inflammatory myopathies, dermatomyositis (DM) is the 
one most reported to possibly be associated with a complement-
mediated pathogenesis (158). Complement-mediated destruc-
tion of perivascular endothelium and perifascicular ischemia of 
muscle fibers in biopsies from DM patients have been demon-
strated by multiple investigators (159–164). Circulating immune 
complexes, IgG and IgM, complement C3, and late components 

of complement activation C5b–C9 MAC were detected in DM 
muscle and skin biopsies. A single case of an individual with a 
complete C2 genetic deficiency was reported to have DM (165). 
The observation of complement components and complement 
fragments indicates the possible involvement of complement 
pathways in tissue damage. Previous studies revealed that HLA 
class II gene DRB1 allele *0301 (also known as DR3) is the major 
immunogenetic risk factor for juvenile DM (JDM) (166–170). 
However, also present in the HLA region is the locus for com-
plement C4. Specifically, DR3 in European subjects is in strong 
linkage disequilibrium with a particular C4 haplotype: a single 
C4B gene but the absence of a C4A gene (118, 171). A recent study 
found that C4A deficiency was independent of DR3 in associa-
tion with JDM in a study of 95 patients and 500 race-matched 
controls of European ancestry (113). In addition, the authors 
demonstrated through multiple logistic regression analyses that 
the concurrence of C4A deficiency and DR3 together contributed 
toward the highest risk of JDM with an odds ratio of 3.2.

Rheumatoid Arthritis
Several autoantibodies that play a major role in the autoimmune 
attack of synovia have been identified in rheumatoid arthritis 
(RA). There are three major types of RA-associated autoantibod-
ies (i) anti-cyclic citrullinated peptide/protein autoantibodies 
(anti-CCP), (ii) autoantibodies against the Fc-fragments of 
IgG (rheumatoid factor, RF), and (iii) anti-type II collagen or 
glucose-6-phosphoisomerase autoantibodies (anti-G6PI). All of 
these autoantibodies bind their respective self-antigen, leading 
to increased levels of ICs and activation of the CP observed in 
RA patients (172–174). CP activation in RA patients has also 
been reported to be mediated by C-reactive protein (CRP) or 
fibromodulin (175, 176). Complexes formed between CRP and 
activated complement components were increased in the major-
ity of RA patients and were further increased in patients with 
active disease versus patients with inactive disease. Agents/com-
ponents that mediate and trigger inflammation in RA are likely 
derived from cartilage since disease activity subsides after joint 
replacement. Sjoberg et al. showed that the cartilage component 
fibromodulin can activate complement specifically by binding 
C1q, thereby activating the C1 complex and the remainder of 
the complement cascade (176). The evidence of complement 
activation in synovial fluid and the identification of several com-
plement-triggering agents in RA support complement-mediated 
disease pathogenesis.

Depressed levels of complement proteins and elevated levels 
of complement cleavage products and late components MAC 
C5b–C9 were noted in tissue specific to RA pathogenesis, such as 
synovial fluid (177–180). Furthermore, the subsequent genera-
tion of anaphylatoxins C3a and C5a in synovial fluid creates an 
inflammatory state that attracts and activates neutrophils and 
other myeloid cells to the site of complement activation in the 
inflamed joints. The harmful effects of complement activation in 
RA are remarkable and evident. A recent study of C4 genetics in 
RA patients revealed that a deficiency of C4B genes was signifi-
cantly more frequent in RA patients compared to non-RA patients 
or healthy controls (110). In other words, 40% of RA patients had 
a C4B deficiency compared to only 21.6% of controls, resulting 
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in an odds ratio of 2.99 for RA subjects. Replication cohorts of 
RA patients are needed to validate and strengthen the possible 
association of C4B deficiency with RA, which could be secondary 
to the prevalence of HLA-DR4.

Sjögren’s Syndrome
As with many autoimmune diseases, there are a number of autoan-
tibodies that have been reported in primary Sjogren’s syndrome 
(SS). Therefore, complement activation via the CP may be involved 
in the development and/or pathogenesis of primary SS. A frequent 
clinical observation in primary SS is hypocomplementemia, par-
ticularly low serum levels of C3 and C4. Some studies reported 
that in the most severe cases of primary SS, the complement 
inhibitor C4b-binding protein was decreased in parallel with C3 
and C4 levels, suggesting that dysregulation of complement may 
mediate disease pathogenesis (181). It is generally hypothesized 
that low C3 and C4 levels are a result of consumption by CP 
activation mediated by ICs in primary SS patients. Recent studies 
have showed that lymphoproliferative disease, mortality rates, and 
other severe disease manifestations were significantly higher in 
patients with low levels of C3 or C4 (182–184). Therefore, comple-
ment levels may be more a marker or predictor of disease activity 
in established SS patients.

CONCLUSiON

A complete genetic deficiency in any one of the early components 
engaged in the CP of complement activation, C1q, C1r, C1s, or C4 
almost always leads to SLE in humans, irrespective of race or sex. 
This phenomenon underscores the necessity for all of these early 
complement components, probably acting in concert, to achieve 
immune tolerance or prevent autoimmunity. While the incidence 
of a homozygous deficiency for one of these early acting comple-
ment components is extremely rare, partial genetic deficiency due 
to gene CNV of complement C4A (and total C4) and acquired defi-
ciency such as secondary to anti-C1q autoantibodies are common. 
In combination, inherited insufficiency and acquired deficiency for 
early components of the CP may exist in over half of SLE patients 
with European ancestry. On the other hand, high copy numbers 
of total C4 and C4A are prevalent among healthy subjects and 
protective against SLE. Although less conclusively demonstrated, 
less explored topics include the single nucleotide polymorphisms 

(SNPs) in those complement genes that may modulate functional 
protein activities or gene expression levels, the presence of other 
complement autoantibodies or nephritic factors, dysfunctional 
regulatory proteins, or toxic side effects of drugs that may also 
contribute to inappropriate complement activation.

Genetic insufficiency and acquired deficiency of comple-
ment have medium to large effect size on disease susceptibility 
in European SLE. The frequency and effect size of specific 
genetic variants for a complex disease tend to be race specific. 
Considering the high prevalence of renal disease in African, 
Asian, and Hispanic SLE patients, it is of interest to further extend 
investigations on the roles of complement risk factors in these 
racial/ethnic groups.

Fluctuations in either hemolytic complement activity or levels 
of serum C3 and C4 in SLE patients were noticed over half of a 
century ago. More recently, high levels of processed C4d activation 
product attached to multiple cell types of hematopoietic origin 
are present in most SLE patients. Comprehensive data on genetic 
and acquired risk factors, plus cross-sectional and longitudinal 
profiling of autoantibodies and serum levels of native and acti-
vated complement proteins, and cell-bound levels of processed 
activation products hold promise as more sensitive biomarkers 
for SLE. Additionally, similar investigations should be extended to 
other autoimmune or inflammatory diseases including Sjögren’s 
syndrome, DM, RA, and antiphospholipid syndrome.
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