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One of the most profound public health consequences of immune senescence is reflected 
in an increased susceptibility to influenza and other acute respiratory illnesses, as well 
as a loss of influenza vaccine effectiveness in older people. Common medical conditions 
and mental and psychosocial health issues as well as degree of frailty and functional 
dependence accelerate changes associated with immune senescence. All contribute 
to the increased risk for complications of influenza infection, including pneumonias, 
heart diseases, and strokes that lead to hospitalization, disability, and death in the over 
65 population. Changes in mucosal barrier mechanisms and both innate and adaptive 
immune functions converge in the reduced response to influenza infection, and lead to 
a loss of antibody-mediated protection against influenza with age. The interactions of 
immune senescence and reduced adaptive immune responses, persistent cytomega-
lovirus infection, inflammaging (chronic elevation of inflammatory cytokines), and dys-
regulated cytokine production, pose major challenges to the development of vaccines 
designed to improve T-cell-mediated immunity. In older adults, the goal of vaccination 
is more realistically targeted to providing clinical protection against disease rather than 
to inducing sterilizing immunity to infection. Standard assays of antibody titers correlate 
with protection against influenza illness but do not detect important changes in cellular 
immune mechanisms that correlate with vaccine-mediated protection against influenza 
in older people. This article will discuss: (i) the burden of influenza in older adults and 
how this relates to changes in T-cell function, (ii) age-related changes in different T-cell 
subsets and immunologic targets for improved influenza vaccine efficacy in older, and (iii) 
the development of correlates of clinical protection against influenza disease to expedite 
the process of new vaccine development for the 65 and older population. Ultimately, 
these efforts will address the public health need for improved protection against influenza 
in older adults and “vaccine preventable disability.”
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FiGURe 1 | Multi-morbidity that is defined as the presence of two or 
more chronic conditions affects 50% of older people, most of 
whom enjoy an active life in the absence of an acute illness or injury 
(~70% of the over 65 population as represented by yellow stick 
figure). Influenza has been associated with the six leading causes of 
catastrophic disability. It has been postulated that the inflammatory response 
to the influenza virus leads to these serious complications, which are 
common causes of hospitalization in older adults. During periods of inactivity, 
older adults lose up to 5% of their functional muscle strength every day they 
are in bed and may never recover, thus, being identified as a frail older adult 
(represented by the red stick figure) at hospital discharge. Influenza vaccines 
that improve protection against influenza illness and related complications 
provide a significant public health opportunity to promote health aging and 
vaccine preventable disability.
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BURDeN OF iNFLUeNZA, iMMUNe 
SeNeSCeNCe, AND LOSS OF vACCiNe 
eFFeCTiveNeSS

impact of influenza in Older Adults
Aging is associated with a decline in cell-mediated immunity 
and a dramatic increase in the morbidity and mortality from 
community-acquired pneumonia, particularly in the population 
age 75 years and older (1). Influenza is the most common cause 
of viral pneumonia in older adults (1) and associated complica-
tions, including ischemic heart disease, cerebrovascular events, 
and diabetes in adults age 70  years and older during annual 
influenza epidemics, suggest that influenza illness is the major 
cause of excess mortality in this population (2). Rising hospitali-
zation rates, increased lengths of hospital stay, and 36,000 deaths 
annually in the U.S. during the influenza season in the over 65 
population despite widespread vaccination programs (3–5) are 
increasingly raising concerns about influenza vaccine effective-
ness. Moreover, yearly immunization fails to induce immunity 
to new strains of influenza, leaving the population susceptible to 
pandemic outbreaks.

Contribution of Multi-Morbidity to Risk for 
influenza and Related Disability
Multi-morbidity that is defined as the presence of two or more 
chronic conditions occurs in two-thirds of population age 
65–84 years old and over 80% of those age 85 years and older 
(6). The intersection between multi-morbidity and outcomes of 
influenza illness is obvious when one considers that the risk for 
hospitalization and death due to influenza illness in older adults 
increases with age, chronic disease burden, prior hospitaliza-
tion for pneumonia, and co-morbidities, including lung, heart 
and renal diseases, dementia, strokes, and hematological and 
non-hematological malignancies (7). Hospitalization in older 
adults confers a 60-fold increased risk for disability but the link 
between influenza and disability and frailty in older adults is 
only beginning to be understood (8, 9). The six leading causes 
of catastrophic disability (defined as the loss of independence in 
three or more basic activities of daily living), including strokes, 
congestive heart failure, pneumonia, ischemic heart disease, 
cancer, and hip fracture (10), have all been linked to influenza 
(Figure  1) but this type of data is not captured in the typical 
databases used to estimate influenza vaccine effectiveness. Rates 
of long-term morbidity and disability following influenza illness 
in older people are predictable and will increase in parallel with 
hospitalization rates, impacting not only on cost to the health care 
system but also on the quality of life of older persons.

Decline in influenza vaccine effectiveness 
in Older Adults
Recent studies have questioned the effectiveness of current 
influenza vaccines in older adults, which are composed of 
inactivated virus or subunit proteins and have used the same 
egg-based technology for over 50 years. Govaert et al. conducted 
the only published randomized, placebo-controlled trial of 
influenza vaccination in older adults, providing an estimate of 

vaccine efficacy of only 50% in a relatively healthy cohort (11). 
Influenza vaccination has since become a standard of care and 
it is now considered unethical to conduct placebo-controlled 
trials. Thus, current estimates of vaccine effectiveness are mainly 
derived from observational studies comparing vaccinated and 
unvaccinated older adults. Varying degrees of specificity for 
identifying influenza illness and related unmeasured confound-
ing (12), lack of documentation of prior vaccination history, and 
only rudimentary methods for measuring the combined effects of 
chronic disease burden, functional status, and frailty contribute 
to confounding in the analysis of vaccine effectiveness. As an 
example, older adults with chronic diseases and related disability 
would be expected to have more frequent health care contacts 
and be more likely to receive annual influenza vaccination. 
Annual repeated vaccination contributes to improved vaccine 
efficacy, while the presence of co-morbidity is associated with 
a reduction in influenza vaccine effectiveness (11, 13–15); these 
two opposing effects become important variables in establishing 
estimates of vaccine effectiveness. In fact, a recent observational 
study of hospitalized adults with laboratory-confirmed influenza 
illness conducted by the Canadian PCIRN Serious Outcomes 
Surveillance network (16) showed similar estimates of influenza 
vaccine effectiveness in young and older adults after adjustment 
for the combined effects of chronic disease burden, functional 
status, and frailty using the Frailty Index (17, 18). In other words, 
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vaccinated individuals were more frail than unvaccinated older 
adults in this hospital cohort, which counters the argument 
for “healthy vaccinee bias” leading to overestimates of vaccine 
effectiveness in the over 65 population (19, 20). Furthermore, a 
Cochrane review (21) questioning the effectiveness of influenza 
vaccine in older adults has been challenged on the basis of over-
stratification of the data and loss of statistical power, and lack of 
separation of data from good vs. poor match vaccine to the circu-
lating strains of influenza virus, and years with low vs. high levels 
of circulation of influenza. When these factors were taken into 
consideration, a re-analysis of the same studies included in the 
Cochrane review, provided estimates of vaccine effectiveness of 
30% in older adults, consistent with the existing literature (22, 23). 
Given that influenza vaccination remains a cost-saving medical 
intervention in older adults in spite of the well-recognized decline 
in vaccine effectiveness in older adults, recent advances in vac-
cine technology offer an unprecedented opportunity to improve 
influenza vaccines for this population. However, a more complete 
understanding of the impact of immune senescence – the changes 
that occur with aging – and the complexity and heterogeneity of 
the immune response to influenza in older adults is needed.

interactions between inflammaging, 
Frailty, and immune Senescence
Understanding how genetics and exposures to a host of factors 
that influence gene regulation and protein expression, determine 
longevity, and predict the health trajectory with aging have led to 
the concept of “inflammaging,” the adverse changes associated 
with aging and increased serum levels of inflammatory cytokines 
(24, 25). Chronic inflammation appears to drive much more 
than immune senescence leading to increased susceptibility to 
infectious diseases and now also appears to be fundamentally 
implicated in “unsuccessful” aging (25) manifested as increasing 
frailty with age.

Frailty as a syndrome encompasses a person’s chronic medi-
cal conditions, functional status, and risk of mortality (26). It 
is associated with a loss of physiological reserve and ability to 
resist environmental stressors, and increased risk of functional 
decline (27, 28). Through inflammatory mechanisms, chronic 
diseases contribute to declining immune function and cause 
organ-specific changes in susceptibility to pathogens, particularly 
in the lungs, thus, acting synergistically to impair mucosal bar-
rier function and innate and adaptive immunological defense 
mechanisms. Consequently, protection against influenza or 
serious complications thereof depends not only on the ability 
of vaccines to reverse age-related changes in adaptive immune 
function but also overcome the loss of the mucosal barrier func-
tion of the lungs and innate immune mechanisms that may be 
altered by chronic disease processes, inflammation, and frailty. 
The Frailty Index based on both clinical and laboratory markers is 
emerging as a novel method for incorporating these variables into 
a measure of overall health status and stratifying risk for serious 
complications, including disability from influenza illness (16, 29).

In the evaluation of the immune response to influenza vac-
cination, frailty must be considered as a multifactorial syndrome 
that represents a reduction in physiological reserve and in the 

ability to resist environmental stressors (27, 28, 30). Frailty is 
generally recognized to be age-associated and common in older 
adults, and an important factor in the risk for complications of 
influenza illness. While functional dependence (e.g., not being 
able to bath independently) has been identified a potential 
confounder in the analysis of influenza vaccine effectiveness in 
the over 65 population (20), the impact of level of frailty on the 
response to influenza vaccination has yet to be studied. Frailty is 
complex and dynamic in nature, and reflects the loss of adaptive 
capacity of the organism. Frailty as a syndrome in the geriatric 
population encompasses a person’s chronic medical conditions, 
functional status, and risk of mortality (26). The Frailty Index, 
which measures the degree to which a person is frail, accounts for 
more than just physical frailty (31), relates to the accumulation 
of deficits in all aspects of self-reported health and functional 
status (32), is a more sensitive measure of degree of frailty, and 
predicts mortality risk (33). Increased frailty due to influenza ill-
ness has been demonstrated using a 40-item Frailty Index where 
older adults with influenza had, on average, three more deficits at 
hospital discharge compared to their baseline (34).

Role of Cytomegalovirus in T-Cell 
Responses to influenza
Persistent cytomegalovirus (CMV) infection has also been linked 
to functional decline in older adults (35) and it causes T-cell 
senescence (36), and thereby contributes to the age-associated 
changes in immune function. T-cell responses in the aged are 
very different from those in the young. Thymic involution and 
a decline in naïve T-cell output with increasing age, together 
with a lifetime of exposure to a variety of pathogens, lead to a 
dramatic reduction in the naïve T-cell pool and a relative increase 
in the proportion of memory T cells. Moreover, the remaining 
naive CD4 T cells make poor helper responses, undermin-
ing the ability of vaccines to protect against new pathogens 
or variants. Within the total memory pool, arguably, the most 
dramatic functional changes occur in the CD8+ T-cell subset, 
where increased proportions of CD8+CD28− T cells have been 
associated with poor antibody responses to influenza vaccination  
(37, 38), and seropositivity for CMV (39). Indeed, it has been 
shown that most of these CD8+CD28− memory T cells are part 
of large clonal expansions that are specific for persistent viruses, 
mainly CMV (40). However, a direct link between changes in 
CD8+ T cells related to CMV seropositivity, and the dramatic 
increase with age in the risk for complicated influenza illness has 
yet to be made. Given that at least 90% of those 80  years and 
older are CMV seropositive (41) and that persistent CMV infec-
tion drives T cells to a late-differentiated state associated with loss 
of function, CMV may have a significant role in cell-mediated 
protection against viral illnesses, such as influenza.

The systemic upregulation of the inflammatory cytokine, 
interleukin-6 (IL-6), in association with high CMV antibody 
titers has been associated with increased frailty (42). Recently, 
studies in mice have shown that in responses to antigens that are 
not associated with high levels of pathogen-associated danger 
signals, such as most unadjuvanted vaccines, IL-6 plays a critical 
role in generation of T follicular helper CD4 (Tfh) cells that are 
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essential for optimum generation of B-cell antibody response and 
memory (43). However, the IL-6 that is needed is not systemic 
IL-6, but comes from the dendritic cells (DC) presenting antigen 
to CD4 T cells (44, 45). Thus, while the elevated systemic IL-6 
associated with inflammaging is deleterious, IL-6 production by 
DC is critical to optimum immunity.

Anti-inflammatory cytokines, such as IL-10, can counterbal-
ance the negative effect of elevated systemic IL-6, and have been 
associated with successful aging, but excess IL-10 can also result 
in a diminished resistance to infectious diseases and a decline in 
the antibody response to influenza vaccination (46). Increased 
IL-10 production in macrophages following vaccination in older 
adults predicts a poor antibody response (46), and is associated 
with a decline in the IFNγ:IL-10 ratio in response to influenza 
virus challenge with aging (47). Lower IFNγ:IL-10 ratios and lev-
els of the cytolytic mediator, granzyme B, in influenza-challenged 
peripheral blood mononuclear cells (PBMC) correlate with 
increased risk of influenza in vaccinated older adults (48). These 
results are based on outcomes of influenza A/H3N2 illness, the 
most common subtype affecting older adults (49, 50), and has 
the greatest impact in terms of hospitalization and death in older 
adults (5). Thus, A/H3N2 strains should be the primary focus 
for developing novel correlates of clinical protection against 
influenza in this population.

Limitations of Antibody-Mediated 
Protection from influenza in Older Adults
Current influenza vaccines are standardized by the amount of 
hemagglutinin (HA) contained in the vaccine, and changes in 
HA inhibition (HAI) antibody titers in response to influenza 
vaccination are the industry standard for measuring vaccine effi-
cacy. Thus, influenza vaccines are designed to provide antibody-
mediated protection against infection or “sterilizing immunity” 
mainly by influenza strain-specific antibodies against the surface 
glycoproteins, HA, and neuraminidase (NA). However, the 
diminished mechanical barrier function in the lungs (51), a 
decline in innate immune mechanisms (52), and changes in the 
quality and quantity of HAI antibodies with age (53), may also 
contribute to higher rates of infection of airway epithelial cells 
in older adults. Due to the strain specificity of the HAI antibody 
response, the degree of mismatch of the vaccine strains to the 
circulating strain of influenza virus correlates with a significant 
reduction in vaccine efficacy in all age groups.

Age-Related Changes in T-Cell Subsets 
May Affect Protection from influenza in 
Older Adults
Vaccination also stimulates influenza-specific CD4 and CD8 
T-cell memory cells that generate effectors that are recruited to 
the lungs to clear virus-infected cells in the lungs (Figure 2), thus, 
providing “clinical protection” against disease. T-cell protection 
becomes increasingly important as we age. Influenza-specific 
memory T cells are highly cross-reactive; CD4 and CD8 epitopes 
are specific for the conserved protein sequences across different 
influenza strains and, thus, do not depend on an exact match 
of the vaccine strain with the circulating strain of influenza 

virus. During influenza infection, many subsets of CD4 and 
CD8 effectors are generated that contribute to influenza virus 
clearance. In mice, CD4 effectors of multiple subsets including 
helper type 1 (Th1) cells producing interleukin-2 (IL-2) and IFNγ 
that recruit virus-specific cytotoxic T lymphocytes (CTL) to the 
lungs to kill influenza-infected lung epithelial cells (54). Also, Tfh 
effectors that are necessary to help B cells become neutralizing 
Ab-producing cells play critical, often synergistic roles in com-
bating viruses (55). Other Th cells, especially regulatory T cells 
(Treg) can produce high levels of IL-10 at the site of infection and 
delay recovery (56). IL-10 levels increase with aging in response 
to vaccination (46) and in the subsequent response to influenza 
virus challenge (57) but multiple sources of IL-10 production, 
including macrophages, B cells, and Treg, have now been identi-
fied (46, 58, 59) and need to be considered in modulating the 
T-cell response through vaccination.

Memory T-Cell Responses to influenza 
vaccination in Older Adults
Vaccines can provide protection either by generating new 
responses from naive T and B cells or by boosting memory cells 
formed during previous exposure by vaccination or infection. In 
mice, it has been shown that memory T cells formed early in life 
retain function despite aging (60, 61). Humans have multiple 
encounters with influenza; so in most cases, the T cells involved 
in response to vaccine in elderly individuals will be memory 
T cells (Figure 2). Vaccination boosts memory T cells specific 
for both the surface glycoproteins and the internal proteins of 
the virus, although it has recently been shown that vaccination 
more effectively boosts CD4 T cells specific for the conserved 
internal proteins of influenza virus, matrix (M), and nucleopro-
tein (NP), in both young and older adults (62). Increased levels 
of IFNγ-producing CD4 (Th-type 1) and CD8 T cells (CTL) 
specific for the conserved internal proteins of influenza virus, 
matrix (M), and nucleoprotein (NP) correlate with protection 
against influenza in young adults (63, 64) corresponding to the 
key role of CTL in clearing influenza-infected cells from the 
lungs.

However, influenza-specific CTL activity and IFNγ produc-
tion by memory T cells in response to influenza challenge decline 
with aging and are poorly stimulated by inactivated influenza 
vaccines (65, 66). Granzyme B (Grz B) is a key component 
of perforin-mediated killing by CTL, and low levels of GrzB 
activity generated in response to influenza challenge following 
vaccination predict increased risk (48, 67) and severity of (68) 
influenza illness in older adults. Given that the frequency of 
CD4 and CD8 T cells responding to NP or M protein-derived 
peptides correlate with cell-mediated protection, subunit vac-
cines containing only the surface glycoproteins (HA and NA) 
may not provide as potent a stimulus to T-cell memory. Indeed 
observational studies have shown a reduction in vaccine efficacy 
with subunit vaccines when compared to split-virus vaccines 
(containing both surface glycoproteins and internal proteins) 
in older adults (69). Since split-virus and subunit vaccines will 
generate equivalent antibody responses, the results of these 
observational studies highlight the importance of developing a 
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FiGURe 2 | (A) Influenza virus contains the surface glycoproteins, hemagglutinin (HA), and neuraminidase (NA), which are strain specific in directing the antibody 
response to influenza vaccination. The internal proteins, including nucleoprotein (NP) and matrix (M1) protein, are conserved across the different subtypes of 
influenza A and, thus, confer cross-protection. Subunit vaccines contain the surface glycoproteins, while split-virus vaccines contain both surface glycoproteins and 
internal proteins of the virus. High-dose, split-virus (HD) vaccines are designed to improve antigen presentation from antigen-presenting cells (APCs) in the lymph 
node, eliciting greater antigen-specific antibody responses and potentially improving the cytotoxic T lymphocyte response for improved viral clearance from the 
lungs. (B) Inflammation stimulated by the injection and potentially enhanced by adjuvants, such as MF59 or increased amounts of vaccine antigen (HD vaccine), 
facilitates the activation of the APC and uptake of inactivated virus. The APC then migrates to the local lymph node to interact with B cells, CD4+ T helper (Th) and T 
follicular helper (Tfh) cells, and CD8+ cytotoxic T lymphocytes (CTL). APCs present vaccine-derived peptides on MHC II stimulating Tfh and the production of 
strain-specific antibodies by B cells, the cross-reactivity of which is enhanced by vaccine adjuvants, such as MF59. Memory CD8+ T cells from prior exposure to 
natural influenza infection can be restimulated by vaccination, and may be enhanced by HD vaccines containing internal proteins. (C) Influenza infection in the lungs 
activates Th1/Th2/Treg in the adjacent lymph nodes and stimulates a Th1 response with IFNγ production to effectively activate memory CTL, which clear virus from the 
lungs. However, age-related changes drive a Th2/Treg response to infection, and IL-10 production suppresses the CTL response. A shift toward a protective Th1 and 
CTL response to infection may be stimulated by increasing the amount of internal proteins and/or the use of adjuvants in vaccines targeted to improve protection 
against influenza in older adults.
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correlate of T-cell-mediated protection to complement antibody 
titers as a surrogate of protection in the over 65 population.

Persistent CMv infection Affects the T-Cell 
Response to influenza vaccine
Cytomegalovirus seropositivity, inflammation, and level of 
frailty predict mortality in older adults (70), and are associated 
with loss of vaccine-mediated protection in older adults (71). We 

have found that CMV+ compared to CMV− older adults have 
abnormally increased levels of GrzB in resting T cells, which we 
have called “bGrzB” activity. This bGrzB activity is associated 
with an increase in the proportion of both CD4+ and CD8+ T 
cells that are GrzB+ and have a CD45RA+ late-differentiated 
T-cell phenotype or are CD28− T cells (72). In the CD4 T-cell 
population, these CMV-specific late-differentiated T cells are 
associated with poor memory responses to the internal proteins 
(M and NP-derived peptides) of influenza virus (73). By contrast, 
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CMV seropositivity has been associated with improved antibody 
responses to influenza vaccination in older adults, including 
those with well-controlled Type 2 diabetes (74). Others have 
shown that telomere length, independent of CMV serostatus, 
is a predictor of the robustness of the B-cell and CD8+ T-cell 
responses to influenza vaccination in older adults with longer 
telomere length, respectively, associated with improved antibody 
responses and increased frequency of M1-specific T cells (75). 
Our work has shown that late-differentiated T cells (CD45RA+

GrzB+Perforin−) are particularly abundant in the CD8+ subset, 
with as many as 50% of these cells producing GrzB in the resting 
state, and are associated with poor CD8 T-cell cytolytic activity 
following influenza vaccination (76). Our unpublished studies 
have shown in a regression analysis that age, chronic disease, and 
CMV seropositive status are correlated with increased bGrzB 
activity (R2 = 0.278, p < 0.0001) and a poor response to influenza 
challenge (R2 = 0.375, p < 0.0001) in an in vitro model simulat-
ing the response to influenza vaccination (57). Thus, we propose 
bGrzB activity in resting T cells as a measure of the immunologic 
burden of terminally differentiated T cells in older adults.

OPPORTUNiTieS FOR TARGeTiNG T 
CeLLS FOR iMPROveD PROTeCTiON 
wiTH iNFLUeNZA vACCiNATiON

In considering how to improve influenza vaccines in the elderly, 
lessons learned in studies of mice could help us define what is 
missing in current strategies and where improvements might be 
made. We have shown that there is a key weakness that restricts 
aged naive CD4 T cells responses, namely that the initial antigen 
recognition step requires the DC presenting antigen to make high 
levels of IL-6 (44, 45) (Brahmakshatriya and Swain unpublished). 
Aged CD4 T cells appear to require more IL-6 to be triggered 
than young ones. In mouse models, the CD4 response can be 
enhanced by pre-activating the DC with agonists to toll-like 
receptors (TLRs) that elevate their potential for IL-6 production. 
Since systemic IL-6 is likely harmful, designing strategies to target 
both the antigen and agonist to DC could potentially provide a 
much better response of T cells, including the Tfh subset that 
is critical for helping the B-cell antibody response. Preliminary 
studies in aged mice indicate that introducing activated DC bear-
ing T-cell influenza epitopes in addition to inactivated vaccine 
is sufficient to boost IgG antibody responses (Brahmakshatriya, 
unpublished).

Age-Related Changes in T Follicular 
Helper Cells and Response to influenza 
vaccination
Overall, CD4 T-cell responses in aged individuals are not too dis-
similar from those found in young adults following vaccination 
with an inactivated influenza vaccine. There is an initial expansion 
of responding CD4 T cells but this expansion is not sustained in 
older people, possibly due to lower levels of IL-7 (77). In order for 
a vaccine to induce high affinity, class-switched antibodies, B cells 
in germinal centers (GC) require cognate help from a subset of 
CD4 T cells called Tfh cells (78). Tfh cells express the chemokine 

receptor, CXCR5, which allows them to traffic to the B-cell zones 
of lymphoid tissue, thus, making them poised for proper T–B 
cell interactions. Without proper helper activity from Tfh, the 
antibody response is less robust, with lower titers, and exhibits 
reduced affinity maturation, which are two characteristics often 
associated with an aged antibody response (79).

CXCR5+ CD4 T cells, which resemble Tfh, are also found in 
human blood following vaccination (80). These peripheral blood 
dwelling Tfh, called circulating T follicular helper cells (cTfh), 
are CXCR5+PD-1+ but they differ somewhat in gene expression 
profiles from tissue Tfh. While they do not express the proto-
typical Tfh transcription factor Bcl-6, they can be identified as 
CD4+CXCR5+CXCR3+CCR6−PD-1+. Importantly, cTfh collected 
following vaccination correlate with production of a good humoral 
response and exhibit robust in vitro helper activity (81–83).

A recent study examined cTfh in young and older human 
subjects. It was found that there was a significant reduction of 
responding cTfh with age and that this was correlated with lower 
titers of IgG but not IgM production following vaccination. Aged 
cTfh also exhibited reduced in vitro helper activity when com-
pared to young. In addition, aged cTfh examined post-vaccination 
exhibited lower levels of cell surface ICOS expression, which is 
critical for proper T–B cell interactions (84). Therefore, it is likely 
that these age-related defects in Tfh cells observed following vac-
cination contribute to the poor antibody response found in older 
individuals. Thus, a focus on strategies to enhance generation of 
Tfh is warranted.

Suppressive effects of Treg Cells are 
enhanced with Aging
Regulatory T cells are defined by the expression of the forkhead/
winged-helix family transcription factor FoxP3. Tregs can either 
be natural (nTregs), which are generated in the thymus, or 
induced (iTreg), which are generated in the periphery from non-
Tregs following antigenic stimulation (85). Both of these Treg 
populations are capable of suppressing an immune response. The 
function of Tregs is useful to maintain peripheral tolerance but 
becomes problematic when it impacts an immune response to a 
vaccine or infection. One of the numerous changes in the immune 
system with aging is the accumulation of CD4+CD25+FoxP3+ 
Treg. Importantly, these Tregs can negatively impact a normal 
immune response, such as that to a tumor or infection (86, 87), 
in aging mice. Tregs from aged mice also produce higher levels 
of the inhibitory cytokine, IL-10, and suppress CD86 expression 
on DC more strongly than Tregs from young mice (88). Thus, not 
only are there more Tregs with aging, but they are also even better 
at suppressing an adaptive immune response. In order to improve 
vaccine efficacy for the elderly, this increase in Tregs needs to be 
taken into consideration. We have shown that when combined 
with influenza vaccine, a TLR4 agonist as a vaccine adjuvant 
improved the cell-mediated immune response in older adult 
PBMC through stimulation of inflammatory cytokines (IL-6 
and TNFα) in myeloid DC, and was associated with a 10-fold 
reduction in IL-10 levels and an increase in GrzB produced by 
CD8 T cells in response to influenza challenge (89). Our future 
studies are focusing on the source of IL-10 production and how 
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the T-cell response to influenza can be enhanced through the use 
of vaccine adjuvants.

improving the CD8 T-Cell Response to 
influenza vaccination
CD8+ CTLs are the dominant cytolytic effectors against influ-
enza virus infection and are predominantly directed against 
the conserved internal proteins of the influenza virus, thus, 
conferring cross-protection against the different influenza A 
subtypes. However, these memory CTLs generated in response 
to prior influenza infections are poorly stimulated by inactivated 
influenza vaccines, particularly in older adults where age-related 
changes in CD8+ T cells correspond to increased risk of serious 
complications of influenza and a loss of vaccine effectiveness. Our 
research suggests that this age-related decline is reversible (67) 
and that vaccination strategies to improve antigen presentation 
of the internal proteins of the influenza virus including the use of 
vaccine adjuvants such as TLR ligands (89) may improve influenza 
vaccine-mediated protection in the older population (Figure 2).

Understanding inflammatory and 
Resiliency Factors to improve vaccine 
Responsiveness
Some of the same immune mediators, such as IL-6 that have 
been linked to inflammaging, frailty, and clinical outcomes, also 
play key roles in mediating and modulating immune responses 
to the influenza vaccine and infection. As a result, there is a 
natural tendency to explore ways in which specific categories of 
dysregulation of such molecules could play a shared role in all of 
these phenomena. One of the challenges in making such link-
ages stems from the fact that the use of immune or inflammatory 
molecules as biomarkers emphasizes their role as measurable 
predictors of clinically relevant events. Biomarkers have been 
defined as objectively measured subject characteristics that 
behave as indicators of normal biological processes, pathogenic 
mechanisms, or pharmacological responses to an intervention 
(90). In the context of inflammaging, biomarkers are gener-
ally those molecules (e.g., IL-6) that are sufficiently stable and 
abundant in peripheral blood samples to be easily measurable 
in frozen serum samples using standard techniques, such as 
enzyme-linked immunosorbent assays (ELISA), enabling their 
validation as predictors of relevant clinical outcomes (e.g., death, 
disability, frailty) in large epidemiologic studies.

Elevated plasma IL-6 levels do represent a validated predictor 
of declining mobility performance, disability, and death in older 
adults (91). Although knowledge of IL-6 biology does provide 
some broader insights into the implications of elevated periph-
eral blood IL-6 levels as regards pathogenic mechanisms, any 
direct translation is fraught with difficulties. Above all, IL-6 is a 
pleiotropic cytokine produced in T cells, macrophages, and non-
immune cells (92). In blood, it crudely reflects synthesis in fat, 
liver, and muscle (92), yet locally, IL-6 levels are carefully regu-
lated (92). Thus, significant differences may exist between IL-6 
levels measured in peripheral venous blood and those observed 
within the tightly regulated local micro-environment of the 
“T-cell niche” within a specific tissue. Moreover, IL-6 may exert 

either pro- or anti-inflammatory effects depending on concentra-
tion, acuity of change, and presence of other modulators (92). For 
example, in the case of muscle, IL-6 promotes muscle catabolism 
(93) and insulin resistance (94) with chronic IL-6 administration 
inducing muscle atrophy (95). By contrast, IL-6 contributes to 
induction of skeletal muscle stem cell responses after exercise 
(96), while in its absence recovery from disuse atrophy (97) and 
overload-induced hypertrophy (98) are decreased.

Interventions designed to alleviate the negative effects of 
inflammaging on responses to influenza vaccine and infection 
will need to be carefully considered with all of the above consid-
erations in mind. For example, the use of siltuximab, an anti-IL-6 
monoclonal antibody (99), could at least in theory result in 
favorable effects by lowering the pro-inflammatory and catabolic 
effects of elevated IL-6 levels on muscle, while at the same time 
also negatively influencing the ability of muscle and T cells to 
respond to exercise and influenza vaccination/infection, respec-
tively. By contrast, other interventions such as exercise (100), 
angiotensin receptor blockers such as losartan, and omega-3 
polyunsaturated fatty acids (ω-3) such as fish oil may possibly 
exert more broadly favorable effects precisely by virtue of their 
highly pleiotropic effects. Inhibition of the mammalian target 
of rapamycin (mTOR) pathway extends lifespan in all species 
studied to date. A recent study has shown that the administration 
of rapamycin to older research volunteers improves many aspects 
of immunosenescence, including responses to influenza vaccina-
tion (101). These findings are in keeping with the Geroscience 
Hypothesis which postulates that the ability to target those 
specific pathways shared by aging and those chronic diseases for 
which aging is a predominant risk factor may help to prevent or 
delay the onset or progression of such diseases, thus, significantly 
expanding the human healthspan (102, 103).

THe QUeST FOR T-CeLL CORReLATeS 
OF PROTeCTiON AGAiNST iNFLUeNZA iN 
OLDeR ADULTS

Novel correlates of protection are needed to select and fast track 
the most promising new vaccines through the clinical develop-
ment pipeline. Multiple components of immune function are 
affected during the aging process but few studies have included 
influenza surveillance to directly correlate these changes with 
influenza outcomes in the “usual” older adult population with 
multi-morbidity. There has been a paradigm shift in understand-
ing the limitations of antibody titers as a sole measure of influenza 
vaccine efficacy in older people (48, 67, 68, 104) and although 
T-cell correlates of protection have been identified in young 
adults (63, 64), these correlates have yet to be translated to studies 
of older adults.

Designing Studies to Develop Novel 
Correlates of Protection in Older Adults
Studies designed to establish new correlates of protection must 
prospectively enroll adequate numbers of older adults at the 
time of vaccination, and over multiple years due to highly vari-
able attack rates, to detect enough influenza cases for a correlate 
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of protection analysis. Since influenza A/H3N2 strains have the 
greatest impact in the over 65 population, this influenza subtype 
should be the primary focus for serologic and ex vivo T-cell assays 
of the response to vaccination. Key to the success of influenza sur-
veillance and documentation of laboratory-confirmed influenza 
illness is recognizing the atypical presentation of influenza illness 
in older adults (105, 106), providing weekly reminder phone calls 
to study participants to report any acute respiratory symptoms, 
and offering the flexibility of study coordinators to procure naso-
pharyngeal (NP) swabs in the home or clinic within 5 days of the 
onset of illness (48, 67, 68). High-sensitivity, polymerase chain 
reaction (PCR)-based assays are required to reliably detect influ-
enza virus in the NP swab specimens. Antibody seroconversion 
in response to an influenza illness is unreliable in this population; 
we have shown that older persons with febrile influenza illness 
may be PCR+ for influenza virus but are unable to mount an anti-
body response to influenza infection even though their antibody 
responses to vaccination were similar to other older adults who do 
not develop influenza illness (68). Studies of the immune response 
pre- and post-infection may also offer insights into potential cor-
relates of protection as infection provides a more robust stimulus 
to the immune system compared to inactivated influenza vaccines.

Summary
The age-related loss of vaccine-mediated protection against 
influenza goes beyond that which can be explained by immunose-
nescence. Multi-morbidity, frailty, and functional dependence 
accelerate changes in a number of body systems, including mucosal 
barriers and innate and adaptive immune functions. The increased 
risk for serious complications of influenza infection despite wide-
spread vaccination programs is a major public health concern. 
The loss of antibody-mediated protection against influenza with 
age and over-reliance on this correlate of protection in the vaccine 
development pipeline has posed significant challenges to improve 

protection against influenza in the over 65 population. The interac-
tions of immune senescence, persistent CMV infection, inflam-
maging, and dysregulated cytokine production are only beginning 
to be understood and appear to have a significant impact on T-cell-
mediated immunity needed for clinical protection against serious 
influenza illness. Developing new vaccine formulations and routes 
of administration and establishing novel correlates of protection 
against influenza that predict improved outcomes in older adults 
are key to expediting the process for new vaccine development and 
reducing the risk of failure in late phase clinical trials.
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