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Malignant transformation of cells leads to enhanced glucose uptake and the conversion 
of a larger fraction of pyruvate into lactate, even under normoxic conditions; this phe-
nomenon of aerobic glycolysis is largely known as the Warburg effect. This metabolic 
reprograming serves to generate biosynthetic precursors, thus facilitating the survival of 
rapidly proliferating malignant cells. Extracellular lactate directs the metabolic reprogram-
ing of tumor cells, thereby serving as an additional selective pressure. Besides tumor cells, 
stromal cells are another source of lactate production in the tumor microenvironment, 
whose role in both tumor growth and the antitumor immune response is the subject of 
intense research. In this review, we provide an integral perspective of the relationship 
between lactate and the overall tumor microenvironment, from lactate structure to met-
abolic pathways for its synthesis, receptors, signaling pathways, lactate-producing cells, 
lactate-responding cells, and how all contribute to the tumor outcome. We discuss the 
role of lactate as an immunosuppressor molecule that contributes to tumor evasion and 
we explore the possibility of targeting lactate metabolism for cancer treatment, as well 
as of using lactate as a prognostic biomarker.

Keywords: l-lactate metabolism, tumor microenvironment, warburg effect, monocarboxylate transporter, immune 
escape

LACTATe: THe MeTABOLiTe AND iTS SYNTHeSiS PATHwAYS

The discovery of lactic acid can be traced back to 1789 when, according to Robergs et al. (1), Carl 
Wilhelm isolated an acid from sour milk samples, opening a whole new research field.

Lactate (2-hydroxypropanoic acid) is a 3-carbon hydroxycarboxylic acid that may exist as two 
stereoisomers, d-lactate and l-lactate, the latter being the predominant physiological enantiomer. 
Lactic acid has the formula CH3CH(OH)CO2H. The anion lactate CH CH OH CO3 ( ) 2

− is the pre-
dominant moiety present in the human body, as the pKa of the lactate/lactic acid pair is 3.8 (2).

Lactate is produced by most tissues in the human body with the highest levels of production 
found in muscles. Under healthy conditions, lactate is cleared by the liver and to a lesser extent by 
the kidneys (3, 4). At a systemic level, lactic acid can serve as a source of energy by being carried to 
the liver and reconverted into glucose via the Cori cycle (5).

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00052&domain=pdf&date_stamp=2016-02-16
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00052
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:hpradog@yahoo.com
mailto:fsanchez_1@yahoo.co.uk
http://dx.doi.org/10.3389/fimmu.2016.00052
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00052/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00052/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00052/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00052/abstract
http://loop.frontiersin.org/people/83525/overview
http://loop.frontiersin.org/people/83444/overview
http://loop.frontiersin.org/people/227230/overview


FiGURe 1 | Lactate synthesis. ME, malic enzyme; MDH, malate dehydrogenase; LDH-A, lactate dehydrogenase A; GLS, glutaminase; GDH, glutamate 
dehydrogenase.
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Pyruvate is the final product of glycolysis yielding two moles 
of ATP for each molecule of glucose in the process. Under nor-
moxic conditions, pyruvate is converted by the enzyme pyruvate 
dehydrogenase (PDH) into acetyl-CoA, which enters into the 
tricarboxylic acid (TCA) cycle or Krebs cycle. Under anaerobic 
conditions, pyruvate is converted to lactic acid by the enzyme 
lactate dehydrogenase (LDH) (6).

The sequence of the enzymatic reactions that take place dur-
ing glycolysis was described in 1940 by Embden, Meyerhof, and 
Parnas, and, since then, “lactate has regularly been vilified as a 
useless and frequently toxic end product of anaerobic glycolysis,” 
as stated by Scurr and Gozal (7). It has emerged since long ago 
that lactate is not a waste metabolic byproduct at all but rather a 
bioenergetic substrate. More recently, lactate has been regarded as 
a metabolite with signaling properties and important biological 
functions, which are out of the scope of the present review.

Tumor cells preferentially convert pyruvate into lactate instead 
of entering into the TCA cycle, even under normoxic conditions, 
i.e., by aerobic glycolysis (8). In addition, glutaminolysis can also 
generate lactate, whereby glutamine is converted to glutamate 
and then to α-ketoglutarate, followed by the conversion of 
α-ketoglutarate into malate, which is then oxidized into pyruvate 
in the cytosol and finally, pyruvate is reduced by LDH-A, produc-
ing lactate and NAD+ (9, 10). Interestingly, LDH-A is induced by a 
variety of oncogenes, including c-myc, thus linking the malignant 
transformation at the genetic level with the metabolic pathways 
leading to lactate production (11).

The conversion of glutamate to α-ketoglutarate occurs either 
through oxidative deamination by glutamate dehydrogenase 
(GDH) in the mitochondrion or by transamination to produce 
non-essential amino acids in either the cytosol or the mitochon-
drion. There is some correlation between glucose availability and 
the use of glutamine as a source of α-ketoglutarate for feeding of 
the TCA cycle (Figure 1). During intense glucose metabolism, the 
transamination pathway predominates. On the contrary, when glu-
cose is scarce, GDH becomes the main pathway to supply glutamine 
carbon to the TCA cycle and is required for cell survival (12–14).

Thus, both glucose and glutamine are metabolic substrates 
for lactate production, glucose is one of the main metabolic 
substrates, whereas glutamine accounts for more than 20% of the 
free amino acid pool in plasma (15, 16), and both have meta-
bolically overlapping functions such as NADPH production and 
redox homeostasis (17). The individual contribution of glucose 
and glutamine to the extracellular lactate within the tumor as 
well as whether glutamine-derived lactate contributes to tumor 
metabolic symbiosis (discussed below) remains to be analyzed.

LACTATe PRODUCTiON BY TUMOR 
CeLLS: THe wARBURG eFFeCT

In 1927, Otto Warburg described that, metabolically, tumor cells 
predominantly rely on increased glycolysis, followed by lactic 
acid fermentation, even under conditions where oxygen is avail-
able. Hence the process was dubbed as “aerobic glycolysis” (8, 18). 
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By contrast, untransformed epithelial cells produce about 20% of 
their daily energy from glycolysis whereas the rest (about 70%) of 
that energy comes from the Krebs cycle (19).

Metabolic reprograming of tumor cells modifies the metabolic 
fluxes, restructuring the Krebs cycle and enhancing glycolysis. 
The enhanced glycolytic carbon flux, in turn, leads to production 
of high amounts of lactic acid. It is estimated that tumor cells 
produce up to 40 times more lactic acid than normal cells (20).

LACTATe PRODUCTiON BY iMMUNe 
SYSTeM CeLLS

innate immune Cells
Neutrophils, macrophages, and dendritic cells (DCs) are present in 
the tumor microenvironment (21, 22), and all these cell populations 
produce lactate at some point. Neutrophils contain few mitochondria 
and depend mostly on glycolysis for ATP production, whereas rest-
ing macrophages preferentially metabolize the up-taken glucose by 
glycolysis rather than by oxidative phosphorylation (OXPHOS). In 
activated macrophages, the expression of hexokinase and glucose-6 
phosphate dehydrogenase is up-regulated, indicating that a higher 
rate of the pentose phosphate pathway is achieved upon stimula-
tion (18, 23). There are two types of macrophages, M1 and M2 
macrophages, both differ in their metabolism and in their immune 
function; while M1 (classically activated) macrophages act as a first 
line of defense against bacterial infections and obtain energy through 
glycolysis, M2 (alternatively activated) macrophages are involved in 
tissue repair and wound healing and use oxidative metabolism to 
fuel their longer-term functions (24). During tumor progression, the 
macrophage phenotype changes from M1 to M2 (25). Interestingly, 
the lactic acid produced within the tumor microenvironment signals 
macrophages for M2-like polarization and, therefore, it is expected 
that M2-polarized macrophages cease to produce lactate (26).

The metabolic requirements of DCs depend on their dif-
ferentiation or activation status, and are different for committed 
progenitors, quiescent, or activated cells (27). In this regard, the 
differentiation of human monocytes into DCs is dependent on 
mitochondrial biogenesis (28). Resting DCs use fatty acid oxida-
tion not only to fuel OXPHOS but also to consume glucose; the 
metabolic pathway taken by glucose in these cells is still unclear 
(27, 29). Following activation of DCs with Toll-like receptor 
(TLR) agonists increases glucose uptake and lactate produc-
tion (27, 30). Moreover, when glycolysis is pharmacologically 
inhibited, activation of DCs is also inhibited (31). At later stages 
of TLR activation, DCs rely mostly on Warburg metabolism for 
their survival (27, 32). Accordingly, it is likely that only activated 
DCs can be a source of lactate within a tumor.

Adaptive immune Cells
Activation of T lymphocytes through TCR- and CD28-mediated 
costimulation leads to a rapid increase in the expression of the glucose 
transporter GLUT-1, glucose uptake, and glycolysis (33–35). An inter-
esting consequence of these findings is that immune costimulation is 
also a metabolic costimulation. Upon T-cell activation, glutaminolysis 
also increases, whereas β-oxidation of fatty acids decreases (35–37). 
Thus, it is likely that both glycolysis and glutaminolysis contribute to 
T cell-dependent production of intra-tumoral lactate.

B lymphocytes have been largely neglected as tumor-infil-
trating immune cells. However, there is evidence that they play 
an important role in antitumor immunity, as antigen presenting 
cells, as well as a source of cytokines. Their presence within 
tumors has been considered as a positive prognostic factor in 
breast cancer (38, 39). Metabolically, B cells are distinct from T 
cells because, upon activation, they do not preferentially switch 
from OXPHOS to glycolysis, but rather B lymphocytes use both 
pathways. However, inhibition of glycolysis or B cell-specific 
deletion of GLUT-1 suppresses antibody production in vivo (35); 
hence, it is likely that some tumor-infiltrating B lymphocytes 
contribute to intra-tumoral lactate production.

Overall, the contribution of lactate produced by immune cells 
to the tumor microenvironment is relatively modest, given that 
it is dependent on the number of immune cells recruited, their 
differentiation or activation status, and whether immune cells are 
dysfunctional because of the immunosuppressive mechanisms 
developed by the tumor.

CeLL TO CeLL TRANSFeR OF LACTATe, 
THe MONOCARBOXYLATe 
TRANSPORTeRS

Monocarboxylate transporters (MCTs) catalyze the proton-linked 
transport of monocarboxylates (e.g., lactate, pyruvate, and ketone 
bodies) across the plasma membrane (40–43). MCTs have been 
found in the plasma membrane of various cell types, including 
tumor cells (44), erythrocytes (40), and neutrophils (45). MCTs 
1–4 isoforms have distinct substrate affinities and have been char-
acterized in detail (46), MCTs are necessary for lactate input into 
cells that use lactate as an oxidative metabolite (such as skeletal 
muscle and heart) or cells that use lactate as a substrate for gluco-
neogenesis (liver). MCT1 is expressed at low levels in most tissues, 
the expression of MCT2 and MCT3 is restricted to certain tissues; 
MCT2 is primarily expressed in liver, kidney, and neurons, whereas 
MCT3 is expressed by the basolateral retinal pigment epithelium 
and the choroid plexus. High levels of MCT4 are found in white 
skeletal muscle fibers and at lower levels in other tissues, such as 
testis, lung, and placenta. Certain cell types, such as chondrocytes, 
leukocytes, and astrocytes, also express MCT4 (46).

Monocarboxylate transporters of different affinities direct 
both the influx and efflux of lactate across the plasma membrane. 
Accumulation of lactate and the acidification that arises in the 
intracellular milieu might have deleterious consequences for the 
cell; this is prevented by the cotransport of both protons and 
lactate by MCTs out of the cells. Of note, transport of lactate 
relies on the intracellular versus extracellular concentration of 
lactate, the pH, and the concentration of other substrates of 
MCTs (47, 48).

Lactate, released by glycolytic cells, such astrocytes, can be 
transported to other cells that undergo oxidative metabolism, 
such as neurons (49). This vectorial transport of lactate is medi-
ated by the cell-type specific expression of MCT molecules. This 
phenomenon is known as the “lactate shuttle” (50, 51). It has been 
proposed that, in some types of cancer, a similar phenomenon may 
occur, and this has been referred to as metabolic symbiosis (52).
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Several types of human cancer, such as glioma, breast, colorec-
tal, gastric, cervical cancer, and neuroblastoma show increased 
expression of MCT1 and MCT4, which has been associated with 
a poor prognosis (48, 53–55).

Cancer stem cells (CSCs) have been involved in tumor 
recurrence and distant metastasis. CSCs are partially resistant 
to conventional chemo- and radio-therapies; thus, finding new 
treatments that can target CSCs may be critical for improving 
patient survival. Expression of MCT1/2 appears to be important 
for “stemness” in tumor cells. Curry et  al. (56), showed that 
highly proliferative basal stem cell layer of normal oral mucosa 
is specialized for the use of mitochondrial fuels, such as lactate 
and express high levels of MCT1. A similar phenomenon was 
observed on the highly proliferative, poorly differentiated head 
and neck squamous cell carcinoma cell population, where the 
cellular distribution of proliferative markers (Ki-67) correlated 
with MCT1. The authors suggest that MCT1 may be a novel stem 
cell marker. Also, 3D spheroids (containing a cell population 
enriched in cancer stem cells) from ER-positive breast cancer cell 
lines are sensitive to therapeutic targeting of MCT1/2, via inhibit-
ing the uptake of mitochondrial fuels (ketone bodies and lactate) 
(57). On the other hand, stem-like CD133-positive fractions from 
glioblastoma cultures express significantly higher levels of MCT4 
mRNA compared with the CD133-negative fractions. In vitro, 
MCT4 silencing resulted in significant growth inhibition and the 
induction of apoptosis in neurospheres. In vivo, MCT4 silencing 
slowed glioblastoma intracranial xenograft growth. Thus, prolif-
eration and survival of glioblastoma stem-like cells are dependent 
on the expression of MCT4 (58).

eFFeCT OF LACTATe ON THe TUMOR 
MiCROeNviRONMeNT

The tumor microenvironment is an intricate network of extra-
cellular matrix molecules, soluble factors and cells, including 
stromal cells and adipocytes. Tumor stromal cells include 
cancer-associated fibroblasts (CAFs), tumor endothelial cells 
(TECs), and immune inflammatory cells such as macrophages. 
Stromal cells generate a tumor microenvironment in constant 
change as tumors invade normal tissues and subsequently seed 
and metastasize. Among the soluble factors present in the tumor 
microenvironment, lactate is of particular importance given 
its effects on cancer and stromal cells. As a consequence of the 
Warburg effect, cancer cells secrete large amounts of lactate to the 
extracellular microenvironment, which in turn lowers extracel-
lular pH to 6.0–6.5 (59). Lactate contributes to acidosis, signals 
for angiogenesis, acts as a cancer cell metabolic fuel, and induces 
immunosuppression (60–62). Several reports demonstrate that 
acidosis leads to loss of the T-cell function of human and murine 
tumor-infiltrating lymphocytes; the T-cell function can be 
restored by buffering the pH at physiological values (60, 63, 64).

The acidic microenvironment acts as a trigger for pain in 
cancer patients (65). In addition, lactic acidosis may contribute 
to the metastasis of some cancers (66). Lactic acidosis induces 
production of matrix metalloproteinase-9 (MMP-9) in mouse 
B16 melanoma (67), VEGF-A in glioma and glioblastoma cells 

(68, 69), and IL-8 expression in pancreatic adenocarcinoma 
(70, 71) and ovarian carcinoma cells (72), all making the tumor 
microenvironment even more complex.

Lactate per se stimulates angiogenesis, through the activation 
of the VEGF/VEGFR2 signaling pathway (73, 74), and activates 
endothelial cells through MCT-1; which triggers the phosphoryla-
tion/degradation of IkBα, stimulating the NF-kB/IL-8 (CXCL8) 
pathway that drives cell migration and tube formation (75).

CAFs contribute to tumor survival by several factors includ-
ing changes in cell metabolism, in which lactate plays a central 
role. Pavlides et al. (76) formulated the “Reverse Warburg effect” 
hypothesis, which proposes that tumor cells induce aerobic gly-
colysis in CAFs. In turn, these cells secrete lactate and pyruvate, 
which are consumed by tumor cells to undergo Krebs cycle and 
OXPHOS, resulting in ATP production and a higher proliferative 
capacity. In consequence, tumor cells can adapt to rapid changes 
in the tumor microenvironment through reprograming stromal 
cells and by the metabolic interplay between oxidative (OXPHOS) 
and glycolytic cells (76, 77).

MeTABOLiC SYMBiOSiS, LACTATe AS A 
MeTABOLiC SUBSTRATe

Some authors have suggested that rather than using lactate as a 
nutrient, cancer cells generally export lactate, which then acidifies 
the tumor environment affecting stromal cells (48, 78). However, 
lactate is fundamental for a symbiotic process where tumor cells 
that grow under hypoxic conditions increase the expression of 
the glucose transporter GLUT-1 and in consequence the uptake 
of glucose. This process enhances the glycolytic flux of carbon and 
the production of lactate, which is then secreted via MCT4. By 
contrast, tumor cells growing under aerobic conditions take up 
lactate by MCT1; then, it is converted into pyruvate by the LDH-
B, pyruvate enters the Krebs cycle and its products can be used by 
the OXPHOS pathway for energy production (10). Summarizing, 
lactate is released in the hypoxic tumor cell compartment, which 
fuels oxidative metabolism of the aerobic tumor cell compart-
ment, sparing glucose supply to be preferentially consumed by 
hypoxic cells (52, 79).

The concept of metabolic symbiosis in tumors implies that 
there is a net flux of lactate (as a metabolic substrate) from 
hypoxic tumor cells to oxygenated tumor cells, following an oxy-
gen gradient, i.e., it is related to the distance each cell is away from 
functional blood vessels within the tumor architecture (52, 79).

Inhibition of MCT1 in aerobic tumor cells leads to a higher 
glucose than lactate consumption, breaking the metabolic sym-
biosis, at this point the anaerobic tumor cells die from glucose 
deprivation. This phenomenon was demonstrated in a murine 
model in which the treatment of lung cancer with an MCT1 
inhibitor indirectly induced death of distant hypoxic tumor cells. 
MCT1 expression has been exclusively found in aerobic regions 
of human tumor tissue from head, neck, breast, and colon cancers 
(52). All these results are consistent with the over-expression of 
LDH-B and the use of lactate as an energy substrate for tumors.

The current model of metabolic symbiosis, considered as a 
constant environment where a hypoxic core uses glucose and a 
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highly vascularized edge consumes lactate as substrate, should be 
seen as a dynamic process, because during tumor development 
and as a result of neovascularization, the pattern of well-perfused 
and hypoxic areas may change constantly (10, 52). Furthermore, 
a sudden decrease in the availability of oxygen or glucose may 
force tumor cells to find an alternate source of energy, such as 
lactate, for survival during the starving period. Thus, lactate may 
be used as an alternative to fuel oxidative tumor cells, in which 
amplification of mitochondrial metabolism contribute to human 
tumor formation and cancer progression (56, 57). Furthermore, 
lactate indirectly promotes the survival of hypoxic tumor cells 
located far from the newly formed blood vessels (10, 80).

LACTATe eFFeCT ON  
TUMOR-iNFiLTRATiNG iMMUNe CeLLS: 
A ReGULATOR OF ANTiTUMOR iMMUNe 
ReSPONSe?

The tumor microenvironment can present zones with lactate 
concentrations of up to 40 mM, which tumor cells can cope with 
(81). The question now is how do infiltrating immune cells cope 
with a lactate-rich microenvironment?

To start with, activated immune cells are also lactate producer 
cells, as it has been demonstrated that, upon activation, T lym-
phocytes increase the expression of glucose transporters, key gly-
colytic enzymes, glycolysis rate and, therefore, lactate production 
(33). Macrophages are also lactate-producing cells; MCT4, which 
is involved in lactate secretion, is up-regulated by TLR2 and TLR4 
agonists in a variety of macrophages; whereas LPS, a TLR4 agonist 
induces the expression of key glycolytic enzymes, i.e., hexokinase 
2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3. 
These enzymes are diminished in macrophages in which MCT4 
has been knocked down, suggesting that MCT4 up-regulation 
represents a positive feedback mechanism in macrophages, 
which maintains the high glycolytic rate that is required for a fully 
activated inflammatory response (82).

There is evidence of a deleterious effect of high concentrations 
of lactate on the tumor-infiltrating immune cells. Clinical evi-
dence supports the possible link between lactate metabolism and 
limited immune cell infiltration in renal cell carcinoma (RCC). 
Up-regulation of GLUT-1 expression in RCC biopsies negatively 
correlates with CD3+, CD8+ and granzyme B+ T cells compared 
to normal primary cells or kidney tissue. Interestingly, LDH-5 
expression in tumor cells, which is one of the five LDH isoenzymes 
and plays an important role in promoting anaerobic glycolysis, 
has a negative impact on infiltration by CD3+ T cells, but not 
on CD8+ granzyme B+ or FOXP3+ T cells. These observations 
suggest that, in addition to the high glucose uptake by tumor cells, 
lactate also modulates T cells in the tumor environment (83).

Lactate secreted by tumor cells impairs the cytolytic functions 
of T cells in  vitro, in particular those of CD8+ T cells. Lactate 
inhibits proliferation and cytokine production of human cyto-
toxic T lymphocytes (CTLs) by 95%, whereas their cytotoxic 
activity is inhibited by 50%. Interestingly, a recovery period in 
lactic acid-free medium restores the CTL function (60). From a 
series of experiments in which CTLs were treated with 20 mM 

lactic acid, HCl, or sodium lactate, besides an inhibitor of MCT1 
(α-cyano-4-hydroxy-cinnamic acid) or lactic acid derived from 
melanoma cells, the authors concluded that high lactic acid 
concentrations in the tumor environment block the export of 
lactic acid by T cells, thereby disturbing their metabolism and 
function (60). Lactic acid production by melanoma cells inhibits 
TAA-triggered IFN-γ production by specific CTLs in melanoma 
spheroid cocultures (84). Another study also confirmed that lac-
tic acidosis inhibits TCR-triggered cytokine production (IFN-γ, 
TNF-α, IL-2) and induces partial impairment of lytic granules 
exocytosis in CTLs. This effect was found to selectively target 
downstream signaling pathways of the MAPKs p38 and JNK/c-
Jun as observed by reduced phosphorylation when CTLs were 
stimulated in the presence of lactic acid (61).

Tumor-derived lactate is up-taken by tumor-associated 
macrophages (TAMs) through their MCTs active transport-
ers on the cell membrane, leading to the transcription of the 
vascular endothelial growth factor (VEGF) and the l-arginine-
metabolizing enzyme arginase-1 (ARG1) genes (26, 85). 
ARG1 hydrolyzes l-arginine to l-ornithine and urea. ARG1 is 
expressed in myeloid cells, including TAMs, and can support 
tumor growth and suppresses antitumor immune responses. 
Lactic acid has been shown to increase ARG1 expression in 
macrophages, inhibiting T-cell activation and proliferation 
(86). Recently, Colegio et al. (26) showed that in macrophages 
cultured under normoxia, HIF1α is stabilized by lactate leading 
to the transcription of ARG1 and VEGF genes. Lactic acid also 
favors tumor growth by polarizing macrophages to an M2-like 
state, a subset with a role in inflammation resolution and tissue 
remodeling. It remains to be explored whether arginase or VEGF 
are up-regulated in other myeloid cells that are known to express 
these enzymes, such as plasmacytoid DCs and myeloid-derived 
suppressor cells.

Lactic acid transiently inhibits the expression of most 
LPS-induced genes, this inhibitory effect is not observed 
after incubation with sodium lactate, and it is attenuated in 
acidified samples. In monocytes, lactic acid targets are TNF, 
NF-kB, PTX3, which are down-regulated, and IL-23, which is 
up-regulated. Also, expression of chemokines (e.g., CCL2 and 
CCL7) is transiently down-regulated. These effects are medi-
ated by delayed LPS-induced phosphorylation of AKT and 
the degradation of IkB (87). Thus, lactate modifies monocytes 
function and consequently contributes to immune suppression 
within tumors.

Tumor infiltration by mature DCs confers immune activation. 
However, tumor cells suppress DCs function or otherwise alter 
the tumor microenvironment so that immune-suppressive DCs 
are recruited (22). Tumor cells-derived lactate inhibits the dif-
ferentiation from monocytes to DCs and inactivates the release 
of cytokines from differentiated DCs (88).

Lactate rather than oxygen availability is responsible for 
the differentiation to tolerogenic DCs, as exemplified by the 
increased production of IL-10 and loss of IL-12, in response to 
TLR stimuli (89). Besides, high extracellular lactate concentra-
tion in the tumor microenvironment prevented lactic acid export 
from glycolytic DCs, thus leading to lactate accumulation and 
tolerogenic DCs (90).
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Recent studies support the notion that the activity of NK cells 
is inhibited by tumor-derived lactate or low extracellular pH (62, 
91). Purified human NK cells cultured in the presence of lactate 
for 72 h and tested for cytolytic activity against K562 cells exhib-
ited a significant decrease in their cytotoxic activity. This effect 
was mediated by down-regulation of the NK activation receptor, 
NKp46 (91).

Tumor cells can secrete anti-inflammatory cytokines, and 
immunosuppressive cell populations can be recruited to the 
tumor microenvironment, both directly inhibiting immune 
responses (92, 93). In addition, recent evidence shows that, for 
instance, glioblastoma cells secrete enzymatically active LDH-5 
that induces the expression of NKG2D ligands on myeloid cells, 
particularly MICB and ULBP-1 mRNA in healthy monocytes, 
subverting antitumor immune responses (94). The isoenzyme 
has the highest efficiency to catalyze pyruvate conversion to 
lactate (95). Several reports have shown that cancer patients with 
elevated levels of LDH in sera have a poor prognosis (48, 96, 97) 
perhaps as a consequence of larger tumor burdens or hypoxic 
tumor cells with high glycolytic metabolism linked to radio- and 
chemo-resistance. The secretion of LDH might also contribute to 
the immune evasion of tumor cells by the induction of NKG2D 
ligands on host myeloid cells (94).

Lactic acid has been suggested to be a proinflammatory media-
tor that activates the IL-23/IL17 pathway. Lactic acid increases 
the expression of IL-23p19 in tumor-infiltrating immune cells 
activated via TLR stimulation and also induces the Ag- and IL-23-
dependent secretion of IL-17 in splenocytes. The activation of the 
IL-23/IL-17 pathway promotes local inflammatory responses by 
polarizing immune responses toward a Th17/Th23 profile, which 
favors the incidence and growth of tumors (98). Taken together, 
these observations show that lactate plays an important immu-
noregulatory role in cancer.

LACTATe ReCePTOR-iNDUCeD 
iNTRACeLLULAR SiGNALiNG

The l-lactate receptor GPR81 (or hydroxycarboxylic receptor 
1, HCA1) was initially classified as an orphan receptor in a 
search of new G protein-coupled receptors (GPCRs) (99). In 
2008 and 2009, it was shown that l-lactate is a natural ligand 
and agonist of GPR81, along other monocarboxylates such as 
alpha-hydroxybutyrate, glycolate, alpha-hydroxyisobutyrate, and 
gamma-hydroxybutyrate (100–102).

The GPR81 receptor has been found in adipocytes (103), in 
the brain (104), in liver, skeletal muscle, and other human, mouse, 
and rat tissues (101); and more recently in colon, breast, lung, 
hepatocellular, salivary gland, cervical, and pancreatic carcinoma 
cell lines, as well as in tumors resected from patients with pan-
creatic cancer; in fact, 94% of the pancreatic tumors examined 
expressed high levels of GPR81 (105).

Roland et al. (105) have shown that shRNA-mediated silenc-
ing of GPR81 leads to cancer cell death in culture conditions 
of low glucose and lactate supplementation, in contrast to cells 
growing in glucose-containing medium, where GPR81 silencing 
has no effect. Interestingly, the same authors observed that lactate 

stimulation of wild-type GPR81+ cells induced the expression 
of genes involved in lactate metabolism, including MCTs, and 
that, in vivo, GPR81 expression levels correlates with the rate of 
pancreatic cancer tumor growth and metastasis (105).

Whether GPR81 binding to lactate in tumor cells initiates 
an intracellular signaling pathway or whether the biological 
effects of lactate on tumor cells are due to lactate uptake, and 
lactate metabolism remains to be analyzed. The finding that 
lactate stimulation of GPR81 induces the expression of lactate 
metabolic genes suggests that GPR81 engagement prompts a cell 
signaling process.

In this regard, lactate has been proposed to be a signaling 
molecule in the brain, which is involved in neuronal plasticity; 
because lactate stimulates the expression of synaptic plasticity-
related genes such as Arc, c-Fos, and Zif268 in neurons through 
a mechanism involving NMDA receptor activity and its down-
stream signaling cascade Erk1/2, along with an increase in intra-
cellular calcium (104). Lactate also increases intracellular levels 
of NADH, thereby modulating the redox state of neurons (106).

It is likely that the GPR81-lactate engagement in tumor cells 
initiates similar signaling pathways. We hope that its characteri-
zation will open the possibility of a GPR81-targeted therapeutic 
intervention in cancer.

LACTATe: A THeRAPeUTiC TARGeT iN 
CANCeR?

High concentrations of lactic acid in the tumor environment block 
lactic acid export by T cells, thereby disturbing their metabolism 
and function. This has led to the suggestion that targeting tumor 
cell glycolysis and therefore lactic acid production is a promising 
strategy to enhance antitumor immune responses (60).

Targeting specific MCTs would induce apoptosis of tumor 
cells due to intracellular acidosis (lactate accumulation) or would 
inhibit lactate uptake by aerobic tumor cells, thus reducing tumor 
angiogenesis, invasion, metastasis, and the deleterious effects of 
extracellular lactate on the immune cells.

There is evidence that MCT4 inhibition can induce accumula-
tion of intracellular lactic acid and the subsequent cell death in 
hypoxic tumor cells (107). Knockdown experiments have shown 
that MCT4 is also needed for migration and invasion of MCT4-
expressing tumor cells (108, 109), but what about tumor cells 
growing in normoxic conditions? Would it be possible to block 
lactate uptake by targeting MCT1, thus disrupting metabolic 
symbiosis between tumor cells? Lonidamine, an MCT inhibitor, 
induces an immediate decrease in intracellular pH in neuroblas-
toma cell lines (Sk-N-SH, CHP134, IMR32, and NGP), which 
correlates with diminished cell viability within 48 h of treatment 
(53); knockdown of MCT1, or inhibition of MCTs with the small 
molecule α-cyano-4-hydroxy-cinnamate, blocks cell prolifera-
tion, and migration, and induces apoptosis in glioblastoma cells 
(110–112). Besides, an inhibitor of MCT1 (AZD3965) has been 
shown to inhibit small cell lung carcinoma cell lines in vitro as 
well as in an in vivo model (113). AZD3965 is undergoing Phase I 
clinical trials for prostatic and gastric cancer, as well as for diffuse 
large B-Cell lymphoma (NCT01791595) (114).
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In addition, in vitro siRNA knockdown of MCT1 and MCT4 in 
basal-like breast cancer cells in both normoxic and hypoxic condi-
tions led to a decrease in tumor cell aggressiveness, concomitant 
with decreased lactate transport, cell proliferation, migration, 
and invasion. MCT-knockdown inhibited tumor formation and 
growth in a model of tumor xenografts in nude mice (107).

Targeting lactate production and lactate transport are promis-
ing therapeutic strategies for cancer. Despite their success, current 
MCTs inhibitors are not selective (48). For example, α-cyano-
4-hydroxy-cinnamate also inhibits the chloride-bicarbonate 
exchanger AE1 (112) and the mitochondrial pyruvate carrier 
(115). Lonidamine inhibits the hexokinase 2 enzyme activity 
in  vitro (116). Therefore, it seems worthwhile to develop new 
potent small molecules to selectively inhibit the various MCTs 
involved in tumor growth.

The recent discovery of potent and specific MCT1 inhibi-
tors developed by Astra-Zeneca confirms that MCTs could be 
promising pharmacological targets including their use for cancer 
chemotherapy (48, 115, 117). However, these inhibitors were 
originally described to prevent proliferation of T lymphocytes. 
Thus, the effect of inhibition of MCT1 on tumor-specific T cells 
remains to be seen.

Targeting tumor metabolism via anti-glycolytic therapies has 
been proposed as an attractive therapeutic approach, as glycolysis 
is a key converging node for multiple signaling pathways in can-
cer cells. LDH-A, the enzyme that converts pyruvate to lactate, is 
currently a promising target (59).

On the other hand, 3-bromopyruvate (3-BrPA), a drug under 
development, has cytotoxic effects and decreases cellular energy 
levels by inhibiting glycolysis. 3-BrPA is probably best charac-
terized as a toxic molecule rather than a specific inhibitor of 
glycolysis or MCT1. It has been proposed as a therapeutic alterna-
tive to deliver toxic molecules to glycolytic tumors by using the 
MCT1-mediated transport (118).

Studies performed on LDH-A-suppressed cancer cell lines 
show that these cells exhibit reduced tumor progression in xeno-
graft models, due in part to the increased production of reactive 
oxygen species (ROS) and cell death, as a result of increased 
cell respiration (59). Metabolic reprograming in lung tumor 
cells, following LDH-A abrogation, reduces lactate production 
concomitant with an increased flow of carbon from both glucose 
and glutamine through the Krebs cycle, oxygen consumption, 
and mitochondrial ROS production (59, 119).

Several small-molecule LDH-A inhibitors are being tested for 
their anticancer activity. However, many of them still show low 
selectivity and potency (48). Interestingly, a new LDH-A inhibitor 
is capable of suppressing cancer stem cell function, a type of cells 
which are not targeted by most current therapies for cancer (59).

LACTATe: A PROGNOSTiC BiOMARKeR 
iN CANCeR?

The possible role of lactate as a predictive biomarker of overall 
survival in cancer patients arises from several studies that lactate 
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