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Influenza viral evolution presents a formidable challenge to vaccination due to the virus’ 
ability to rapidly mutate to evade immune responses. Live influenza infections generate 
large and diverse CD4 effector T cell responses that yield highly protective, long-lasting 
CD4 T cell memory that can target conserved viral epitopes. We review advances in our 
understanding of mechanisms involved in generating CD4 T cell responses against the 
influenza A virus (IAV), focusing on specialized follicular helper (TFH) and CD4 cytotoxic 
(ThCTL) effector subsets and on CD4 T cell memory. We also discuss two recent findings 
in context of enhancing vaccine responses. First, helper T cells require priming with APC 
secreting high levels of IL-6. Second, the transition of IAV-generated effectors to memory 
depends on IL-2, costimulation and antigen signals, just before effectors reach peak 
numbers, defined as the “memory checkpoint.” The need for these signals during the 
checkpoint could explain why many current influenza vaccines are poorly effective and 
elicit poor cellular immunity. We suggest that CD4 memory generation can be enhanced 
by re-vaccinating at this time. Our best hope lies in a universal vaccine that will not 
need to be formulated yearly against seasonal antigenically novel influenza strains and 
will also be protective against a pandemic strain. We suggest a vaccine approach that 
elicits a powerful T cell response, by initially inducing high levels of APC activation and 
later providing antigen at the memory checkpoint, may take us a step closer to such a 
universal influenza vaccine.

Keywords: influenza, vaccination, memory checkpoint, late-antigen, CD4 T cells, cell-mediated immunity

inTRODUCTiOn

Efforts to develop a vaccine for influenza date back to 1936 when the first live attenuated virus 
vaccine was produced in chicken eggs (1). Eighty years later, an effective influenza vaccine remains 
elusive, with the CDC reporting an overall vaccine efficacy of only 23% in the 2014–2015 influenza 
season (2). While influenza pandemics occur rarely, the H1N1 pandemic in 2009 also reminded us 
that they remain a major threat (3, 4). In this review, we discuss how CD4 T cells combat influenza 
viruses, with a focus on CD4 memory generation. We suggest strategies for improved influenza vac-
cines based on our new understanding of the mechanisms by which CD4 memory and functionally 
specialized effectors are generated.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00136&domain=pdf&date_stamp=2016-04-11
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00136
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:susan.swain@umassmed.edu
http://dx.doi.org/10.3389/fimmu.2016.00136
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00136/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00136/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00136/abstract
http://loop.frontiersin.org/people/294845/overview
http://loop.frontiersin.org/people/317165/overview
http://loop.frontiersin.org/people/111484/overview
http://loop.frontiersin.org/people/111972/overview
http://loop.frontiersin.org/people/20420/overview


2

Devarajan et al. Insights into CD4 Memory Generation

Frontiers in Immunology | www.frontiersin.org April 2016 | Volume 7 | Article 136

inFLUenZA viRUSeS AnD THe iMMUne 
SYSTeM – A COnSTAnTLY  
evOLvinG CHALLenGe

Influenza A (IAV) and influenza B viruses infect humans causing 
widespread, sometimes fatal, disease. Both viruses contain eight 
gene segments, which encode surface proteins involved in viral 
attachment, entry and release from the cell, and internal proteins 
that predominantly play a role in viral replication (5–7). The two 
coat proteins, hemagglutinin (HA) and neuraminidase (NA), on 
the outer envelope are used to subtype the virus.

Each year new variants of influenza viral strains become 
dominant because of the high rate of mutations of the RNA virus. 
“Antigenic drift,” one of the strongest drivers of viral evolution, 
results from the error-prone replication process (6) in conjunc-
tion with immune clearance based primarily on recognition of 
HA and NA by neutralizing antibody (Ab) (6). By virtue of their 
surface expression and abundance, the HA and NA contain the 
dominant epitopes recognized by Ab and to a lesser degree by 
responding T cells (8). Viruses having mutations in key epitopes 
can evade the immune system resulting in yearly drift within 
strains (9–12). “Antigenic shifts” that cause pandemics arise 
when re-assortment of influenza virus gene segments, often from 
different host species, occur (13).

Current vaccines rely largely on the induction of influenza-
specific Ab (14). New influenza vaccines are needed yearly to 
target the mutated epitopes in circulating strains predicted to 
dominate the upcoming flu season, but the predictions can be 
wrong leading to poor vaccine efficacy like that seen over the past 
two flu seasons (15–17). Antigenic mutations also make vaccine 
production logistically difficult as viruses can also mutate during 
the processes used in vaccine production (18).

Studies of viral evolution over the years indicate that while 
only 2.7% of epitopes recognized by Ab are conserved, 15% of 
T cell epitopes remain unchanged (8). This higher conservation of 
T cell epitopes correlates with the ability of T cells to target internal 
viral proteins involved in replication, which are far less tolerant to 
selection pressure compared to the external coat proteins (19–21). 
For example, the HA and NA of the pandemic H1N1 strain have 
acquired mutations at a rate six to eight times faster than the 
internal NP protein, in terms of amino acids substitutions per 
site per year (22). Ultimately an ideal vaccine that also combats 
viral escape would be one that elicits a broad immune response 
against the whole virus  –  a response which includes CD4 and 
CD8 memory responses in addition to Ab responses.

Thus, we suggest that a better understanding of the genera-
tion of T cell memory could lead to the development of vaccine 
strategies that induce more memory T cells, which are better able 
to recognize yearly influenza strain variants and new pandemic 
strains, providing longer-lived protection.

CD4 eFFeCTOR ReSPOnSeS  
AGAinST inFLUenZA

The first line of immune defense upon infection is comprised 
of PRR (pattern recognition receptor) pathways induced by the 

virus in infected epithelium, DCs, alveolar macrophages, and 
other  myeloid cells triggered by viral PAMPs (pathogen associ-
ated molecular patterns) that act to induce innate defenses upon 
infection (23). PRR-activated cells also produce the inflammatory 
cytokines that promote the APC activation required for optimal 
T cell priming and costimulate adaptive T and B cell responses (23).

Activated APC migrate to the secondary lymphoid organs as 
early as 2 days post infection to present antigen to naive T cells 
(24). Effective CD4 T cell activation requires three distinct sig-
nals: antigen recognition by TCR, costimulation of CD28 on the 
T cell by CD80/86 on APC, and APC-produced costimulatory 
cytokine(s). Together, these signals drive CD4 T cell activation, 
with the cytokine milieu being a major factor in determining 
polarization into Th1, Th2, or Th17 subsets (25, 26). Regulatory 
T (TREG) cells are also induced during influenza infections (27–29).

Influenza A virus infection predominantly induces a Th1 
response, with most CD4 effectors producing IFNγ though the 
importance of IFNγ in combating the flu has been debated (26). 
Th17 effectors that contribute to protection are produced during 
IAV infections (30), but they also contribute to immunopathology 
(31). The polarization of T helper subsets during IAV infections 
has been previously reviewed (25, 26) and will not be discussed 
further.

While one of the classical functions of CD4 T cells is to help 
CD8 T cell effector generation, such help is not important for an 
effective primary immune response to influenza (32). However, 
recent studies have shown an important role for CD4 help during 
CD8 priming in the formation of CD8 resident memory T (TRM) 
cells in lung airways during influenza infection (32, 33). CD4 
T  cells also regulate CD8 effector responses during IAV infec-
tions by modulating IL-10 production by CD8 T cells (34) and by 
counteracting TREG suppression (35).

Two other functionally specialized CD4 effector subsets that 
appear later in the response are T follicular helper cells (TFH) and 
cytotoxic CD4 T cells (ThCTL). TFH promote T-dependent B cell 
responses. TFH lineage fate is determined in part by expression 
of transcription factor Bcl6 followed by upregulation of CXCR5, 
which causes the helper T cell to migrate to the germinal center 
(36). TFH drive B cell survival, proliferation, class switching, 
plasma cell differentiation, and somatic hypermutation that take 
place in germinal centers (37). Germinal center T-dependent 
B cell responses are also required for generating memory B cells 
and later long-lived plasma cell (LLPC)-derived Ab responses that 
confer protection against reinfection (25, 38, 39). Direct evidence 
of the importance of the TFH subset in mounting an immune 
response against IAV comes from human influenza vaccine stud-
ies that correlate efficacy of protective Ab responses generated to 
the number of TFH cells detected in the blood (40–43).

Cytotoxic CD4 T cells are effector CD4 T cells that mediate 
perforin-dependent, MHC Class-II specific cytotoxic activity. 
They are tissue-restricted, and in mouse models of IAV, infections 
are seen only in the lung (44–46). Although MHC-II expression is 
restricted to APC under steady state conditions, MHC-II is upreg-
ulated on infected epithelial cells in the lung during IAV infec-
tion (45). ThCTL could therefore mediate clearance of infected 
epithelial cells and contribute to clearance of the virus. Their 
contribution to the immune response against IAV  is, however, 
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often masked by other multiple redundant  effector mechanisms 
(44, 47). The regulation and differentiation of this subset remain 
to be fully elucidated, though recent studies in a mouse model 
of IAV suggest a role of Blimp-1 and type I interferon pathways 
in ThCTL formation (48). Thus, ThCTL represent a uniquely 
regulated CD4 T cell subset to target in vaccine approaches.

AGinG iMPAiRS CD4 T CeLL HeLPeR 
ReSPOnSeS AGAinST inFLUenZA

Influenza infections cause extensive morbidity and mortality 
among the aged and current vaccines fail to provide widespread 
protection in this at-risk subset of the population (49, 50). B cell 
Ab responses (49), especially IgG responses (51) and induction 
of LLPC key to protection against re-infection, are impaired in 
aged mouse models. We have found that, in mice, reduced naive 
CD4 T cell responses can be enhanced by activation of the APC 
by TLR agonists, and this dramatic effect is dependent on IL-6 
(52, 53). Young naive cell responses are also enhanced by the same 
mechanism (50), as are responses of aged human CD8 T cells 
(49, 54). Thus, we suggest that strategies, which couple antigen 
with agents that specifically activate relevant APC to produce IL-6 
may improve vaccines for the aged.

CD4 T CeLL MeMORY

Memory CD4 and CD8 T cells can provide strong protection in 
the absence of neutralizing Ab following heterosubtypic infection 
in mouse models of IAV infection (45, 47, 55). Memory T cells 
were originally thought to be stem-like, retaining pluripotent 
potential (56), but new developments have demonstrated that 
memory T cells generated following infection are mostly com-
posed of multiple highly differentiated subsets, which mediate the 
enhanced protective ability of memory over naive T cells.

Memory CD4 T cells generated by live infection retain some 
of the differentiation-associated changes attained during the 
effector phase of the response. CXCR5 expressing memory CD4 
T cells are capable of enhanced B cell help during re-challenge, 
although they are also capable of differentiation into many dif-
ferent cytokine-secreting subsets during the secondary response 
(55, 57, 58). Th1-like memory cells were identified in one report 
by a lack of CXCR5 expression and in another by increased Ly6C 
expression. Using either method, isolated memory cells largely 
became IFNγ-producing Th1 cells during the secondary response, 
demonstrating far less plasticity than the CXCR5+ memory T cells 
(57, 58). This retention of functional imprinting that occurs in the 
effector phase may account for some of the enhanced function 
during the secondary response (59).

Lung CD4 TRM cells have recently been characterized fol-
lowing influenza infection. This subset, which is thought to 
be present at the frontline of infection in tissues, is critical for 
protection against a lethal dose of IAV (60). While studies have 
demonstrated that antigen recognition in the lung along with 
TGFβ signals are required for the formation of CD8 TRM during 
influenza infection, it is unclear if CD4 TRM cells have similar 
requirements (61). Both lung TRM CD4 and CD8 T cells express 

CD69, but only CD8 TRM cells express CD103 (62), suggesting the 
two populations may occupy different niches within the lung or 
that they may be differently regulated.

Memory CD4 T cells provide protection via multiple syn-
ergizing mechanisms including both IFNγ-dependent and 
 -independent mechanisms, cytotoxic mechanisms, help for B cells 
and rapid induction of innate inflammatory responses (25, 26, 47). 
Additionally, the presence of cross-reactive memory CD4 T cells 
has been correlated with less severe disease following heterosub-
typic infection in humans (63). Therefore, the ability to induce 
CD4 memory responses is central to the development of vaccines 
that are more potent, broader in specificity and would also benefit 
from the synergy of multiple functional pathways to eliminate the 
virus.

LATe-AnTiGen SHAPeS eFFiCienT  
T CeLL eFFeCTOR AnD MeMORY 
ReSPOnSeS

Viral clearance occurs by days 10–13 of IAV infection, but antigen 
presentation can occur for up to 3 weeks (64). While early prim-
ing events are sufficient for some effector and memory T  cell 
differentiation (65–67), recent studies have identified a role for 
signals received at the effector stage in shaping ongoing CD4  
T cell responses. CD28 signals, after priming, have been shown 
to be required for full Th1 and TFH differentiation in IAV (68). 
A second round of antigen recognition is also required for full 
TFH differentiation (69–71).

Multiple studies have suggested that CD4 T cells require longer 
periods of antigen stimulation during antigen priming compared 
to CD8 T cells for effector function and proliferation (72–75). 
Some studies have also found that CD8 effector T cells require 
antigen stimulation after initial priming, out to 8 days after IAV 
infection for continued proliferation and survival (76, 77). One 
study identified a defined window from days 5 to 8 following 
administration of initial antigen, when antigen with adjuvant 
prevents apoptosis of effector CD8 T cells (78). Therefore, while 
the requirements during priming may be different for CD4 and 
CD8 T cells, it appears their response to antigen at the effector 
stage may be similar.

In addition to shaping effector responses, recent studies have 
highlighted the role of late signals in promoting the formation of 
functional, protective memory T cell populations. Late-antigen 
recognition, 5–8  days after infection, promotes the formation 
of protective memory CD8 T cells (79, 80). In the IAV infection 
model, we found that costimulation and IL-2 signaling during 
5–7  days after initial priming are required for almost all CD4 
memory cells to form (81). We have defined this time, 5–7 days 
after primary antigen encounter, as the “memory checkpoint.” 
Our study also showed that cognate MHC-II interactions and 
CD27–CD70 interactions are required at this checkpoint for 
efficient transition of CD4 effectors to memory (81).

It is well established that during chronic infections, antigen 
persistence drives T cell exhaustion (82). Some studies show that 
TCR stimulation 7 days after the response results in apoptosis of 
CD8 T cells (78). Others have found that after 10 days of antigen 
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stimulation, CD4 T cells begin to express an exhausted  phenotype 
(83). Thus, the memory checkpoint appears to be a tightly 
regulated time window during which antigen presentation has a 
substantial impact on the effector and memory T cells generated, 
beyond which antigen may drive exhaustion.

Some have found that late-antigen presentation to CD8 T cells 
occurs primarily in the lung (61, 77, 84), while others believe 
it also occurs in the lung-draining lymph nodes (85). It is yet 
unclear where antigen presentation during the effector phase 
occurs for CD4 T cells. It is conceivable that antigen recognition 
during the CD4 effector phase also occurs in the SLO since TFH 
must recognize late-antigen to provide help (36). We speculate 
that antigen recognition at the effector phase in the SLO provides 
signals that generate a circulating, central memory population, 
while antigen recognition in the lung during the effector phase 
may lead to TRM formation.

Thus, although small numbers of less differentiated memory 
cells may be formed following initial priming alone, additional 
cognate interactions are required at the “memory checkpoint” 
during the effector phase for the formation of large, functional 
CD4 memory populations (81). Given the many ways distinct 
CD4 subsets orchestrate the immune response, their continued 
dependence on antigen and costimulation for effector function 
and further differentiation may dictate the fate of distinct CD4 
subsets and thus tailor the response.

PeRSPeCTive On TRAnSLATinG 
ReCenT ADvAnCeS inTO iMPROveD 
inFLUenZA vACCineS

Given the challenges posed by influenza viruses and the recent 
advances in understanding CD4 T cell immune responses 
and memory summarized above, we suggest new strategies 
at two different levels that may enable an improved vaccine 
(Figure 1).

There are currently three classes of seasonal influenza vac-
cines in use: inactivated influenza vaccines consisting of both 
split-virion and subunit vaccines (IIV), live attenuated influenza 
vaccines (LAIV), and recombinant HA vaccines (14, 86). The 
multivalent vaccines contain components of both type A and 
type B viruses predicted to circulate in the upcoming influenza 
season. Both inactivated and new recombinant vaccines (com-
mercially known as FluBlok®) consist of HA with or without 
NA purified from viruses cultured in eggs or in cell culture and 
inactivated or made as a recombinant protein using baculovirus 
expression systems in insect cells, respectively (87). Live attenu-
ated vaccines (commercially known as FluMist®) are composed 
of cold-adapted viruses that do not survive at temperatures 
above 37°C and thus only infect the upper respiratory tract in 
humans and cause very mild infections sufficient to elicit modest 
immunity (14).

Both LAIV and IIV have been demonstrated to be equally 
effective in adults, while in children LAIV has demonstrated 
superior efficacy in various studies (86). This increased efficacy in 
children has been attributed to the wider range and longer-lived 
immune responses that LAIV elicits. While IIV primarily elicits 

IgG serum Ab responses against HA, LAIV has been shown to 
elicit a wider range of Ab responses including IgG and IgA against 
both HA and NA viral proteins. LAIV responses also promote 
CD4 and CD8 T cell responses against internal viral proteins and 
if these become memory T cells, they could be cross-protective 
against antigenically novel pandemic as well as seasonal epidemic 
influenza strains (8, 88).

Replicating live virus is likely to be the best at inducing APC 
activation through PRR pathways, a critical step in an effective 
helper T cell response. Production of IL-6 by the activated APC 
would also contribute to enhanced priming of young and aged 
responses, as discussed. This would explain the enhanced efficacy 
of LAIV compared to IIV. Partially purified IIV may induce 
minor activation through the remaining RNA and DNA present, 
while recombinant or highly purified subunit proteins are likely 
to be devoid of most PRR-inducing ability. Adjuvants could be 
used to enhance PRR responses in APCs, though further research 
will be required to achieve optimal activation without causing 
widespread inflammation (89). DC vaccines targeting antigen 
to PRR-activated APCs could also potentially be used to achieve 
similar strong initial T cell responses (90).
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However, even with LAIV, it is likely the level of antigen 
 presentation decreases with time since replication does not occur 
in the lung and is not likely to be high during the effector phase 
of the T cell response (91, 92), through the memory checkpoint, 
when such presentation is important for efficient T cell memory 
induction. Data also suggest that antigen presentation specifically 
in the lung is important to drive CD8 TRM responses to IAV (61). 
Thus, we suggest that additional antigen that can be presented by 
activated APC could be administered at the effector checkpoint 
through the intranasal route, a hypothesis we are currently test-
ing in the mouse model. A vaccine strategy including an early 
“boost” has indeed generated superior CD8 memory in mice thus 
lending support to the concept (93). We suggest that additional 
antigen priming at the memory checkpoint would both enhance 
T cell memory and potentially increase TFH responses, which also 
require late-antigen encounter and are correlated directly with 
successful Ab titers and viral clearance.

A more robust “T cell” vaccine incorporating these strategies 
should promote larger and longer lived Ab responses like those 
achieved by viral infection and generate more multi-functional 
memory T cells that are cross-reactive to antigenically novel 
strains. This might give us a recipe for a more “universal” influ-
enza vaccine that would not need to be reformulated every year 

and would provide some protection against potentially pandemic 
strains.
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