
April 2016 | Volume 7 | Article 1381

Mini Review
published: 11 April 2016

doi: 10.3389/fimmu.2016.00138

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Nichol E. Holodick,  

The Feinstein Institute for  
Medical Research, USA

Reviewed by: 
Adam Cunningham,  

University of Birmingham, UK  
Sylvie Bertholet,  

GlaxoSmithKline Vaccines, Italy

*Correspondence:
Ana F. Popi  

afpopi@unifesp.br

Specialty section: 
This article was submitted  

to B Cell Biology,  
a section of the journal  

Frontiers in Immunology

Received: 13 November 2015
Accepted: 28 March 2016

Published: 11 April 2016

Citation: 
Popi AF, Longo-Maugéri IM and 

Mariano M (2016) An Overview of 
B-1 Cells as  

Antigen-Presenting Cells.  
Front. Immunol. 7:138.  

doi: 10.3389/fimmu.2016.00138

An Overview of B-1 Cells as  
Antigen-Presenting Cells
Ana F. Popi* , Ieda M. Longo-Maugéri and Mario Mariano

Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de  
São Paulo, São Paulo, Brazil

The role of B cells as antigen-presenting cells (APCs) has been extensively studied, 
mainly in relation to the activation of memory T cells. Considering the B cell subtypes, 
the role of B-1 cells as APCs is beginning to be explored. Initially, it was described that 
B-1 cells are activated preferentially by T-independent antigens. However, some reports 
demonstrated that these cells are also involved in a T-dependent response. The aim 
of this review is to summarize information about the ability of B-1 cells to play a role 
as APCs and to briefly discuss the role of the BCR and toll-like receptor signals in this 
process. Furthermore, some characteristics of B-1 cells, such as natural IgM production 
and phagocytic ability, could interfere in the participation of these cells in the onset of an 
adaptive response.
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inTRODUCTiOn

Murine B-1 cells are known as innate B lymphocytes. However, the classification of these cells as 
B cells raised many questions, including whether this B cell subtype works in a similar or different 
way than its counterpart, conventional B-2 cells. Several reviews discuss differences between these 
two cell populations, regarding to their ontogeny, anatomical localization, antibody repertoire, 
antigen stimulus, and role in the immune response (1–6). The two major subsets of B cells, B-2 and 
B-1 cells, are defined by the differential expression of CD5 (7). Along with the presence of CD5 
on their surface, B-1 cells are further differentiated from B-2 cells by the expression of CD11b, 
IgMhigh, IgDlow, and the absence of CD23 (8). Furthermore, CD5 expression also subdivides the 
B-1 cells into two different subsets, B-1a cells, which are CD5+, and B-1b cells, which are CD5−  
(2, 8). B-2 cells are produced in the bone marrow from hematopoietic stem cells and migrate to 
the secondary lymphoid organs as immature B cells. In these organs, they differentiate into fol-
licular and marginal zone B cells (9, 10). B-1 cells are mainly present in the peritoneal and pleural 
cavities and constitute only a small fraction of the B cells in the spleen (11). B-1 cell origin and 
development occur primarily during the fetal stage from distinct precursors from B-2 cells (12, 13). 
Recently, Ghosn et al. (14) described that HSCs sorted from adult bone marrow and transferred to 
lethally irradiated recipients clearly give rise to B-2 and B-1b cells but do not detectably reconstitute 
B-1a cells (14). Furthermore, it has been postulated that the B-1a lineage derives independently 
from a hematopoietic stem cell (14). These B cell subsets specialize in the recognition of diverse 
antigens; consequently, they provide distinct immune effector functions. B-1a cells play a role in 
innate immunity via their contribution to natural antibodies, whereas B-1b cells are critical in the 
development of IgM memory cells (1). B-1a cells respond rapidly to T-cell-independent antigen 
(15). B-1a cells are also known to produce most of the natural antibodies in the serum (16, 17). 
Despite this, B-1 cell antibodies have been found to be reactive to self-antigens, and hyperplasia 
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of the B-1 cell population has been found in some autoimmune 
diseases (18, 19). The antibody production by B-1b cells has been 
poorly investigated. By contrast, the B-2 cell response to protein 
antigens is well described and elicits a T-cell-dependent immune 
response.

There are few reports about the possible roles each B cell 
subtype exerts in the immune response by acting as APCs. 
Although the majority of articles indicate the participation of 
B-1 cells in recognizing the T-cell-independent antigen, some 
reports demonstrate their role as antigen-presenting cells 
(APCs) (20–25). This role is extremely important because it 
could be one of the functions that have allowed the maintenance 
of B-1 cells through phylogenetic evolution. Furthermore, 
a more comprehensive status regarding this function could 
provide explanations concerning the role of B-1 cells in the 
immune response and in some diseases, such as autoimmune 
diseases.

AnTiGen-PReSenTinG B-1 CeLLS

Ron et al. (26) first demonstrated evidence of the role of B-2 cells 
in the CD4+ T cell response by showing a failure of proliferative 
T cell responses to protein antigens in B cell-depleted mice. To 
determine whether B cell deficiency caused the T cell response 
impairment in these mice, the authors showed that splenic cells 
and peritoneal macrophages were able to stimulate T cell response 
in  vitro. Although the first description of this occurred in the 
beginning of the 80s, the priming of T cells by B lymphocytes 
remains controversial (26–30), and scarce information exists 
about the role of other B cell subtypes. It has been postulated that 
the antigen-presentation capacity of antigen-specific B-2 cells is 
reserved for the re-activation of memory T cells (29, 31, 32). This 
could be, in part, attributed to the kinetics of the response of B-2 
cells, considering that the activation of these cells by a specific 
antigen takes several days. In this case, activated B-2 cells might 
encounter their cognate primed T cell and then play a role in their 
function as APCs (33–35). In this condition, activated B-2 cells 
are optimal APCs because they drive the T lymphocyte response 
to specific antigens (36, 37) and are able to modulate the polariza-
tion of T cells by cytokines.

As mentioned before, B-1 cells respond to T-independent 
antigens and are responsible for the production of natural 
antibodies, mostly IgM. These cells do not effectively participate 
in T-dependent responses [reviewed by Berland and Wortis 
(1)]. Despite this, some reports provide evidence that B-1 cells 
also stimulate T cells and respond to T-dependent antigens 
(20). Combined adoptive transfer experiments of OVA-pulsed 
 peritoneal-derived B-1 cells and CFSE-labeled T cells demon-
strated that B-1 cells are able to stimulate T cell proliferation. 
Furthermore, antigen presentation by B-1 cells to OVA-specific T 
cells was also demonstrated in vitro (20). Constitutive expression 
of MHC class-II, CD80, and CD86 by B-1 cells validated these find-
ings (22). Furthermore, the presence of an inflammatory stimulus 
or a specific antigen augments these molecules on the surface of 
B-1 cells (22, 38, 39). Zimecki and Kapp (24) and Zimecki et al. 
(25) showed that B-1 cells present Ags to Ag-specific T cells and 
induced more efficient proliferation than conventional B cells.

BCR AnD TLR AS AnTiGen UPTAKe 
PLAYeRS On B-1 CeLLS

B cells have two primary pathways for their activation as APCs, 
which occurs through BCR or the germline-encoded PAMP 
receptors (40–42). BCR plays a dual role in B-2 cell activation: 
(1) the ligation of specific antigens in the BCR induces a signaling 
cascade that leads to the activation and proliferation of B-2 cells 
(43) and (2) the BCR–antigen interaction results in internalization 
and processing of the antigen. Although they are not completely 
elucidated, the BCR signals in B-1 cells are quite different than in 
B-2 cells (44–46). B-1 cells show a failure to be activated after BCR 
engagement, and multiple mechanisms appear to be involved in 
maintaining B-1 cells in an anergic state. One such mechanism 
involves Lyn, which acts by phosphorylating ITIMs on inhibitory 
receptors, leading to the recruitment of PTPs that antagonize the 
BCR-mediated activation of PTKs. IL-10 also plays a key role 
in controlling the expansion of self-reactive B-1 cells. CD5 was 
also indicated as a negative regulator of BCR signals in B-1 cells. 
Defects in the negative regulatory mechanisms may account for 
the accumulation of B-1 cells and autoantibodies in autoimmune 
diseases. However, in an infectious disease, signals from CD40 
and high-dose TLR ligands can overcome the anergic state of B-1 
cells, enabling their activation during infection (44–46).

Interestingly, in addition to the fact that a non-functional BCR 
results in a defect in the activation of B-2 cells, it also causes a 
failure in the T cell response (26). This information supports the 
idea that internalization of the antigen by the BCR is important 
to the APC function of B-2 cells. It has been demonstrated that 
the absence of B cell antigen presentation, due to the lack of MHC 
expression or a non-functional BCR, results in a defect in the 
memory CD4 response. Barr et  al. (40) demonstrated that the 
TLR activation of B-2 cells is important for the generation of the 
primary Th1 response in an antigen presentation-independent 
process. However, BCR recognition and B cell antigen presenta-
tion are absolutely required for the development of Th1 memory 
cells and hence confer protective immunity to Salmonella. With 
respect to B-1 cells, Gao et al. (47) demonstrated that the antigen 
specificity of the BCR was involved in the uptake of Salmonella by 
B-1 cells, and the number of phagocytic peritoneal B-1 cells from 
TgVH3B4 mice was almost threefold higher than that observed 
in the littermate control mice. Based on these results, it could 
be suggested that the BCR is essential for the phagocytosis of 
bacteria by B-1 cells and is also important for enabling these cells 
to exert APC functions.

Conversely, specific antigen uptake by the BCR and the activa-
tion of B cells by the TLRs connect them to an innate phase of the 
immune response. B-2 cells express many of the TLRs (42, 48, 49), 
and TLR4 and TLR9 are the most studied. TLR expression is quite 
different among the B cells subsets. B-2 cells express less TLR2, 6, 
and 7 and equal amounts of TLR1, 4, 5, and 9 compared to other 
B cell subsets. Interestingly, MZ B cells and B-1 cells show a clear 
similarity in TLR expression, displaying increased levels of TLR2, 
6, and 7, along with decreased levels of TLR8 (50).

Intriguingly, differences regarding their response to TLR ago-
nists were found between naive murine B cell subsets. Triggering 
of the TLR induces B-1, but not B-2, cells to differentiate into 
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fully mature plasma cells (51). Based on these data, the authors 
proposed that during a natural infection, the TLR stimulation 
leads to the production of protective natural antibodies by the B-1 
cells, which could control the microbial load until the adaptive 
arm of the immune response becomes fully functional.

It is well known that LPS functions as a B-2 cell mitogen, 
leading to the activation and polyclonal expansion of these cells, 
independent of BCR reactivity. In vitro, B-1 cells proliferate and 
produce antibodies in response to TLR engagement. Certain 
TLR ligands, including Pam3CSK (TLR1/TLR2), MALP2 (TLR2/
TLR6), LPS (TLR4), and R848 (TLR7/TLR8), are able to induce 
B-1 cell proliferation, whereas others, including flagellin (TLR5) 
and polyIC (TLR3), are not (51). The proliferation of B-1 cells in 
response to LPS is stronger than in B-2 cells; however, it is less 
intense in response to CpG.

Some reports show evidence that stimulation of the TLRs in 
B cells impacts in the T cell response via not only the secretion 
of diverse cytokines but also the increased expression of several 
costimulatory molecules involved in the T:B cell interaction, 
such as MHC-II, CD40, CD80, CD86, and others (42, 49, 52–54). 
Interestingly, our group has described the adjuvant effect of 
Propionibacterium acnes on the expression of the TLR by B-1 
cells (39) (Gambero et al., submitted). P. acnes, a Gram-positive 
bacillus, is the major constituent of the normal human adult 
skin microflora (55). As already demonstrated in clinical and 
experimental models, a dead P. acnes suspension modulates the 
innate and acquired immune responses, including an increase in 
antibody responses and phagocytic and tumoricidal macrophage 
functions (56–63). An important effect of P. acnes is its capacity 
to direct the immune response toward a Th1 or Th2 response (64, 
65). P. acnes interferes in the B-1 cell APC activity through the 
toll-like receptors (TLRs), principally TLR2 and TLR9 (66–68). 
Interestingly, the bacterium increased the expression of MHC-II, 
CD80, CD86, CD40, TLR2, TLR4, and TLR9 by the B-1 cells (39). 
It was also confirmed that the adjuvant effect induced by P. acnes 
on the B-1 cells is mediated by TLR2 (Gambero et al., submitted). 
P. acnes increases the number of B-1 cells in  vitro and in  vivo, 
induces their early differentiation into phagocytes in vitro, and 
increases the phagocytic ability of these cells (39) (Gambero 
et  al., submitted). The direct influence of P. acnes on antigen 
presentation by B-1 cells is under investigation. Furthermore, 
LPS stimulus also increases the differentiation of B-1 cells into 
phagocytes in  vitro and in  vivo (69, 70); however, whether the 
stimulus increases the APC activity is not yet clear.

Another important point in TLR signaling in B cells is cytokine 
production. Barr et  al. (41) demonstrated that the binding of 
TLR2, TLR4, and TLR9 in B cells induces B-2 cells to secrete 
IFN-gamma and IL-6. Interestingly, TLR engagement in B-1 
cells augmented the secretion of the proinflammatory cytokine 
IL-6 and the anti-inflammatory cytokine IL-10 (71), which 
have antagonistic effects in the course of the immune response. 
However, both cytokines are important to B-1 cell proliferation 
and viability. IL-6 is related to antibody production by B-1 cells 
in autoimmune disease, and IL-10 plays a negative role in the 
activation of the BCR. It could be speculated that the secretion 
of both cytokines after TLR signals could be important in the 
control of the B-1 cell response in the onset of inflammation and 

could prevent the development of an exacerbated response to 
self-antigens.

THe ROLe OF CD80/CD86 in B-1 CeLLS

Some studies point to the role of certain molecules in the induc-
tion of CD4+ T cell polarization by B-1 cells. B-1 cells express 
elevated levels of CD80 and CD86 in comparison to B-2 cells 
(72). Zhong et al. (73) demonstrated that CD86 blockage mark-
edly reduced the capacity of B-1 cells to stimulate alloreactive T 
cells. Interestingly, the same treatment increased the generation 
of Treg cells after antigen presentation by B-1 cells. However, 
anti-CD80 antibody treatment had much less of an effect on the 
capacity of B-1 cells to stimulate alloreactive T cells and on the 
generation of Treg cells than did anti-CD86 antibody treatment 
(73). Anti-CD86 treatment also partially inhibited the induction 
of Th17 cells (23). In agreement with these findings, De Lorenzo 
et  al. (38) demonstrated that OVA-presensitized B-1 cells were 
less able to induce T cell proliferation than naive B-1 cells. 
Additionally, these authors described that OVA-presensitized B-1 
cells express high levels of MHC-II molecules compared to naive 
B-1 cells and that the expression of CD86 was lower.

Interestingly, the CD86 molecule may also provide the 
costimulatory signal in fish B cell, similar to B-1 cells (74). These 
results indicate that even in primitive vertebrates, B cells may 
act as pivotal initiating APCs in priming naive T cells, similar 
to DCs and macrophages in mammals. Elucidating how antigen 
presentation occurs in ancient vertebrates and in different B cell 
subtypes in mammals may contribute to the understanding of 
the evolutionary history of B cell populations, such as the origin 
of the B-1 subset, and of the evolution of the adaptive immune 
response.

T CeLL POLARiZATiOn BY B-1 CeLLS

Although some authors have described the production of 
cytokines by B-1 cells, scarce literature exists about the polariza-
tion of T cells by them. Some reports about this pointed out that 
B-1 cells favor Th17 polarization (23, 73).

Comparing the APC activity of B-2 cells and peritoneal B-1 
cells, Margry et al. (20) demonstrated that peritoneal B-1a cells 
increase the percentage of IL-10-, IFN-γ-, and IL-4-producing 
T cells. Furthermore, peritoneal B-1a cells present antigens to 
CD4+ T cells in the peritoneal cavity, which is totally distinct 
from the milieu, where antigen presentation by conventional B 
cells occurs. The authors also show that the activation of CD4+ 
T cells by peritoneal B-1a cells promotes a more intense prolif-
eration compared to conventional B cells. Although peritoneal 
B-1a cells induce activated T cells to produce larger amounts 
of IL-10, IFN-γ, and IL-4 in vitro (20), B-1a cells derived from 
the spleen preferentially induce IL-17 production by T cells. In 
agreement with this, other authors also demonstrated that B-1 
cells preferentially induce Th1 and Th17 differentiation in vivo 
(73). This strong inflammatory response elicited by the B-1 cells 
could be related to their role in the autoimmune diseases (21). 
Interestingly, in cultures for the generation of Treg cells, when 
B-1 cells were used as the APCs, fewer Foxp3+ Treg cells were 
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generated in comparison to cultures where splenic B-2 cells were 
used (73). The failure to generate Treg cells, in addition to the 
induction of a Th1/Th17 profile by the B-1 cells, could be one of 
the mechanisms of the autoimmune profile of B-1 cells. However, 
this hypothesis is only a speculation, because the induction of the 
Th profile by the B-1 cells needs to be investigated in more detail 
and in different infection/disease models.

Other important point to be discussed is about the localiza-
tion of antigen presentation by B-1 cells. Despite the migration 
of B-1 cells to inflammatory milieu and other organs (75–77), it 
was not well documented if it is necessary that these cells migrate 
to secondary lymphoid organs to exert APC role. Interestingly, 
Margry et al. (20) demonstrated that peripheral T cells visit the 
peritoneal cavity and engage with antigen presented by B-1 cells 
in this location. In this context, we could postulate that APC role 
of B-1 cells could be more direct to reactivate memory T cells than 
priming naive T cell since that the majority of T cells found in the 
peritoneal cavity is memory T cells.

THe ROLe OF B-1 CeLL AnTiGen 
PReSenTATiOn in AUTOiMMUne 
DiSeASeS

As mentioned before and in the literature, the TLR and BCR 
signals are important in the assembly of the adaptive response. 
In an early stage, TLR signals drive the secretion of cytokines by 
the APCs and contribute to the expression of some molecules 
that are important in the antigen-presenting process. Later, 
BCR-mediated uptake is important to the antigen presentation 
by B cells and the maintenance of memory T cells. In addition 
to its importance in the secondary response during an infection, 
this also could be a mechanism that induces autoimmune disease. 
In fact, the involvement of BCR/TLR signals in driving T cells in 
lupus (78) and EAE has already been described (21, 79).

Sato et al. (21) described an increase in the B-1 cell population 
in the disease target organs of a murine model of lupus. These 
authors demonstrated that B-1 cells aberrantly migrate into 
the thymus during the development of lupus nephritis and that 
B-1, but not B-2, cells induce the activation and expansion of 
thymic CD4+ T cells in the presence of IL-2. Considering that 
B-1 cells often recognize self-antigens and express higher levels of 
costimulatory molecules, their role in activating the autoreactive 
TCR should be considered. These findings may provide a novel 
understanding of the mechanism for the loss of immunological 
tolerance in the development of autoimmune disease.

COnCLUDinG ReMARKS

B-1 cells have peculiar features, such as a mixture of innate and 
lymphoid cell properties. As mentioned here, some authors 
describe similarities between B-1 cells and primordial B cells in 
ancient vertebrates (74). As described for teleost fish B cells, B-1 
cells are phagocytic cells (6, 69, 70, 75) and have microbicidal 
activity (80, 81), similar to DCs and macrophages in mammals. 
Furthermore, several reports indicate that B-1 cells may play a 
role as initiating APCs, not only in the maintenance of memory 
T cells, similar to conventional B cells, but also in priming CD4+ 
T cells. It is important to reinforce that B-1 cells produce a major-
ity of the IgM natural antibodies. In this context, we postulate 
that these antibodies could form immunocomplexes with self-
antigens and that B-1 cells could internalize these, leading to 
intense antigen presentation to T cells. A speculative scenario was 
proposed, in a continuous inflammatory stimulus, elevated levels 
of IL-6 increased induce expansion of B-1 cell population, and 
also increased the B-1-cell antibody production. Furthermore, 
the CD86 expression by B-1 cells is also augmented, and it favors 
the B-1 cell APCs function and also the induction of Th17 profile. 
Considering that B-1 cells produce mainly self-reactive antibod-
ies, the increased levels of the B-1 cell-derived antibodies could 
leave to an increase in the antigen uptake by these cells and also 
augment in antigen presentation to self-reactive TCR, which 
could lead finally to an induction of autoimmune diseases.

In conclusion, further detailed investigations should be con-
ducted to elucidate the role of B-1 cells in priming T cells during 
an infectious disease. Several strategies have been developed 
considering the use of APCs in therapies for which amplification 
of the immune response is necessary; thus, B-1 cells might also 
be considered in this context. Furthermore, the participation 
of these cells in the breakdown of self-tolerance should also be 
considered.
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