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Natural killer (NK) cells are the first lymphocyte population to reconstitute following allo-
geneic hematopoietic stem cell transplantation (HSCT) and are important in mediating 
immunity against both leukemia and pathogens. Although NK cell numbers generally 
reconstitute within a month, the acquisition of mature NK cell phenotype and full func-
tional competency can take 6 months or more, and is influenced by graft composition, 
concurrent pharmacologic immunosuppression, graft-versus-host disease, and other 
clinical factors. In addition, cytomegalovirus infection and reactivation have a dominant 
effect on NK cell memory imprinting following allogeneic HSCT just as it does in healthy 
individuals. Our understanding of NK cell education and licensing has evolved in the 
years since the “missing self” hypothesis for NK-mediated graft-versus-leukemia effect 
was first put forward. For example, we now know that NK cell “re-education” can occur, 
and that unlicensed NK cells can be more protective than licensed NK cells in certain 
settings, thus raising new questions about how best to harness graft-versus-leukemia 
effect. Here, we review current understanding of the functional reconstitution of NK cells 
and NK cell education following allogeneic HSCT, highlighting a conceptual framework 
for future research.

Keywords: nK cell, allogeneic HSCT, nK cell education, memory nK cell, cytomegalovirus

BACKGROUnD

Allogeneic hematopoietic stem cell transplantation (HSCT) can be curative of otherwise incurable 
leukemia through its ability to mediate an immunological graft-versus-leukemia effect. Its main 
limitations are graft-versus-host disease (GVHD), infections, and leukemia relapse, all of which 
are critically dependent on immune reconstitution. Natural killer (NK) cells are well-established 
mediators of anti-leukemic and anti-viral responses (1). Donor NK cells can also attenuate GVHD, 
possibly by lysing alloreactive donor T cells and recipient antigen-presenting cells (2–5). There is 
much interest surrounding the importance or otherwise of NK cells on clinical outcome, particularly 
in regard to NK cell-mediated GVL effects (5–8). In this review, we will present the current state of 
knowledge on the functional reconstitution of NK cells to provide a framework to the debate.
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KineTiCS OF nK CeLL ReCOnSTiTUTiOn

Natural Killer cells are the first donor-derived lymphocyte popu-
lation to reconstitute numerically following allogeneic HSCT. 
Normal NK cell numbers are generally observed within the first 
month post-transplant irrespective of the graft source: bone 
marrow (9), granulocyte colony-stimulating factor (G-CSF)-
mobilized peripheral blood stem cell (PBSC) (9–11), or umbilical 
cord blood (12–14). It is generally thought that the reconstitut-
ing NK cells are primarily derived from the differentiation and 
maturation of progenitor cells rather than the expansion of 
mature NK cells within the graft. This concept is supported by two 
observations. First, the rate of NK cell reconstitution is largely 
independent of the type of graft and its NK cell content: side-by-
side comparisons have found similar reconstitution kinetics fol-
lowing unmanipulated PBSC transplant, CD34+-selected PBSC 
transplant, and bone marrow transplant despite log-fold differ-
ences in NK cell content (median 20–70 × 106/kg, 0.2–0.7 × 106/
kg, and 5–7 × 106/kg, respectively) (9, 15–17), Second, the early 
reconstituting NK cells have an immature CD56bright phenotype 
and do not acquire the predominantly CD56dim donor NK phe-
notype for several months (17–19). Although NK cell develop-
ment from progenitors is likely dominant, the in vivo expansion 
of transferred NK cells can also contribute. In a comparison of 
two different methods of T-cell depletion (CD3/CD19-depletion 
versus CD34-selection), NK cell reconstitution and acquisition 
of mature NK cell phenotype were more rapid in recipients of 
CD3/CD19-depleted grafts, which contained 3-log more mature 
NK cells than CD34-selected grafts (20). The impact of T cells 
on NK cell reconstitution is difficult to cleanly define as it is also 
linked to the use of post-graft immunosuppressive therapy. In 
haploidentical transplantation using extensively T-cell-depleted 
graft without post-transplant immunosuppression, NK cell 
reconstitution is particularly brisk (8) but in other settings 
where cyclosporine-based immunosuppression is used in both  
T-cell-deplete and T-cell-replete arms, the reconstitution of 
NK cell numbers was generally found to be similar between the 
groups (15, 17, 18).

ACQUiSiTiOn OF nK CeLL 
FUnCTiOnALiTY

Although NK cells reconstitute numbers by around 1 month post-
transplant, they take several months to acquire the immunophe-
notypic and functional characteristics found in healthy donors. 
CD56bright NK cells, which are the precursors of CD56dim NK cells 
(21), account for 40–50% of the NK cells in the first 3 months 
post-transplant as compared to only 5–10% in healthy donors 
(17, 19, 22–25). These early reconstituting NK cells also express 
higher levels of the inhibitory receptor, NKG2A, at around 90% 
compared to around 50% in healthy donors (17, 22–25). During 
NK maturation, the CD56dim NK cells lose NKG2A expression 
and express the activating NKG2C receptor, killer cell inhibitory 
immunoglobulin-like receptors (KIRs), and CD57 (26, 27). The 
acquisition of full donor surface phenotype takes 3–6  months, 
sometimes longer (17, 24–26, 28). Full NK cell functionality 
is similarly not achieved for at least 6  months post-transplant  

(17, 24, 29). In healthy individuals, CD56bright NK cells are adapted 
to produce cytokines, particularly interferon-γ (IFN-γ) and tumor 
necrosis factor (TNF), whereas CD56dim NK cells are enriched for 
perforin and granzymes, and thus adapted for cytotoxicity (30, 
31). Following allogeneic HSCT, however, there is a dissociation 
between the recovery of cytokine production and cytotoxic func-
tion (29). Despite the high proportion of CD56bright NK cells in 
the first 6 months post-transplant, IFN-γ production in response 
to the MHC class I-deficient K562 cell line or primary acute 
myeloid leukemia cells is more severely and consistently impaired 
than NK cell degranulation and cytotoxicity (24, 27, 29). This 
somewhat contradictory finding is nonetheless consistent with 
the reduced expression of T-bet, a key inducer of IFN-γ produc-
tion (32), at all stages of NK cell differentiation post-transplant 
(27). Furthermore, NK cell expression of T-cell immunoglobulin 
and mucin-containing domain-3 (Tim-3) is also lower post-
transplant (33). In healthy individuals, Tim-3 is expressed on 
nearly all mature CD56dim NK cells and a majority of immature 
CD56bright NK cells (33, 34). It is upregulated by IL-15 or IL-12 
and IL-18 in vitro (33, 34), and has been shown to both enhance 
IFN-γ secretion (33) and suppress cytotoxicity (34). As the level 
of Tim-3 expression at 3–6 months post-transplant is only half 
that of healthy controls, this may partly account for the discordant 
recovery of cytokine production and cytotoxic function (29).

The influence of graft T cell content on NK cell development 
and function is of clinical interest because the NK cell-mediated 
GVL effect is most evident in T-cell-depleted transplantation 
(5–8). While T-cell graft content does not have a significant 
influence on the numerical reconstitution of NK cells (15, 17, 
18), there is a general trend towards enhanced functional NK cell 
maturation in T-cell-replete versus T-cell-deplete transplants, 
which is contrary to the relative importance of NK cells in 
T-cell-deplete transplants. In a study comparing HLA-matched 
T-cell-replete transplant with immunosuppression versus HLA-
partially matched T-cell-deplete transplant without immunosup-
pression, target cell-induced IFN-γ secretion and degranulation 
were relatively attenuated in the T-cell-deplete group (29). This 
is consistent with an earlier study by the same group that found 
that NK cells in partially T-cell-deplete transplants had attenu-
ated IFN-γ production compared to T-cell-replete transplants, 
with a similar proportion in both groups receiving cyclosporin 
A for GVHD prophylaxis (70 versus 81%) (18). Similarly, in a 
study comparing partial T-cell-depleted transplant (median 
54 × 104 T cells/kg) versus extensive T-cell-depleted transplant 
(median 3.7  ×  104  T cells/kg), with neither group receiving 
post-transplant immunosuppressive therapy, the reconstituting 
NK cells in the extensively T-cell-depleted group had higher 
proportions of CD56bright and NKG2A+ immature NK cells and 
diminished cytotoxicity, although IFN-γ secretion was enhanced 
(19, 22). The mechanism by which T cells facilitate NK cell func-
tional maturation is unclear: it may include the direct activation 
of CD56bright NK cells by T cell-derived IL-2 (35), or indirectly 
through IL-12 and IL-18 produced by activated macrophages 
during acute GVHD (36), and this effect was observed irrespec-
tive of the use of post-transplant immunosuppression. It is dif-
ficult to isolate the effect of pharmaceutical immunosuppression 
on NK cell reconsitution because it is tightly linked to the graft 
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T-cell content and subsequent risk of GVHD, both of which can 
influence NK cell reconstitution. Cyclosporin A does not have 
any impact on NK cell function in short-term cultures (37) but it 
has been shown to suppress the in vitro proliferation of NK cells, 
especially the CD56dimCD16+KIR+ NK cells, resulting in a relative 
increase in the number of immature CD56brightCD16−KIR− NK 
cells (38). Hence, cyclosporin A can have a direct effect on NK 
cells in addition to any indirect effect through modulation of 
GVHD although more studies, including in vivo studies, will be 
required.

nK CeLL eDUCATiOn FOLLOwinG 
ALLOGeneiC HSCT

Natural killer cells sense and respond to cellular transformation, 
stress, and infection via an array of germ-line encoded activating 
and inhibitory receptors (39). The inhibitory receptors recogniz-
ing self-MHC class I are considered the predominant mediators 
of self-tolerance and the engagement of these receptors with their 
cognate MHC during NK cell development results in “licensed” 
NK cells that have functional competency, whereas failure of 
receptor engagement results in hyporesponsiveness (40–42). In 
HLA-mismatched transplantation where there is a mismatch in 
the inhibitory KIR-ligands located on HLA-B and HLA-C loci, 
there is a potential for donor NK cells that are licensed through 
the non-shared donor HLA to recognize and attack recipient 
leukemic cells that lack the cognate inhibitory HLA ligand. 
This “missing self ” NK alloreactivity can be very potent and is 
associated with decreased risk of relapse in T-cell-depleted hap-
loidentical transplantation for acute myeloid leukemia (5, 6, 43). 
The importance of MHC class I-mediated NK cell licensing is, 
however, not entirely clear-cut, particularly in allogeneic HSCT 
that are HLA-matched or HLA-mismatched but KIR-ligand 
matched. In both healthy donors and patients post-transplant, 
there is a hierarchy of target cell-induced NK cell degranulation 
response: (i) NKG2A−KIR− and NKG2A−Non-self-KIR+ NK 
cells are hyporesponsive (where non-self KIR recognizes an HLA 
ligand that is not expressed by the individual), (ii) NKG2A+KIR− 
NK cells and NKG2A−Self-KIR+ NK cells have similar degrees 
of responsiveness (where self-KIR is a KIR that recognizes a 
self HLA ligand), and (iii) NKG2A+Self-KIR+ NK cells have the 
highest level of responsiveness (17, 29, 44). Hence, NKG2A have 
a role in NK cell education post-transplant that is additive to that 
of inhibitory KIRs. Since KIR expression is reduced for at least 
3–6 months post-transplant (17–19, 22, 23, 44), NK cell degranu-
lation response during this time is dominated by NKG2A+KIR− 
NK cells rather than KIR+ NK cells (17). The extent to which these 
NKG2A+KIR− NK cells can mediate GVL effect is likely context 
dependent. The ligand for NKG2A, HLA-E, is often expressed on 
leukemic cells, and its immune evasive capacity is underscored by 
the demonstration that antibodies against NKG2A can enhance 
NK cell-mediated lysis of leukemic cells both in vitro and in vivo 
(22, 45). However, not all leukemic cells express HLA-E and other 
studies have shown relatively low levels of HLA-E expression on 
primary leukemic blasts (19, 46) and since HLA-E is expressed in 
complex with a signal peptide from certain MHC class I molecules, 

its expression is also low in MHC class I-deficient blasts, and in 
this regard, the HLA-E/NKG2A interaction can be considered to 
be analogous to that of MHC class I/inhibitory KIRs.

Can allogeneic HSCT break NK tolerance? In the above studies, 
drawn from both T-cell-replete and T-cell-deplete transplants, with 
or without cyclosporine A, NK cell expression of at least one inhibi-
tory receptor remained necessary for NK cell functional competency 
as NKG2A− NK cells that were KIR− or expressed only non-self KIR 
remained hyporesponsive (17, 29, 44). There is, however, evidence 
that NK cell tolerance can be broken post-transplant. In one study, 
unlicensed NK cells that express single non-self inhibitory KIR 
were found to have increased cytokine secretion and cytotoxicity at 
3–6 months post-transplant compared to their respective donors, 
and this effect was independent of NKG2A expression (47). The 
mechanism underpinning this is unclear but there are clues from 
murine models. In mice, NK cell function can be restored in vitro 
with IL-2 or IL-12 +  IL-18, or strong stimulation via activating 
receptors (41, 48, 49). In vivo, NK cell tolerance can be broken by 
infection with Listeria monocytogenes and murine cytomegalovirus 
(MCMV) (50–52). Indeed, NK cell activation early post MCMV 
infection is dependent on pro-inflammatory cytokines and inde-
pendent of activating receptor ligation, and licensed and unlicensed 
NK cells were similarly activated and produced similar levels of 
IFN-γ and granzyme B (52, 53). Since CMV reactivation is a com-
mon complication of allogeneic HSCT, it is possible that a similar 
mechanism underpinned the clinical observation. Unlicensed NK 
cells that break tolerance are not merely bystanders but can have 
specific protective function. In the MCMV model, unlicensed 
NK cells proliferated more robustly than licensed NK cells and 
were more effective in controlling MCMV infection because, 
unlike licensed NK cells, they were not inhibited by MHC class  
I expression on target cells (52). Similarly, unlicensed NK cells have 
been shown to be the primary mediators of antibody-dependent 
cell-mediated cytotoxicity during monoclonal antibody treatment 
for neuroblastoma (54). In HLA-matched and mismatched allo-
geneic HSCT, the risk of acute myeloid leukemia relapse is lower 
in patients who lack one or more HLA ligands to inhibitory KIRs 
(“missing KIR-ligand” hypothesis) (55, 56), which further supports 
the importance of unlicensed NK cells as a mediator of GVL effects 
(Figure 1).

Since the first reports on the protective effect of KIR-ligand 
mismatching on leukemia relapse more than 10  years ago  
(5, 57), our understanding of NK cell education has evolved and 
the “missing self ” hypothesis is more complex than it initially 
seemed. It is now known that mature NK cells can undergo “re-
education” following transfer into a different MHC environment; 
thus, mature responsive NK cells from wild-type mice become 
hyporesponsive when transferred to MHC class I-deficient mice 
and vice  versa (58, 59). Furthermore, the education process 
requires the MHC class I to be expressed on all or most cells, or 
hyporesponsiveness is dominantly induced (41); and both non-
hematopoietic as well as hematopoietic cells may be involved in 
NK cell education (58, 60). These new insights suggest that recipi-
ent MHC class I-mediated NK cell education may diminish the 
anti-leukemic effect of “missing self ” NK alloreactivity, and are 
consistent with the observation that alloreactive donor NK cells 
were detectable mainly in the first 3 months post-transplant (57).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | nK cell reconstitution and education following allogeneic HSCT. Reconstituting NK cells can be derived from (i) NK cell precursors, ranging from 
hematopoietic stem cells through to common lymphoid progenitors, that differentiate into NK cells in the bone marrow, and (ii) transferred mature NK cells, which 
carry with them a mature NK phenotype and NK memory. NK cells are educated in the bone marrow but can be “re-educated” in the periphery. It is uncertain 
whether recipient cells (generally non-hematopoietic only post transplant) are involved in NK cell education. In HLA-mismatched transplants, NK cells that are 
licensed by inhibitory KIRs that recognize a ligand (HLA) that is expressed only by the donor and not the recipient may lyse recipient cells (“missing self”) and 
contribute to the GVL effect. Conversely, an NK cell that has not encountered a cognate MHC class I for its inhibitory KIR(s) is “unlicensed” and hyporesponsive, but 
can acquire functional competency when stimulated by pro-inflammatory cytokines, for example, in the setting of CMV reactivation.
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iMPACT OF CMv On nK 
ReCOnSTiTUTiOn

Cytomegalovirus reactivation is a common and life-threatening 
complication following allogeneic HSCT. In healthy individuals, 
CMV serostatus accounts for a significant proportion of the 
variability in NK cell immunity (61–63). Similarly, in allogeneic 
HSCT, CMV reactivation influences the frequency, phenotype, 
function, and/or repertoire of the reconstituting immune system 
(64–70). Interestingly, CMV reactivation is also associated with 
lower risks of leukemia relapse (71, 72), and understanding its 
influence on the immune landscape may provide insight into new 
therapeutic approaches to enhance the GVL effect.

The concept that NK cells can acquire immunological memory 
with features that are classically associated with T and B cell 
responses is largely established by studying CMV infection in 
mice (73, 74) and humans (61, 62, 75–78). In mice, MCMV 
infection induces the expansion of NK cells that express the 
activating receptor, Ly49H, which recognizes the viral protein 
m157 on the surface of infected cells (74, 79–81). Ly49H+ NK 
cells undergo marked expansion, followed by contraction, and 

establishment of a long-lived memory population that mounts 
a more effective protective response than naive NK cells against 
MCMV but not heterologous infections (73, 74, 76). In humans, 
CMV infection induces an expansion of NK cells that express 
NKG2C (75, 76, 82, 83), an activating killer lectin-like receptor 
that binds HLA-E, which is upregulated by CMV UL40 protein 
(84, 85). These NKG2C+ memory NK cells are CD56dimCD57bright 
and have a highly differentiated phenotype in regard to cytokine 
secretion and degranulation (75). They are preferentially negative 
for NKG2A (76, 82, 83) and are biased toward the expression of 
self-specific “licensing” inhibitory KIRs: KIR2DL3 in HLA-C1+ 
individuals and KIR2DL1 in HLA-C2+ individuals (76).

Similarly, in allogeneic HSCT, CMV reactivation is followed 
by an increase in the proportion of NKG2C+ NK cells within 
2–4 weeks, which persists for at least a year (86, 87). These NK 
cells also have a more mature NKG2C+CD57+ phenotype and 
are predominantly KIR+, especially for inhibitory self-KIRs 
(KIR2DL2/3), and secrete more IFN-γ than NKG2C− NK cells 
(67, 87). CMV-seropositive recipients without overt CMV reac-
tivation have an NK memory phenotype intermediate between 
patients with CMV reactivation and CMV-seronegative recipients, 
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but only if they received a sibling allograft and not umbilical cord 
blood, which is generally considered to be CMV naive (67). This 
observation would suggest that donor NK memory could be 
transferrable. In support of this hypothesis, the same group had 
previously demonstrated that the NKG2C+ NK cells that emerged 
following CMV reactivation had increased levels of IFN-γ pro-
duction when the donor was CMV seropositive rather than CMV 
seronegative (88). Furthermore, NK memory is undoubtedly 
transplantable in experimental mouse systems (74). The contribu-
tion of NK memory transfer in clinical allogeneic HSCT remains 
to be ascertained as NK reconstitution is primarily attributed to 
new NK cells generated from hematopoietic precursors rather 
than the expansion of NK cells from the graft, although this too 
remains to be conclusively demonstrated. NKG2C is not the only 
activating receptor relevant to CMV infection. CMV infection 
in healthy individuals also expands NK cells that express other 
activating receptors, including the activating KIRs: KIR2DS2 
and KIR2DS4 (76). In allogeneic HSCT, recipients of umbilical 
cord blood transplant from donors with homozygous deletion 
of NKG2C, which represents 4% of the healthy population, have 
increased numbers of CD56dimNKG2A−ActivatingKIR+ NK cells 
following CMV reactivation (69).

More recently, a distinct subset of FcRγ (also known as FcϵRIγ)-
deficient NK cells has been identified in CMV-seropositive 
individuals (89, 90). They are predominantly, but not exclusively, 
NKG2C+, and respond poorly to CMV-infected lung fibroblasts, 
but display enhanced antibody-dependent expansion, degranula-
tion, and cytokine secretion (61, 90). FcRγ-deficient NK cells can 
be detected in some patients at 6–12 months after umbilical cord 
blood transplantation, but only if they had prior CMV reactiva-
tion (62). This memory-like FcRγ− NK phenotype is the result of 
epigenetic modification with hypermethylation of the FCER1G 
promoter (62). Epigenetic silencing also results in a deficiency 
of the cell signaling proteins SYK and EAT-2, and transcription 
factors PLZF and IKZF2, within this population (61, 62). The 
significance of this newly described NK population in allogeneic 
HSCT remains to be investigated.

iMPACT OF GvHD On nK 
ReCOnSTiTUTiOn

Natural killer cell numbers were found to be lower in patients 
with acute and chronic GVHD (16, 91), but it is not known if 
these were casually related given the confounding effects of  
T cells, immunosuppression, and other clinical variables. On the 
other hand, acute GVHD is associated with the secretion of pro-
inflammatory cytokines, for example, IL-12 and IL-18 (36), which 
are known to promote NK cell functional maturation. Acute 
GVHD is also associated with elevated levels of soluble ST2 (92), 
which serves as a decoy receptor to modulate the IL-33/ST2 axis 

(93, 94). This raises the possibility of effect on NK cells as IL-33/
ST2 axis augments NK cell production of IFN-γ in response to 
IL-12 (95), and is important in MCMV-specific expansion of 
naive and memory Ly49H+ NK cells (96). At present, all these 
concepts remain speculative and require further investigation.

innATe LYMPHOiD CeLLS

The lineage marker-negative innate lymphoid cells (ILCs) are a 
recently identified family of lymphoid cells that are preferentially 
located at barrier surfaces and can rapidly secrete immunoregula-
tory cytokines that correspond to the TH1, TH2, or TH17/TH22 
immune response (97, 98). Their role in allogeneic HSCT is 
gradually being elucidated and it has been recently shown that 
recipient-derived intestinal ILCs are important in mediating pro-
tection from gut GVHD (99, 100). However, the nature and role 
of donor-derived ILC reconstitution remains largely unknown at 
present (101).

COnCLUSiOn

Natural killer cells reconstitute rapidly after HSCT but the delayed 
acquisition of a mature phenotype and functional competency 
argues for strategies to enhance functional NK cell reconstitu-
tion. These strategies can include adoptive transfer (102–104), 
with or without ex vivo expansion and cytokine activation (105, 
106), graft engineering (20), donor selection according to KIR 
haplotype, and exogenous cytokine administration (107). Key 
unanswered questions relevant to optimizing NK-mediated 
anti-leukemic and anti-viral immunity include: what are the 
desired phenotypic characteristics of NK cells in this regard? 
What are the relative roles of unlicensed and licensed NK cells? 
Does NK cell memory contribute to long-term tumor immune 
surveillance? How are NK cells educated in HLA-mismatched 
transplantation and does this change over time? Additionally, 
what is the nature of ILC reconstitution post allogeneic HSCT? 
The answers to these questions are important in improving 
transplant outcome and further experimental and clinical stud-
ies are needed.
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