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Leishmania is a genus of protozoan parasites that give rise to a range of diseases called 
Leishmaniasis that affects annually an estimated 1.3 million people from 88 countries. 
Leishmania donovani and Leishmania (L.) infantum chagasi are responsible to cause 
the visceral leishmaniasis. The parasite can use assorted strategies to interfere with 
the host homeostasis to establish persistent infections that without treatment can be 
lethal. In this review, we highlight the mechanisms involved in the parasite subversion 
of the host protective immune response and how alterations of host tissue physiology 
and vascular remodeling during VL could affect the organ-specific immunity against 
Leishmania parasites.

Keywords: leishmaniasis, treatment, Leishmania donovani, host protective responses, immune evasive 
mechanisms

inTRODUCTiOn

Leishmaniasis is a complex of mammalian neglected tropical diseases, caused by over 20 different 
parasitic protozoans of genera Leishmania. Transmission can occur as zoonotically or anthroponoti-
cally, usually by the bite of female by ~30 different species phlebotomine sandflies (1). Three main 
manifestations can occur that include the cutaneous (CL), mucocutaneous affecting the skin and 
mucous membranes, and visceral leishmaniasis (VL) (1).

These diseases are endemics in 98 countries, and around 350 million people are at risk. The 
estimate of annual new cases is around two million (2). VL is a disease that is fatal if untreated; 
around 500,000 new cases are estimated and 50,000 deaths reported annually (3). The disease is 
caused by Leishmania donovani complex in East Africa and the Indian subcontinent and Leishmania 
infantum in Europe, North Africa, and Latin America (4).

Two different types of VL can occur, which differ in the way of transmission: the zoonotic VL that 
is transmitted from animal to vector to human and the anthtoponotic VL where transmission from 
human to vector to human. So, humans are an occasional host and animals, especially dogs, play the 
role of reservoir of the parasite. In areas of L. infantum, the zoonotic VL is found, while in areas of 
L. donovani transmission, anthroponotic VL is found (5).

Visceral leishmaniasis is also known as kala-azar and is characterized by irregular fever, anemia, 
hepatosplenomegaly, pancytopenia, weight loss, and hypergammaglobulinemia. It is widely con-
fined to East Africa, Indian subcontinent, Brazil, and regions bordering the Mediterranean. Dermal 
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leishmanoid (PKDL) is a macular, maculo-papular, or nodular 
rash representing a complication of VL that is usually noted after 
treatment in Sudan and less often in other East African countries 
and in the Indian Subcontinent. This often affects immunosup-
pressed individuals in L. infantum endemic areas (6). These 
lesions can appear anywhere on the body, but most commonly 
occur on the face (7). The interval between treated VL and PKDL 
is 0–6 months in Sudan and between 6 months to 3 years in India. 
As the nodular lesions contain many parasites (8), and such cases 
are the putative reservoir for anthroponotic VL between epidemic 
cycles, this form of disease is more infectious (6).

For treatment of leishmaniasis few drugs are available at moment. 
They include: pentavalent antimonium [Sodium atibogluconate 
(Pentostam®)] and meglumine antimoniate (Glucantime®), pen-
tamidine, amphotericin B, liposomal amphotericin B, miltefosine, 
and paramomycin (9, 10). These face limitations for actual treat-
ment, in that most of them require hospitalization that increases 
the cost, and they are highly toxic (9).

The mechanism of resistance to pentavalent antimonials is the 
focus of much research; they have been the standard drugs despite 
their high toxicity (7). Those drugs are not in use now in Bihar 
State, India, because of the high rate of drug resistance, where 
more than 65% of previously untreated patients fail to respond 
or readily relapse. Sodium stibogluconate (Pentostam®) and 
meglumine antimoniate (Glucantime®) are still in use elsewhere. 
Administration is intravenous or intramuscular, and they show 
the some efficacy when used in equipollent doses (7).

Fatigue, body aches, electrocardiographic abnormalities, 
raised aminotransferase levels, and chemical pancreatitis are 
frequently reported secondary effects. Fatal pancreatitis has been 
reported in patients with VL and HIV infection (11). AmBisome, 
a liposome formulation of amphotericin B, is the current standard 
treatment for VL, particularly against L. donovani in Bihar, and 
just one dose treatment was efficient in the treatment in rural 
public hospitals in Bangladesh (2). The effectiveness of treatment 
was less against L. donovani in East Africa and L. infantum in Latin 
America. The situation was not different when the treatment was 
with paromomycin that was efficient in the Indian subcontinent 
but did not work in East Africa (7).

The mechanisms of parasite evasion in VL are not only caused 
by down modulation of host protective immune response directly. 
Several reports showed that tissue physiological and vascular 
remodeling alterations caused by the disease also contribute to 
parasite replication and persistence. In this review, we discuss: 
(1) how the parasite subvert the host immune system by infecting 
specific keys cells and (2) how changes in the tissue structure and 
physiology could affect organ-specific immunity during VL.

Following the deposition of infective metacyclic promastig-
otes into the dermis, the skin innate immune system detects 
invading promastigotes, recruits inflammatory cells to sites of 
invasion within minutes, and promotes the induction of adaptive 
immunity (12). Initial sensing of the parasite involves pattern 
recognition receptors. The host skin immune system initially 
senses the parasite through pattern recognition receptors and 
complement receptors present on different cell types including 
neutrophils, macrophages, dendritic cells (DCs), and natural 
killer (NK) cells. Several Toll-like receptors (TLRs) such as TLR2, 

TLR3 (13), TLR4 (14), TLR7 (15), and TLR9 (14) have been shown 
to contribute to innate sensing and recognition of Leishmania by 
various innate immune cells. This recognition leads to activa-
tion of intracellular signaling pathways that are necessary for 
the initiation of inflammatory responses and control of parasite 
proliferation by the innate immune response (16).

Neutrophils are essential cells involved in inflammatory 
response and contribute to phagocytosis and killing of microbial 
pathogens. However, the precise role of these cells in VL remains 
to be addressed. McFarlane et al. (17) demonstrated that neutro-
phil depletion at the beginning of L. donovani infection leads to 
increase in parasite burden in the spleen and bone marrow but 
not in the liver, enhanced splenomegaly, a delay in the matura-
tion of hepatic granulomas, a decrease in inducible nitric oxide 
synthase (iNOS) expression within granulomas, and increased 
levels of IL-4 and IL-10 with significant increase in the ratio of 
L. donovani-specific serum IgG1/IgG2a levels (17).

Although promastigotes are capable of directly invading DCs 
and macrophages following their deposition by infected sandflies, 
several TLRs have been shown to contribute to this process and 
play a vital role in the production of proinflammatory cytokines 
that are critical for immunity (18). Also activation of inflamma-
some and production of IL-1β are important for restriction in vivo 
infection with L. infantum in murine model (19). Polymorphisms 
within the human IL1B gene are associated with clinical severity 
of the disease (20).

Experimental studies in mice suggest that the control of VL 
may be associated with the development of parasite-specific, 
cell-mediated immune responses involving both CD4+ and CD8+ 
T cells (21). These cells produce IFN-γ, which activates infected 
macrophages, leading to the production of NO and other free 
radicals that kill the parasites. DCs activate CD8+ T cells through 
mechanisms that involve antigen cross presentation (22). Also, 
IL-17 producing γδ T cells suppress early control of parasite 
growth in the liver, and inflammatory monocytes were an impor-
tant target for the suppressive effects of IL-17 (23).

In VL, both CD4+ and CD8+ T cells have been implicated 
in the resistance and healing capacity against L. donovani. The 
production of IFN-γ by helper CD4+ T cells and/or CD8+ lym-
phocytes is associated with protection (24). The Th1 and Th17 
profile are correlated with infection resolution (25–28) and Th2 
response contribute to susceptibility and disease progression (29). 
High levels of IL-10 are another regulatory cytokine involved 
immune suppression inducing parasite persistence and chronic-
ity of disease (29). In humans, IL-27 promoted the production 
of IL-10 and inhibited secretion of IL-17 by CD4+ T cells (30). 
Recently, Ansari et al. (31) showed elevated circulating levels of 
IL-27 and elevated expression of IL-27p28 and EBI-3 transcripts 
in VL patients. Owens et al. (32) demonstrated that CD11chi DCs 
promote expansion and maintenance of T cells inducing the 
production of IL-10 and IL-27 in vivo.

In infected individuals with active symptoms of VL was 
observed high levels of IFN-γ and IL-10, the main source of IFN-
γ production found in both innate and cellular responses. On 
the other hand, IL-10 was restricted to CD8+ T and B cells (33). 
In splenic aspirate cells from VL patients, anti-IL-10 antibodies 
promoted killing of parasite and increased the secretion of IFN-γ 
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and TNF-α in splenic cells ex vivo (34). Recently demonstrated in 
healed  visceral human  leishmaniasis patients, CD8+ T cells were 
activated and the granzyme B levels were found increased when 
compared to naive group and active VL (35).

Suppression of T cell response is thought to be involved in the 
pathogenesis of VL. Regulatory T cell (Treg)-mediated immune 
suppression is reported in animal models of Leishmania infec-
tion. IL-10 receptor blockade mice were resistant to L. donovani 
infection (36). Also, low levels expression of CD40 in DC induced 
severity to infection by activation of Treg and the production of 
IL-10 (37). In immunocompromised aly/aly mice infected with 
L. donovani CD4+ Foxp3+ Treg cells were increased in the liver 
inducing progression of granuloma formation (38). Majumder 
et  al. (14) showed that mice vaccinated with soluble leishma-
nial antigen (SLA)-pulsed CpG-ODN-stimulated dendritic 
cells (SLA-CpG-DCs) decreased the number of Treg cells; and 
consequently, there was low production of TGF-β. Interestingly, 
IL-17−/− mice infected with L. infantum failed to control para-
sitemia, increasing the proliferation of Treg cells and production 
of IL-10 (38). In humans, Treg cells produced high levels of 
IL-10 indicating immune suppression among VL patients (39). 
This mechanism will be useful to determine drug treatment and 
disease prognostic.

Studies investigating the immunoregulatory function, 
CTLA-4 (CD152 – cytotoxic T lymphocyte antigen-4) has a role 
regulatory in activation of T cells, including Treg cells (40, 41), 
and PD-1 (programmed cell death-1) is broadly expressed on 
activated T cells, regulatory T cells, and other hematopoietic cells 
(42). Administration of monoclonal antibodies against CTLA-4 
reduced the burden of parasite in the liver in VL and increased 
the frequency of IFN-γ and IL-4 producing T cells in the liver 
(42). Blockade of the PD-1 during L. infantum in dogs, CD8+ 
and CD4+ T cells recovered functionality and increased reactive 
oxygen species production of phagocytes (43). Identification 
of the mechanism of blocking CTLA-4 or PD-1 reverts the 
downregulation of T cell response to infection. Ligand for the 
inhibitory receptor PD-1 (B7-H1) constitutively expressed in T 
cells showed interaction between B7-1: CTLA-4 and the PD-L1 
(B7-H1): PD-1 pathways (44). The blockade of B7-H1, the ligand 
for the inhibitory receptor PD-1, was found to increase survival 
of CD8+ T cells and induce protective immunity (45). Recently, 
 HIV-1-coinfected patients with VL Treg cells expressed high lev-
els of CTLA-4, showing impaired immunologic profile explaining 
persistence and/or relapse of the disease (46).

LiveR, BOne MARROw, AnD SPLeen: 
THRee ORGAnS, DiFFeRenT  
iMMUne ReSPOnSeS

One of the hallmarks of VL is hepatosplenomegaly (1, 21, 22, 47). 
There is a fine line between immune responses that effectively 
control parasite growth and induce long-term immunity and 
those that allow parasite persistence and associated disease (29). 
Thus, differences in splenic and hepatic tissue microenvironments 
dictate differences in the ability to generate effective immune 
responses and parasite control in these organs.

The liver is one of the primary target organs in VL. In 
experimental models of VL, infection in the liver is self-resolving 
within 2–3 months (22). This resolution of disease is associated 
with the development of granuloma formation mediated by a 
Th1 immune response both in humans and dogs as well (48–50). 
The development of inflammatory granulomas around infected 
liver macrophages leading to immunity is a T-cell-driven event. 
This Th1-dominated response is mediated by TLR7, TLR8, TLR9, 
IL-1, and IL-18 via the MyD88 signaling pathway (15). An effi-
cient granuloma formation involves the expression of inducible 
iNOS by macrophages (22, 51), which is regulated by several 
pro-inflammatory (Th1) cytokines, such as IL-12, IFN-γ, TNF-α, 
lymphotoxin, granulocyte/macrophage colony-stimulating fac-
tor, IL-2 (52, 53) as well as intact and functional NK and NKT 
cells (54–56).

Leishmania parasites have developed strategies to evade the 
host immune defenses: invasion of cell types to modulate cell 
host function to replicate and to downregulate the host immu-
nity for its persistence (24). In a murine model of L. donovani 
infection, liver-resident macrophages (Kupffer cells) infected 
have a different trancriptomic network profile compared to 
uninfected Kupffer cells isolated from the same mouse (57). 
Retinoid X receptor alpha (RXRα) was identified as a key hub 
within this network, and its pharmacological pertubation with 
agonists of RXRα enhanced the innate resistance of Kupffer cells 
to Leishmania infection in vivo (57). Also Hepatic stellate cells 
infected in vitro and in vivo with L. donovani produces immu-
noregulatory cytokines that induces CD4+ T cells to become Treg 
that leads to parasite persitence (58).

Although initially unaffected (due to efficient local immune 
response), the liver is slowly damaged as the disease progresses 
(59). Consequently, VL leads to hepatic dysfunction, such as 
coagulation defects, increased serum concentrations of several 
liver-specific enzymes, and changes in the cholesterol biosynthe-
sis (60, 61). The liver is the main source of cholesterol biosynthesis 
in mammals (62) and the decreased serum cholesterol was associ-
ated with VL severity and parasite persitence (63, 64). Ghosh et al. 
(65) identify that the L. donovani infection downregulates miR-
122 in hepatic tissue, lowering serum cholesterol and increasing 
parasite burden. The pathology is reversed when hepatic levels 
of miR-122 are restored with increased serum cholesterol and 
reduction of liver parasite burden.

In VL, the spleen also becomes chronically infected by mecha-
nisms that are less well understood. In EVL, the spleen becomes 
enlarged and splenomegaly can account for up to 15% of the 
body weight of infected mice in as little as 6–8 weeks postinfec-
tion (22). The persistence of parasites in the spleen is associated 
with changes in the splenic lymphoid microenvironment, and 
concomitant increases in the rate of T-cell apoptosis, decreased 
responsiveness to leishmanial antigens, and drug resistance (21, 
22, 66–68).

The spleen is composed by red (RP) and white pulp (WP), 
separated by an interface called the marginal zone (MZ). The 
splenic RP contains macrophages that recycle iron blood from 
aging red blood cells. The WP is organized similarly to a lymph 
node, containing T-cell and B-cell follicles. It is in the WP where 
antigen-specific immune responses are generated (69).
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During VL, there is an intense vascular remodeling in the RP 
and WP (68, 70–72). This vascular change causes disruption to 
both the gp38+ fibroblastic reticular cell network, which guides 
T cell and DC migration to the T cell zone, and the follicular DC 
network in the B cell follicles (73, 74). As a consequence, DCs fails 
to migrate to T cell zone, resulting in an diminishes priming of T 
cells (73). Dalton et al. (75) showed that by using a receptor tyros-
ine kinase inhibitor, sunitinib maleate (Sm), vascular remodeling 
and splenomegaly associated with VL can be blocked, and the 
pathology can be reversed. The use of Sm alone did not cause a 
reduction in parasite burden in the spleen; but when combined 
with conventional antimonial drugs, enhanced leishmanicidal 
activity with enhanced immune response mediated by CD4+ 
T cells producing IFN-γ and TNF (75).

Bone marrow is also affected during the chronic phase of VL 
in both patients and experimental models (76, 77). In patients, 
bone marrow shows moderate to severe megaloblastosis, 
megakaryocitic hyperplasia, and increased number of plasma 
cells. All parameters were correlated to parasite load (78). Calvo 
et al. (79) identified that splenic sequestration and ineffective 
hematopoiesis appear to be the main etiopathogenetic factors 
in the bone marrow changes and peripheral cytopenias. This is 
also observed in experimental models. Lafuse et al. (80) identi-
fied increased BFU-E and CFU-E progenitor populations in the 
spleen and bone marrow and differentially altered erythroid 
gene expression in these organs. In murine model, there is a 
correlation in the hematopoietic activity with parasite load 
in the bone marrow (81). Stromal macrophages are the main 
target for L. donovani infection in  vivo and in  vitro; and as a 
consequence of the selective induction of GM-CSF and TNF-α 
production, infected stromal macrophages preferentially sup-
port increased levels of myelopoiesis (82). Also, Singal and 
Singh (83) demonstrated that L. donovani amastigotes antigen 
could also induce both in  vitro and in  vivo myelopoiesis. If 
this preferential increase of myelopoeisis may merely serve to 
increase the number of phagocytes, which are the host cells 
targets for parasite replication, as well as for increasing the 
phagocytic uptake of the parasite, further studies are needed to 
elucidate this question.

COnCLUSiOn AnD PeRSPeCTiveS

Despite the global public health importance of leishmaniasis, 
progress in developing vaccines against the disease has lagged 

because of some key technical hurdles, including the fact that 
the disease occurs mostly in the world’s poorest countries, and 
the absence of financial incentives to pharmaceutical companies. 
Chemotherapy for VL has changed little in 50  years; in areas 
where drug resistance has yet occurred. The conventional drug 
treatment still involves parenteral administration of antimonial 
compounds (Pentostam and Glucantime). Amphotericin B, 
particularly in liposomal formulation (84), has become the drug 
of choice in developed countries and where antimony resistance 
is problematic; but issues of cost and toxicity remain. Also, there 
are already clinical cases of treatment failure related to liposomal 
amphotericin B (67, 85). The onset of immunosuppression is 
a critical event during the progression of VL in a susceptible 
population. A more comprehensive study would be very helpful 
for a better understanding about how morpho-physiological tis-
sue alterations and pathogen factors would affect organ-specific 
immunity during VL. Recently, the use of Systems Biology has 
been increased (86). Different in silico approaches are available for 
identification of interactions between pathogens and hosts and 
factors for parasite dissemination and disease progression, as well 
as to the selection of promising antigens as vaccine candidates, 
since experimental methods are difficult and time consuming (87, 
88). A new approach to develop treatment strategy against VL in 
resistance cases has to take into account not only by the develop-
ment of new leishmanicidal drugs but also by the drugs that could 
reverse the anergic immune response and pathophysiological 
changes during VL, such as hypocholesterolemia and splenic 
neovascularization. The use of an anti-vascular therapy (with 
Sm, for instance) could be an alternative choice to splenectomy in 
cases of failure treatment for lipossomal Amphotericin B (67, 85).
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