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Glioblastoma multiforme (GBM) is a highly aggressive neoplasia, prognosis remains 
dismal, and current therapy is mostly palliative. There are no known risk factors asso-
ciated with gliomagenesis; however, it is well established that chronic inflammation 
in brain tissue induces oxidative stress in astrocytes and microglia. High quantities 
of reactive species of oxygen into the cells can react with several macromolecules, 
including chromosomal and mitochondrial DNA, leading to damage and malfunction 
of DNA repair enzymes. These changes bring genetic instability and abnormal meta-
bolic processes, favoring oxidative environment and increase rate of cell proliferation. 
In GBM, a high metabolic rate and increased basal levels of reactive oxygen species 
play an important role as chemical mediators in the regulation of signal transduction, 
protecting malignant cells from apoptosis, thus creating an immunosuppressive envi-
ronment. New redox therapeutics could reduce oxidative stress preventing cellular 
damage and high mutation rate accompanied by chromosomal instability, reducing 
the immunosuppressive environment. In addition, therapies directed to modulate 
redox rate reduce resistance and moderate the high rate of cell proliferation, favoring 
apoptosis of tumoral cells. This review describes the redox status in GBM, and how 
this imbalance could promote gliomagenesis through genomic and mitochondrial 
DNA damage, inducing the pro-oxidant and proinflammatory environment involved in 
tumor cell proliferation, resistance, and immune escape. In addition, some therapeu-
tic agents that modulate redox status and might be advantageous in therapy against 
GBM are described.
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iNTRODUCTiON

Central nervous system (CNS) tumors are the most common neoplasia in pediatric patients under 
19 years old. In adults, glioblastoma multiforme (GBM) is the most common aggressive tumor of 
the CNS. In Mexico, GBM represents 28% of all gliomas and 9% of all neoplasms (1). High intra- 
and intertumor heterogeneity, diffuse brain infiltration, necrosis, high rate of cell proliferation, and 
resistance to current treatments characterize these tumors (2, 3).

Glioblastoma multiforme has two origins: tumors arising de novo, called primary GBM that 
represent 90–95% of all GBMs; they are usually diagnosed between the sixth and seventh decades 
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of life. The remaining 5–10% of them (named secondary) arise 
from lower grade tumors through several genetic mutations, 
such as retinoblastoma protein (RB), phosphatase and tensin 
homolog (PTEN), and vascular endothelial growth factor recep-
tor (VEGFR), and other mutations, which finally lead to p53 
inhibition, overexpression of platelet-derived growth factor A 
receptor-α (PDGFA/PDGFRα) and amplified cyclin-dependent 
kinase 4 (CDK4) (4, 5). Secondary GBM is commonly diagnosed 
around the fourth decade of life. Despite multiple advances in 
diagnosis and treatment, prognosis for GBM is poor; survival 
for untreated tumors is about 5 months. Even the best available 
current therapy (which includes surgery, chemotherapy, and 
radiotherapy) works only as a palliative and median survival does 
not extend beyond 14 months (6).

Although several reports have established the existence of 
cancer stem cells-like populations within the GBM and several 
experimental models have demonstrated that transformed neural 
stem/precursor cells are probably the origin cell of those tumors, 
conclusive evidence remains missing (3, 7–9).

The genesis, development, and progression of GBM and its 
resistance to standard treatments remains obscure; however, it is 
thought that GBM cell mechanisms involve clonal and sub-clonal 
populations from both the subventricular zone (SVZ) cell popu-
lation that includes carcinogenic stem cells (CSC) and a mixture 
of tumor mass population, which in turn includes astrocytes, 
microglia, non-differentiated cells, and partially differentiated 
cells (10). Some authors have agreed that it involves a multistep 
process including a series of mutations and activation of several 
oncogenes. These cell populations might suffer genetic alterations 
caused by different factors such as ultraviolet and ionizing radia-
tion (IR), carcinogens, and oxidative stress (11).

GLiOMAGeNeSiS

Gliomagenesis is a multistep process where genetic alterations 
on normal cells may lead to malignant derivatives (secondary 
glioblastoma) or to highly malignant transformed cells (primary 
glioblastoma) (4) when multiple mutations are involved. There 
are several hypotheses about the onset of gliomas and their 
progression through glioblastoma. Histopathologic features of 
primary and secondary GBMs are indistinguishable; neverthe-
less, molecular genetic abnormalities are associated with each 
subtype.

Primary GBMs exhibit epidermal growth factor receptor 
(EGFR) amplification, PTEN mutation, and loss of chromosome 
10, while P53 mutations are common in secondary GBMs (12). 
These mutations affect the redox balance in the tumor environ-
ment. For instance, ligation of EGFR by EGF induces endogenous 
production of intracellular reactive oxygen species (ROS) and 
H2O2 in cancer cell lines (13, 14). In response to ligation, EGFR 
forms homo and heterodimers activating several intracellular 
signal pathways, such as phosphatidylinositol 3′ kinase (PI3K)/
Akt and Ras/mitogen-activated protein kinase (MAPK), lead-
ing to increase in DNA synthesis (13). Also high levels of H2O2 
(200 pM) significantly increase the Tyr autophosphorylation by 
EGFR, leading to generation of ROS (13).

Phosphatase and tensin homolog is known by acting as a 
tumor suppressor, negatively regulating PI3K/Akt pathway (15, 
16). This protein plays an important role in the regulation of 
metabolism, apoptosis, cell proliferation, and survival, being 
affected by redox status, specifically by H2O2, which can oxidize 
the protein, inducing the formation of a disulfide bond between 
Cys71 and Cys124 in the N-terminal phosphatase domain (17). 
As a result, this leads to alterations in its interaction with sign-
aling and regulatory proteins (17–19). Then, it is possible that 
overexpression of EGFR might conduce to an increase in H2O2 
levels, disturbing several signaling pathways and stimulating cell 
survival and proliferation.

Tumor protein P53 (P53) is a protein that regulates the 
energetic metabolism and the genes involved in the redox regu-
lation, such as mitochondrial superoxide dismutase 2 (SOD2) 
(20), glutathione peroxidase 1 (GPX1) (21), and the aldehyde 
dehydrogenase 4 family member A1 (ALDH4A1) (22). P53 may 
be affected by several mutations that change its structure and 
function. Patients with Germline mutations in TP53 and pR337H 
show higher levels of oxidant stress (23).

This genetic heterogeneity separates GBM subtypes and is 
defined by gene expression analysis. Novel therapeutic alterna-
tives are now focused to increase the immune recognition and 
immune response (24, 25), to block metabolism pathways (26), 
to knock genes (27), and to modulate cellular redox status (28).

Chronic inflammation in various tissues is a critical com-
ponent of tumor development (29). In the case of brain tumor 
malignancy, no conclusive links have been found between glioma 
and smoking, diet, mobile phones, or electromagnetic fields. 
Only IR has been accepted as the risk factor (30) due to its ability 
to induce DNA damage response and repair (DDR/R) (31). When 
the cell is damaged by IR, it can inherit to its offspring several 
mutations or enter to apoptosis or to a senescence status (31). 

Abbreviations: AGEs, advanced glycosylation end products; AKT, protein kinase 
b; ATP, adenosine triphosphate; BCNU, bis-chloroethylnitrosourea (carmustine); 
CAT, catalase; CDK4, cyclin-dependent kinase 4; CMV, cytomegalovirus; CNS, 
central nervous system; CSC, carcinogenic stem cells; DAMPs, damage-associated 
molecular patterns; DCs, dendritic cells; DCA, dichloroacetate; DNA, deoxyribo-
nucleic acid; EGCG, epigallocatechin-3-gallate; EGFR, epidermal growth factor 
receptor; GBM, glioblastoma multiform; γ-H2AX, hallmark of DNA damage; 
GPx, glutathione, glutathione peroxidase; GSH, reduced glutathione; GSSG, 
oxidized glutathione; H+, hydrogen; H2O2, hydrogen peroxide; HGFR, hepatocyte 
growth factor receptor; HMGB1, high-mobility group 1; IL, interleukin; MAPK, 
mitogen-activated protein kinase; MMP, matrix metalloproteinase; MnSOD, 
manganese superoxide dismutase; mTOR, mammalian target of rapamycin; 
NADP, oxidized nicotinamide dinucleotide phosphate; NADPH, reduced nicoti-
namide dinucleotide phosphate; NF-κB, nuclear factor kB; NO, nitric oxide; O2⋅−, 
superoxide; O-2A/OPCs, oligodendrocyte/type-2 astrocyte progenitor cells; 
OGD, oxygen-glucose deprivation; OH⋅, hydroxyl radical; ONOO−, peroxynitrite; 
OXPHOS, oxidative phosphorylation; PAMPs, pathogen-associated molecular 
patterns; PDGFA/PDGFRα, platelet-derived growth factor A receptor-α; PDK, 
pyruvate dehydrogenase kinase; PEITC, phenethyl isothiocyanate; PENAO, 
 4-(N-(S-penicillaminylacetyl) amino) phenylarsonous acid; PI3K, phospho-
inositide 3-kinase; Pt-1-DMCa, platinum analog; PTEN, phosphatase and tensin 
homolog; RB, retinoblastoma protein; RCS, reactive chloride species; RFC, redox/
Fyn/c-Cbl; RNA, ribonucleic acid; RNS, reactive nitrogen species; ROS, reactive 
oxygen species; RSS, reactive sulfur species; SOD, superoxide dismutase; SVZ, 
subventricular zone; t-BOOH, tertiary-butylhydroperoxide; TGF, transforming 
growth factor; TLR, toll-like receptor; TNF-α, tumor necrosis factor; VEGF, vas-
cular endothelial growth factor; VEGFR, vascular endothelial grow factor receptor.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


3

Salazar-Ramiro et al. Oxidative Status in Glioblastoma

Frontiers in Immunology | www.frontiersin.org April 2016 | Volume 7 | Article 156

Apoptotic  bodies and senescence cells are phagocyted by the 
mononuclear phagocyte system (32). One of the main effectors 
of the DDR/R pathway is P53 that also plays a key role in the 
induction of the proinflammatory response (33). DNA damage 
induced by radiation allows the release of damage-associated 
molecular pattern (DAMP) (34). Also, some viral infections, 
such as JC virus, BK virus, simian virus 40 (35), cytomegalovirus 
(CMV), and Measles virus (recently postulated) (36, 37), have 
been implicated in the genesis of brain tumors. Therefore, it is 
postulated that some tumors may arise from tissues that were 
damaged by infections or chronic inflammation (38). Virus 
have the ability to cause lytic infection in permissive cells and to 
remain in latency in other cell types, such as astrocytes, neurons, 
myeloid progenitor cells, and/or lymphocytes. Besides, they are 
candidates to produce persistent cell infection, activating, and 
modulating immune response, either through Toll-like receptors 
(TLRs) or by additional mechanisms of activation of TLRs, induc-
ing endogenous inflammatory DAMPs mediators that also par-
ticipate in the immune response (39) against pathogen-associated 
molecular patterns (PAMPs). DAMPs are nuclear and cytosolic 
proteins, nucleotides, and extracellular molecules (40). TLR’s 
activation by PAMPs and DAMPs causes overexpression of pro-
inflammatory cytokines and costimulatory molecules involved in 
the generation of the immune response (41). Infections can also 
activate the DDR/R pathway and induce the release of IFNα/β, 
activating p53 and inducing apoptosis, which is relevant for an 
adequate antiviral immune response and tumor suppression 
(42). Also, DAMPs and PAMPs activate NFκB, PI3K/AKT, and 
Ras/MAPK signaling, favoring cell proliferation (43), allowing 
TNF-α and IL-6 release and perpetuating tissue damage due to 
inflammation (44). The activation of DDR/R as response to viral 
infection is ROS dependent (45, 46). All these processes lead to 
changes in the interstitial microenvironment as a result of infec-
tions or sustained inflammation; thus, it seems possible that they 
can drive to tumor initiation and progression via the release of 
ROS by activated immune cells (40).

It is difficult to know which event is the first to trigger 
gliomagenesis, whether there is a DNA alteration as result of 
an imbalance in the redox homeostasis or if the imbalance in 
the redox state involves alterations in key genes that promote 
gliomagenesis. However, chronic inflammatory process could 
also result in the development of GBM (47), Moreover, it is 
recognized that inflammation is linked to redox modulation; 
tumor cells are under pro-oxidant redox environment due to an 
increased production of ROS (48). TNF-α is a cytokine released 
during the inflammatory processes, induced by microorganisms 
or IR and is the prime mediator of inflammation; its signaling 
can activate signaling pathways pro- and anti-apoptotic and is 
elevated in GBM. In glioblastoma cells, TNF-α increases the ROS 
production (49). Among the signaling pathways that are activated 
by TNF-α, is the PI3K/Akt (involved in regulating cell growth and 
apoptosis resistance), but is unregulated in GBM (50), leading 
to cell proliferation and survival. Akt phosphorylation is redox 
state-dependent (51) and has been shown that GBM human 
cells exposed to TNF-alpha produced significant increases in 
AKT activation, leading to actin cytoskeletal reorganization in 
a redox sensitive manner (52). AKT plays a role in cytoskeletal 

reorganization, which promotes invasion and migration of GBM 
cells (53) (Figure 1).

In summary, there is an intrinsic relationship between GBM, 
tissue microenvironment, and gliomagenesis. GBM microen-
vironment mainly comprises reactive immune-related cells, 
together with microglia, astrocytes, endothelial cells, pericytes, 
neural stem cells, and monocyte macrophages; the last are 
abundant together with microglia, constituting around 30% of 
tumor mass (54). These monocyte infiltrations into GBM result 
in a proinflammatory microenvironment that leads to alterations 
in redox homeostasis, promoting finally gliomagenesis (55). For 
this reason, some of the new therapeutic alternatives are focused 
on the development of new agents able to modulate redox status 
in the GBM microenvironment, alone or combined with agents 
that stimulate ROS production (56).

CeLLULAR ReDOX eNviRONMeNT

Cellular redox status is described as the net physiologic balance 
between inter-convertible oxidized and reduced equivalents 
within subcellular compartments that remain in dynamic 
equilibrium. Under normal physiological conditions, ROS are 
produced constantly during cellular respiration and mediates the 
stimulation of various signaling pathways according to environ-
mental conditions (57). Mitochondria are the major active site 
of ROS production due to incomplete coupling of electrons and 
H+ with oxygen in the electron transport chain (58, 59). During 
electron transfer through the respiratory chain, mitochondria 
generate large portion of ROS, such as superoxide, hydroxyl radi-
cal, and hydrogen peroxide, into the matrix and intermembrane 
space (60). The formation of superoxide occurs via the transfer 
of a free electron to molecular oxygen. Complex I (NADH dehy-
drogenase) and III (ubisemiquinone) of the electron transport 
chain produce most of the superoxide (61, 62). Superoxide is 
catalyzed to H2O2 by manganese superoxide dismutase (MnSOD) 
in the mitochondrial matrix or copper/zinc-SOD (Cu/Zn-SOD) 
in the cytosol. Then, H2O2 is degraded to oxygen and water by 
the reaction with catalase, peroxiredoxin and GSH peroxidase 
(mitochondria). However, when the balance between oxidants 
and antioxidants is broken, superoxide can react with nitric 
oxide producing peroxynitrite (ONOO−), and H2O2 reacts 
with reduced transition metals giving hydroxyl radical. The 
consequence of high ROS contents and Ca2+ overloading is that 
the mitochondrial permeability transition (MPT) pore is open, 
which leads to disruption of mitochondrial membrane potential 
and release of cytochrome c and proapoptotic molecules, from 
the inner membrane space of mitochondria to the cytosol (63), 
increasing even more ROS production.

Another important organelle that can mediate the cellular redox 
homeostasis is the endoplasmic reticulum (ER), the major site of 
calcium storage, where the folding of proteins and formation of 
disulfide bonds occur. The lumen of ER, in contrast to the cytosol, 
has a highly oxidizing environment, which facilitates disulfide 
bond formation and prevents the aggregation or accumulation of 
unfolded proteins. With this process, ER contributes to 25% of 
ROS generated by cell (64, 65); the lumen of ER also contains high 
ratio of GSSG/GSH. Protein folding is a energetically demanding 
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FiGURe 1 | Under normal conditions, the O2
•− secreted by mitochondria is transformed by catalase action and GSH into H2O. 
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TABLe 1 | Redox components alteration in various glioblastoma cell 
lines.

Organelle Antioxidant present Reactive specie produced 
in normal conditions

Mitochondria MnSOD O2
•−, H2O2, O2, OH⋅

Glutathione peroxidase
Glutathione reductase
Catalase
Quinones (coenzymes Q)
GSH
NADH
Thioredoxin

ER Glutathion (GSH) O2, H2O2, OH⋅

Cu/Zn-superoxide
Thioredoxin
Glutaredoxin
Peroxiredoxin
Endoplasmic reticulum 
oxidase
Protein disulfide isomerase
Quinones (coenzymes Q)

Golgi Quinones (coenzymes Q) O2
•−

, H2O2, OH⋅

Cu, Zn-SOD
Transferrine

Peroxisomes Catalase O2
•−

, H2O2

NADH
FAD
Cytochrome b
Ubiquinone

Cytosol Cu/Zn-SOD O2
•−

, H2O2, OH⋅, O2

Protein disulfide isomerase

Chloroplast Protein disulfide isomerase O2
•−

, H2O2, OH⋅

Quinones (coenzymes Q)

Nucleus Glutathione and thioredoxin O2
•−, H2O2, OH⋅

However, when external factors (ionizing radiation or virus) initiate the astrocytes transformation into astrocytoma cells, microglia are activated conducting to the 
release of proinflammatory cytokines, macrophages infiltration, and DAMP’s release, which are recognized by infiltrated macrophages and TLRs on the surface of 
microglia (resident macrophages). These changes lead to an oxidant environment where the O2

•− is transformed by SOD (which is overexpressed in tumor cells) into 
H2O2 and OH⋅, which drives to metabolic changes and chromosomal instability and finally, leading to resistance, aggressiveness, and cell proliferation. Besides, the 
oxidant environment activates the FyN pathway, which under normal conditions, with the activation of Fyn kinase plus C-Cb1, produces ubiquitination of growth 
factor receptors and posterior degradation, directing to cell differentiation. In GBM cells, the sequestration of C-Cb1 by Cool-1/B-Pix avoids the degradation of such 
receptors, increasing their expression and guiding to cell proliferation in GBM environment.

FiGURe 1 | Continued
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process where ATP is required and the conditions that alert this 
tightly regulated environment, as glucose deprivation and altera-
tion in the oxidative phosphorylation (OXPHOS), can cause an 
imbalance in the ER protein folding, leading to accumulation of 
unfolded proteins in the ER lumen, condition named as ER stress. 
Accumulation of unfolded proteins in the ER provoke Ca2+ leakage 
into the cytosol, activating MPT pore, which affects mitochondrial 
membrane potential, leading to ATP depletion and increasing 
ROS production in the mitochondria (66, 67). Also, it is important 
to mention that mitochondria and ER are linking organelles due 
to their close proximity and their capability to modulate calcium 
levels in the cytosol, which initiates a sequence of events where 
oxidative stress increases and the redox homeostasis is lost (68).

Many other enzymes, such as NADPH oxidase (69), xanthine 
oxidase (47), α-ketoglutarate dehydrogenase complex, d-amino 
acid oxidases, and dihydrolipoamide dehydrogenase (70), and 
other flavoproteins also produce ROS along the normal metabo-
lism, although in lower concentrations.

Reactive species of oxygen are beneficial for the cell in low 
concentrations and play a key in role signal transduction, enzyme 
activation, gene expression, and disulfide bond formation, dur-
ing the folding of new proteins in the ER, and control of caspase 
activity during apoptosis (71). They also have a role in the normal 
functioning of immune response, proliferation of T cells and acti-
vation of immunological peptides, as well as in the response in the 
regulation of various cell activities. ROS keep under control the 
balance between self-renewal, proliferation, and differentiation of 
normal stem cells and progenitor cells, either in hematopoietic or 
neuronal compartments (72, 73).

Reactive species of oxygen production is inhibited by 
endogenous antioxidants as SOD, catalase (CAT), glutathione, 
glutathione peroxidase (GPx), and glutathione reductase 
(Table  1), among others, which can prevent the generation of 
scavenging molecules and inactivate the already formed oxidants. 
Glutathione (GSH) redox cycle and thioredoxin represent the 
major cellular redox buffer (74, 75). In this context, GSH is a 
relevant low-molecular-weight thiol in cells, essential for normal 
redox signaling (76). During the oxidative stress, its oxidized form 
(GSSG) may accumulate, leading to deleterious consequences for 
metabolic regulation, cellular integrity and homeostasis. GSH 
status is maintained in reduced state by GSH peroxidase and 
GSSH reductase system, which are coupled to the oxidized and 
reduced nicotinamide dinucleotide phosphate (NADP/NADPH) 
redox pair. These antioxidants provide essential information on 
cellular redox state and affect the expression of genes associated 
with stress responses to maximize homeostasis.

When the cellular redox homeostasis is disturbed and the bal-
ance between cellular pro-oxidants and antioxidants is broken in 

favor of pro-oxidants, the cell enters into oxidative stress. During 
oxidative stress, ROS [superoxide O2

•−( ), hydrogen peroxide 
(H2O2), hydroxyl radical (OH⋅)], reactive nitrogen species (RNS) 
[nitric oxide (NO) and peroxynitrite (ONOO−)], reactive sulfur 
species (RSS), and reactive chloride species (RCS) are produced 
(77). ROS can react with the most relevant macromolecules, such 
as DNA, RNA, proteins, and lipids (78), leading to cell damage 
and DNA alterations. DNA oxidation by these reactive species 
generates 8-hydroxy-2-deoxyguanosine, which may induce 
DNA mutations, generating mutagenesis and disruptions of 
genomic stability, in a process that enhances aging and cancer 
development (79). Those variations in ROS concentrations do not 
only affect genomic DNA but also produce alterations in DNA 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Salazar-Ramiro et al. Oxidative Status in Glioblastoma

Frontiers in Immunology | www.frontiersin.org April 2016 | Volume 7 | Article 156

mitochondrial due to their proximity to the electron transport 
chain. As was mentioned before, depending on the ROS levels, 
different redox-sensitive factors are activated and distinct bio-
logical responses are produced. When ROS levels are low, Nrf2, 
a transcription factor considered as a ROS receptor in mammals, 
is activated, which involves the transactivation of gene coding 
for antioxidant enzymes (80). However, when the levels of ROS 
are high, perturbation occurs in calcium homeostasis leading to 
MPT pore perturbation, disruption of the electron transfer chain, 
lipase activation, induction of inflammatory response, trough the 
activation on NF-κB and AP-1, all these outcomes in apoptosis o 
necrosis (81).

The nervous tissue is particularly vulnerable to oxidative 
stress due its high demand for oxygen and its inefficient defense 
mechanisms against free radicals, together with a high concen-
tration of metal ions (e.g., iron and copper) involved in redox 
reactions (82). This complicated scenery within CNS has been 
related to the development of neurodegenerative diseases such 
as Alzheimer’s and Parkinson and it seems possible to various 
tumors in the brain (83, 84). It has been described that other ROS 
generators also contribute to tumor development. In this context, 
NADPH oxidases activate redox signaling pathways leading to 
angiogenesis (85, 86); mutant Ras can modulate NADPH causing 
increase in ROS, DNA damage, and cell transformations (87, 88); 
thus, cells that overexpress the oncogenic Ras display increased 
mitochondrial mass and ROS accumulation.

ReDOX eNviRONMeNT ALTeRATiON iN 
GLiOBLASTOMA

Cells are constantly exposed to oxidant damage, either by exog-
enous (X or γ rays, α particles, oxidant products, or UV) or by 
endogenous agents (cell signaling, metabolic and inflammatory 
processes) (89–92). These agents induce DNA changes producing 
complex DNA damage, i.e., double-strand DNA breaks (DSBs) 
and non-DSB generates clustered DNA lesions (OCDLs). Even 
low doses of IR (0.03 Gy) are enough to induce DNA mutations 
(93–95). Chronic exposure to viral infections can be also a source 
of free radicals that decrease the production of antioxidant 
enzymes such as catalase, glutathione peroxidase, glutathione 
reductase, as well as high levels of hydroxyl radicals (96).

Reactive nitrogen species and ROS are the main effectors of 
oxidant damage (97); although ROS have relatively brief periods 
of life, they can induce local DNA damage. H2O2 is another oxidant 
species with a longer period of life that may induce cell damage in 
distant sites to its niche (98). It is known that ROS have specific 
targets such as *OH·y 1O2, which react with DNA and proteins, 
while H2O2 use Fe2+ to promote the Fenton reaction (99).

The most common modifications induced by ROS in the DNA 
are -oxo-7,8-dihydroguanine (8-oxoGua) and 2,6-diamino-4-hy-
droxy-5-formamidopyrimidine, which lead to the production of 
apurinic/apyrimidinic (abasic) DNA sites, to oxidized purines 
and pyrimidines and to single-strand DNA breaks (SSBs) and 
DSBs (89, 100), finally inducing genetic instability and the pos-
sible emergence of brain tumors (89).

Cellular redox imbalance has been found in GBM (Table 2). 
ROS can exert different effects according to the basal metabolic 

rate of the cells. The CNS has high metabolic activity and fatty acids 
content, reasons why is particularly sensible to oxidant damage 
by ROS. Within CNS, astrocytes and neurons have antioxidant 
systems such as the GSSG–GSH system that protects these cells 
of oxidant damage; however, the expression of mRNA for SOD 
and catalase enzyme is high in astrocytes. These differences in the 
expression of antioxidant enzymes make astrocytes particularly 
sensitive to damage induced by ROS, leading to genetic instability 
when the redox balance is lost.

Cancer cells show high basal levels of ROS, necessary for their 
increased proliferative rate (48). Recent studies have shown that 
high levels of ROS in cancer cells are the result of increased basal 
metabolic activity, mitochondrial dysfunction, due to hypoxia or 
mitophagy, peroxisomes activity, uncontrolled growth factors of 
cytokine signaling, oncogene activity, as well as enhanced activity 
of known ROS sources, such as NADPH oxidase, cyclooxygenases, 
or lipoxygenases (132–134) in cancer cells. The alteration on 
redox homeostasis is involved in the beginning, progression and 
regression of neoplasm. As was mentioned, reduction-oxidation 
(redox) reactions that generate ROS, including O2

•−
, H2O2, and 

OH⋅, have been reported as important chemical mediators in the 
regulation of signal transduction. Due to the high levels of ROS, 
cancer cells also stimulate the antioxidant system, such as MnSOD, 
catalase, and glutathione peroxidase, to eliminate ROS (135) 
(Table 1). Conversely, ROS can also stimulate intracellular signal 
events, promoting activation in tumor cells, due to the capacity 
to stimulate kinases and small G proteins such as c-Src, Ras, and 
ERK1/2 (136, 137), leading to cell proliferation. In the same way, 
negative regulation of SOD-1, as well as the addition of TNF-α to 
GBM cells, generate increase in the ROS production, leading to 
SOD-1 decline in a exposure time-dependent manner, and to rise 
the phosphorylation of AKT in a redox status-dependent manner, 
which induces the reorganization of the actin cytoskeleton (52).

Due to the action of flavoproteins, malignant cells constitu-
tively produce high H2O2 concentrations. These chronic amounts 
of H2O2 are enough to induce DNA damage without apoptosis 
induction, nor genetic instability in the nucleus and mitochon-
drial DNA, in a concentration/intracellular dependent manner. 
Tumor resistance and malignancy may occur when those 
punctual mutations are generated in critical genes that control 
metabolism and cell cycle (138). Besides, high amounts of H2O2 
activate several pathways, acting as “second messenger,” increas-
ing the expression of oxidant stress factors and producing a rise 
in the expression of antioxidant enzymes that protect malignant 
cells from apoptosis induction (48, 118, 139).

Additionally, the redox/Fyn/c-Cbl (RFC) pathway plays a 
key role in the activation of growth factors, involved in cell 
proliferation. In the RFC pathway, cellular oxidation causes 
sequential activation of Fyn kinase and c-Cbl ubiquitin ligase, 
in the oligodendrocyte/type-2 astrocyte progenitor cells (O-2A/
OPCs). These activations guide to ubiquitylation and degrada-
tion of c-Cbl’s protein targets, such as growth factor and EGFRs 
(140), the C-Met hepatocyte growth factor receptor (HGFR) 
(140), and the insulin-like growth factor-I receptor (141), among 
others. In this context, GBM treatment with the antineoplastic 
1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (carmustine) may 
induce DNA crosslinks, inhibition of glutathione reductase, and 
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TABLe 2 | Redox therapies designed against GBM.

Glioblastoma cellular line Anticancer compound Redox effects Reference

U87–MG SIRT6 (deacetylase) ↑ Apoptosis (101)

T98G ↓ Oxidative stress

↓ JAK2/STAT3 signaling pathway

U87MG Chloroquine ↓ Cell viability (75–200 μM) 48 h (102)
U343MG ↓ Mitochondrial membrane potential (50–200 μM, 12–24 h)
U138MG ↑ Mitochondrial O2

•− production (50 μM)
U251MG ↑ ROS production (50 μM)
A172 150 μM (103)

↑ Apoptosis
↑ Nitric oxide
↑ ROS
↓ GSH levels
↑ GSH peroxidase activity
↑ GSH S-transferase

C6 glioma cells 30–300 μM (101)
↑ iNOS expression
↑ NO production

C6 glioma cells AGEs (advanced glycosylation end products) 
(30–300 μg/ml)

↑ iNOS (104)
↑ Nitric oxide synthase expression

C6 glioma cells t-BOOH (tertiary-butylhydroperoxide) ↑ ROS generation (105)
↑ Lipid peroxidation
↓ GSH levels
↑ Ca2+ influx

C6 glioma cells OGD (oxygen-glucose deprivation) ↑ ROS generation (106, 107)
↑ Intracellular Ca2+

↑ Depolarization of mitochondrial inner membrane potential

T98G Quercetin (50 μM), temozolomide (50 μM), individual 
and in combination

↓ Mitochondrial membrane potential (108)

C6 glioma cells Quercetin (25 and 50 μM) ↑ ROS generation (109)
Rutin (25 and 50 μM) ↓ Cell viability

U87MG EGCG (epigallocatechin-3-gallate) 25, 50, and 100 μM (110)
↑ ROS generation
↓ Mitochondrial membrane potential

T98G 50 μM (111)
U87MG ↑ Apoptosis

↑ ROS production activation of the redox-sensitive c-Jun 
N-terminal kinase 1 pathway
↓ Mitochondrial membrane potential
↓ Cell viability

8401 GBM cells PEITC (phenethyl isothiocyanate) ↑ ROS generation (112)
Mitochondrial dysfunction

T98G cells Gambogic acid (200–400 nM) ↑ ROS generation (113)
↑ Apoptosis

U87MG Artocarpesin (106 μM), cycloartocarpesin (50 μM), 
and isobavachalcone (25 μM)

↑ ROS generation (114)
↓ Mitochondrial membrane potential

GSC11 Serum ↑ Mitochondrial ROS generation (115)
GSC23 ↑ SOD expression
GBM3752 ↑ Catalase expression

↓ GSH levels

U87MG Pt-1-DMCa (platinum analog) ↑ ROS generation (116)
↑ Apoptosis

GBM3752 Temozolomide, demethoxycurcumin ↑ ROS generation (117)
↑ Apoptosis
↓ JAK/STAT3 signaling pathway

U251 and U87 Arecaidine propargyl ester (25–100 μM) ↑ ROS generation (118)
↑ SOD expression
↑ Apoptosis

(Continued)

7

Salazar-Ramiro et al. Oxidative Status in Glioblastoma

Frontiers in Immunology | www.frontiersin.org April 2016 | Volume 7 | Article 156

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Glioblastoma cellular line Anticancer compound Redox effects Reference

GSC 387 and 3832 Cannabidiol (3.5 μM) ↑ ROS generation (119)
↓ Cell viability

U87 (human) Oligomeric procyanidins (30–100 μg/ml) ↑ ROS generation (120)
C6 (rat) ↓ Mitochondrial membrane potential

↓ Cell viability

U87 Alantolactone (10–60 μM) ↓ GSH (121)
U373 ↑ ROS production
LN229 ↓ Mitochondrial transmembrane potential

GL15 Bromopyruvate ↓ Mitochondrial potential (122)
↓ MTT
↓ ATP
↑ Apoptosis
↑ ROS production

D-54 MG Manganese porphyrin ↓ ROS production (123)
D-245 MG ↓ RNS production

↑ SOD expressionD-256 MG
D-456 MG

T98G Apigenin (50 μM), epigallocatechin (50 μM), and 
Genistein (50 μM)

↑ Apoptosis (111)
U87MG ↑ ROS production activation of the redox-sensitive c-Jun 

N-terminal kinase 1 pathway
↓ Mitochondrial membrane potential
↓ Cell viability

LN229 Kaempferol (50 μmol/L) ↑ Apoptosis (124)
U87MG 
T98G

↑ ROS production
↓ Cell viability
↓ SOD-1 expression (superoxide dismutase)
↓ TRX-1 (thioredoxin)
↓ Mitochondrial membrane potential

U87 PENAO (4-(N-(S-penicillaminylacetyl) amino) 
phenylarsonous acid) (0–10 μM), DCA (0–50 mM) 
alone and combination

↓ Cell viability (125)
U251 
LN229

↑ Apoptosis
↑ Depolarized mitochondria
↑ ROS production
↑ Mitochondrial ROS production
↓ Oxygen consumption rate (PENAO)
↑ Oxygen consumption rate (DCA)
= Oxygen consumption rate (combination)
↑ Extracellular acidification rate (PENAO)

DBTRG ↓ Extracellular acidification rate (DCA and combination)

GBM cells DCA ↑ Depolarized mitochondria (126)
↑ ROS production
↑ Mitochondrial ROS production
↑ Apoptosis
↑ Oxidative phosphorylation

U-13898 Ascorbic acid (5–100 mmol/L) ↓ Cell viability (127)
U-87 ↑ ROS production
U-251 ↑ H2O2 production

T98G Xanthohumol ↓ Cell viability (128)
↑ Apoptosis
↑ Intracellular ROS production

T98G Berberine (0–200 μg/ml) ↓ Cell viability (129)
↑ ROS production
↑ Intracellular Ca2+

↑ Endoplasmic reticulum

T98G Buthionine sulfoximine ↓ GSH (130, 131)
U87MG ↓ Cell viability

TABLe 2 | Continued
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increase of the intracellular oxidative status, events that bring 
as consequence the pathway activation without c-Cbl phospho-
rylation and without reductions in EGFR contents (a c-Cbl target 
frequently overexpressed in GBMs and other cancers) (142, 143). 
In GBM cells, the phosphorylation of c-Cbl in response to BCNU 
is prevented. This failure causes c-Cbl activation and decreases 
EGFR levels in GBM cells due to the c-Cbl sequestration by 
Cool-1 protein (144) (Figure 1).

Moreover, the high-mobility group 1 (HMGB1) molecule 
has been associated with progression, invasion, and tumor 
metastasis; it is abundantly expressed in several tumors and in 
undifferentiated cells (145). HMGB1 is a classic DAMP released 
by necrotic cells and secreted by monocytes, macrophages, and 
dendritic cells (DCs) (146, 147). HMGB1 functions as a sensor 
of intracellular oxidative status, being released after oxidation of 
cysteine residues; it induces DNA damage by ROS and promotes 
genomic instability in neoplastic cells (148–150). TLR2, TLR4, 
TLR9 and RAGE are receptors expressed in macrophages that 
can bind to HMGB1 and signaling NF-κB, resulting in the release 
of pro-inflammatory molecules (151). These tumor-resident 
macrophages could sustain the inflammatory environment 
inside the tumor, together with neutrophils, contributing to 
enhance oxidative status trough the release of high amounts of 
ROS and activation of NOX2 in response to several DAMPs (for 
instance, HMGB1; Figure 1) (151). Tumor cells take advantage 
of this inflammatory environment to develop, proliferate and 
produce new tumor endothelial cells to sustain angiogenesis, to 
release cytokines, growth factors, extracellular matrix-degrading 
enzymes and angiogenic factors, such as vascular endothelial 
growth factor (VEGF), Bv8, and MMP9 (152). Besides, tumor 
cells inhibit the specific immune response (T cell activity) trough 
IL-10, TGF-β, and ROS production (29, 153, 154).

ReDOX THeRAPeUTiCS ON 
GLiOBLASTOMA

Multitude of active substances has been tried for therapy of 
GBM. As described above, oxidative environment supports the 
survival of GBM cells inducing healthy cells to produce antioxi-
dant enzymes, such as catalase and SOD, to decrease the raised 
levels of ROS (155, 156) (Table 1). Additionally, this environment 
leads to inactivate the tumor suppressor protein p53, enabling 
tumor cells to escape apoptosis (157), therefore inhibiting the 
therapeutic effects of radio/chemotherapy (158). As the redox 
environment plays an important role in the initiation, progres-
sion, and regression of a tumor, new alternative redox therapies 
have been investigated. Here, we described some of these redox 
therapies designed against GBM (Table 2).

Recently, Singer and coworkers showed that cannabidiol  
(a cannabinoid) possess anti-tumoral effect in 3832 and 387 GBM 
cell lines both in vitro and in vivo. The antitumoral effect is partially 
attributed to ROS production in vitro. The cannabinoid inhibited 
glioma stem cells viability through ROS production and this effect 
was abolished by the co-incubation with vitamin E. Additionally, 
cannabidiol inhibited GBM progression in  vivo and increased 
survival of GBM-bearing mice. However, a subset of glioma 
stem cells became adapted by activating an extended antioxidant 

cellular response; in part due to NRF2 transcriptional network 
as well as to redox system Xc catalytic subunit xCT (SLC7A11).

One of the most important participants in the variability of 
GBM cells is glucose metabolism, which represents the main route 
to support their growth, and it is related with chemoresistance. This 
glycolytic ability is characterized by a shift from OXPHOS toward 
aerobic glycolysis as the main source of ATP production; this effect 
is commonly called the Warburg effect (159) and mitochondrial 
functions are partially activated in these cells (160). Due to the 
importance of glycolysis for GBM cells, several blockers of this 
metabolic pathway have been tested as anticancer agents, in vitro 
and in vivo (161–163); however, only minor positive results have 
been obtained. In this context, dichloroacetate, a pyruvate dehy-
drogenase kinase (PDK) inhibitor, reverses the Warburg effect 
by a shift from glycolysis to mitochondrial oxidation, inducing 
a cytotoxic effect in various human malignant cell lines (164, 
165). The target enzyme of dichloroacetate is highly expressed 
in GBM cells, inducing cell cycle arrest in G2/M phase of GBM 
cell cultures, however, it had not effect on non-cancerous cells; 
dichloroacetate also increases ROS production due to pyruvate 
participation in mitochondrial oxidation, depolarizes mitochon-
dria, and induces apoptosis in glioblastoma cells.  Additionally, 
the efficacy of radiotherapy was enhanced by dichloroacetate 
in glioblastoma cells, both strategies worked synergistically, 
in vivo and in vitro, to elevate mitochondrial ROS levels and 
γ-H2AX (a hallmark of DNA damage) in GBM cells. Shen and 
coworkers also observed that the combination of dichloroacetate  
with temozolamide increases the apoptosis observed with temo-
zolamide alone in GBM stem cells (125).

Mitochondria are other components that play an important 
role in glioblastoma cells. They participate in a wide array of 
cellular processes, particularly confer resistance to apoptosis, 
considering that glycolysis and energetic metabolism are com-
mon factors in glioblastoma. Shen and coworkers have shown 
that dichloroacetate, restores mitochondrial activity and 
combined with a mitochondrial toxin enhances synergistically 
the cytotoxicity of GBM cells. The mechanisms by which these 
agents lead to apoptosis involve ROS production, considering 
that the simultaneous incubation with an antioxidant decreased 
the number of apoptotic cells, as was observed by co-incubation 
with inhibitors of glycolysis (125). Another factor that might 
play a role in twitching aerobic glycolysis back to OXPHOS is 
rapamycin (mTOR), which is overexpressed in many human 
tumors (166). mTOR is a critical regulator of cell proliferation; 
its dysfunction can transform normal cells into tumor like-cells 
(167) and switch the energetic metabolism from OXPHOS to 
aerobic glycolysis (168).

Muscarinic receptors are also expressed in glioblastoma cells; 
the M2 subtype appears relevant for their proliferation and sur-
vival (169). The activation of M2 receptors by arecaidine causes 
an arrest of the cell cycle and consequent apoptosis (169). These 
effects, induced by arecaidine, appear to be mediated by ROS 
production as the co-incubation with the antioxidant N-acetyl-l-
cysteine decreases ROS levels and the apoptotic index in U87MG 
and U251MG GBM cell lines. Additionally, SIRT1, a member 
of the sirtuin family, and able to activate stress defenses and 
DNA repair machinery, increases its expression after treatment 
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with arecaidine. The MnSOD expression is also augmented with 
this activator of M2 receptors. The rise in apoptosis caused by 
arecaidine could be explained by the simultaneous increase 
of SIRT1 expression, protein that induces apoptosis when the 
stress becomes chronic or when the cell damage appears to be 
irreversible (118).

Apigenin and other flavonoids induce apoptosis in human 
glioblastoma T98G and U87MG cells through various pathways: 
increase of ROS production, phosphorylation of p38 MAPK, 
activation of the redox-sensitive c-Jun N-terminal kinase 1, 
downregulated expression of the anti-apoptotic protein Bcl-2, 
and activation of the anti-apoptotic kinase Akt, as well as by 
suppressing the expression of inflammatory factors (NF-κB and 
COX-2) and activation of death receptor and mitochondrial path-
ways (111). Other studies show that quercetin (a flavonoid) pos-
sess anticancer effects, inhibiting significantly the proliferation 
of U373MG cells in a concentration-dependent manner, by cell 
death through apoptosis, as is evidenced by the increased number 
of cells in the sub-G1 phase (170). Also, when quercetin was com-
bined with temozolomide (TMZ), the current chemotherapeutic 
agent used in T98G GBM cells treatment, induced apoptosis 
which correlated with caspase 3 and 9 activation, cytochrome c 
release from the mitochondria and decrease in the mitochondrial 
membrane potential (108, 171, 172).

Recently, it was reported that melatonin inhibits HIF-1α 
protein and suppress the expression of matrix metalloproteinase 
2 (MMP-2) and VEGF by means of its antioxidant activity, reduc-
ing the invasion and migration mediated by hypoxia, of U251 
and U87 glioblastoma cells (173). Additionally, alantolactone, 
a sesquiterpene lactone compound, induces GSH depletion, 
inhibits growth and triggers apoptosis of glioblastoma cells. 
These effects induced by alantolactone can be directly related to 
ROS generation due to N-acetyl-l-cysteine – an antioxidant that 
prevents apoptosis and GSH depletion (121). In addition, GSH 
synthesis inhibitors potentiate the TMZ effect (174).

Another strategy to modulate the redox environment in GBM 
is the use of buthionine sulfoximine (BSO), a potent blocker of 
glutathione synthesis through inhibition of γ-glutamyl-cysteine 
synthetase. BSO shows to enhance the cytotoxic effect of various 
drugs in cancer cell (175–177). Specifically in human glioblas-
toma cell lines (T98G, U87MG), BSO increased their sensitivity 
against platinum compounds (130) and hydrogen peroxide (131). 
BSO represents a viable strategy to explore in the future for 
glioblastoma therapy, considering that astrocytes have higher 
contents of GSH and GSH intermediates than neurons (178, 179), 
but also because glioblastoma cell lines (T98G, U87MG) possess 
more intracellular GSH than other malignant cells as human 
myelogenous leukemic cells (HL-60).

Ascorbate (vitamin C) has also been used as an anticancer 
treatment. Studies made in LN18 GBM cell line, mouse astro-
cytoma cell line GL261, and untransformed astrocyte cell line 
C8D1A have shown that ascorbate increases radiation sensitivity 
in a dose-dependent manner and interferes with the cell cycle 
progression (180). Another study in human cancer cells showed 
that 55% of the human cancer cell lines were susceptible to the 
oxidative stress mediated by ascorbic acid through the produc-
tion of hydrogen peroxide (127). Various agents, such as the anti-
glycolytic bromopyruvate, xanthohumol, and berberine, induce 
cell death in glioblastoma cell lines through ROS production 
(Table 2) (122, 128, 129). All the drugs described here involve an 
alternative strategy to modulate redox in the GBM environment. 
However, most of these drugs give insights about the involved 
mechanism and offer novel routes to facilitate discovery cancer-
specific therapies.

CONCLUDiNG ReMARKS

There are various theories about the origin of GBM; one of them 
indicates that inflammatory processes, together with redox 
alterations are common factors in the origin of several neoplasias, 
generating alterations that promote an abnormal circle between 
oxidant environment, chromosomal and mitochondrial instabil-
ity and inflammation, which are factors that contribute to the 
malignancy and proliferation of GBM. Little is known about the 
direct influence of ROS in the intra and extra signaling pathways 
of GBM cells and how these substances participate in the cellular 
metabolism, contributing in a high degree in proliferation and 
resistance. Is important to develop new therapeutic alternatives 
focused on the peculiar cellular redox environment of gliomagen-
esis; these novel approaches might increase the efficacy, supporting 
therapeutic interventions focused to improve the cellular redox 
homeostasis and induce apoptosis of abnormal cells, in order to 
reduce their proliferation rate and provoke differentiation.
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