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An effective resolution program may be able to prevent the progression from non- 
resolving acute inflammation to persistent chronic inflammation. It has now become evi-
dent that coordinated resolution programs initiate shortly after inflammatory responses 
begin. In this context, several mechanisms provide the fine-tuning of inflammation 
and create a favorable environment for the resolution phase to take place and for 
homeostasis to return. In this review, we focus on the events required for an effective 
transition from the proinflammatory phase to the onset and establishment of resolution.  
We suggest that several mediators that promote the inflammatory phase of inflammation 
can simultaneously initiate a program for active resolution. Indeed, several events enact 
a decrease in the local chemokine concentration, a reduction which is essential to inhibit 
further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are 
cells that characteristically participate in the active phase of inflammation, they also  
contribute to the onset of resolution. Further understanding of the molecular mechanisms 
that initiate resolution may be instrumental to develop pro-resolution strategies to treat 
complex chronic inflammatory diseases, in humans. The efforts to develop strategies 
based on resolution of inflammation have shaped a new area of pharmacology referred 
to as “resolution pharmacology.”
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iNTRODUCTiON

Inflammation is a reaction of the host to infectious or sterile tissue damage and has the physiological 
purpose of restoring tissue homeostasis (1). However, uncontrolled or unresolved inflammation can 
lead to tissue damage, giving rise to a plethora of chronic inflammatory diseases, including metabolic 
syndromes and autoimmunity pathologies with eventual loss of organ function (2). In fact, signs of 
persistent unresolved inflammation are not only typical of classical inflammatory diseases but also an 
underlying feature of a variety of human conditions not previously thought to have an inflammatory 
component (3), including Alzheimer’s disease (4), atherosclerosis (5), cardiovascular disease (6), 
and cancer (7). This justifies the increasing interest in studying inflammatory processes. In this 
context, an important milestone has been reached with the awareness that engagement of resolution 
of acute inflammation is crucial to avoid persistent chronic inflammation and ensure proper return 
to homeostasis (8).
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Historically, the first acknowledged report on resolution of 
inflammation was published in 1907 (9). This report shows that, 
in experimental irritant-induced pleurisy, a fluid containing 
fibrin and leukocytes was formed, disappearing after 5 days, with 
the clearance of “polynuclear leukocytes” and the persistence of 
mononuclear cells in the pleural cavity (9). For many years, reso-
lution of inflammation was considered a passive phenomenon, 
merely associated with the removal of inflammatory stimuli, end 
of chemoattractant production, dilution of chemokine gradients 
over time, and prevention of further leukocyte recruitment. Some 
years later, the existence of endogenous inhibitors of leukocyte 
trafficking was reported, acting as a counteractive mechanism 
against promoters of cell recruitment, such as chemoattractants 
and adhesion molecules [reviewed in Ref. (10)]. Since then, 
several studies, especially those from Serhan’s lab at Harvard, 
showed that the resolution of inflammation is an active process 
brought about by the biosynthesis of active mediators, which act 
on key events of inflammation to promote the return to homeo-
stasis (11–14). In this context, homeostasis is recovered after 
the production of pro-resolving mediators that act on specific 
receptor targets to (i) shutdown polymorphonuclear leukocyte 
recruitment, (ii) counteract signaling pathways associated with 
leukocyte survival to promote apoptosis (or programmed cell 
death), and (iii) activate the clearance of apoptotic cells (especially 
by macrophages through a non-phlogistic process), yielding  
(iv) macrophage reprogramming from a proinflammatory to a 
pro-resolving phenotype (15, 16).

Inadequate or insufficient resolution can lead to chronic 
inflammation, excessive tissue damage, and dysregulation of 
tissue healing, leading to fibrosis. Additionally, it has been 
implicated in multiple disease states, including the development 
of autoimmunity (2, 8, 17). Thus, understanding the mechanisms 
required for the resolution of inflammation may not only unveil 
new mechanisms of pathogenesis but also support the develop-
ment of drugs that are able to manage inflammatory processes 
in directed and controlled ways. Resolution of inflammation 
requires pro-resolving molecular pathways that are triggered as 
part of the host response, during the inflammatory phase. This 
concept challenges a linear model of induction and resolution 
of inflammation, suggesting a more complex balance between 
proinflammatory and anti-inflammatory events that are initiated, 
at least partly, in parallel (18). The inflammatory cells involved in 
the active phase of inflammation undergo a functional repolari-
zation and contribute to the onset of resolution. Additionally, an 
accumulating body of evidence suggests that many proinflam-
matory mediators that promote the inflammatory phase can 
simultaneously initiate a program for active resolution. For this 
reason, it is important to understand that adequate resolution of 
inflammation follows on a coordinated and florid proinflamma-
tory phase with marked leukocyte accumulation. In this context, 
Sehran, who uncovered the most important pro-resolving 
lipid mediators, and Savill elegantly stated that “the beginning 
programs the end” meaning that the events occurring early in 
acute inflammation engage an active and coordinated “resolution 
program” (18). In this review, we reason on the events required 
for an effective transition from the proinflammatory phase to the 
onset and establishment of resolution (Figure 1).

CeLLULAR eveNTS iN THe ReSOLUTiON 
OF ACUTe iNFLAMMATiON

The molecular and cellular events of the inflammatory response 
are well known and typically characterized by increased blood 
flow, capillary dilatation, leukocyte infiltration, and production of 
chemical mediators. Acute inflammation is mainly characterized 
by the presence of neutrophils, which are highly motile leukocytes, 
able to rapidly migrate to the site of injury or infection. Although 
neutrophils are essential for proper elimination of the inflam-
mogen, exaggerated influx of leukocytes can be more deleterious 
than the infection or injury itself and has been considered a bad 
marker of tissue homeostasis (19). Therefore, the key histological 
feature in the resolution of acute inflammation is the depletion of 
neutrophils from the local inflamed sites. This is achieved through 
programmed processes that occur in an overlapping fashion and 
are actively regulated at multiple levels (20, 21). The cardinal 
signs of resolution entail the limitation or cessation of blood-
borne cell extravasation, the counter regulation of chemokines 
and cytokines, the switching off of signaling pathways associated 
with leukocyte survival, the induction of leukocyte apoptosis and 
their subsequent removal through efferocytosis by macrophages, 
the reprogramming of macrophages from classically activated 
to alternatively activated cells, the return of non-apoptotic cells 
to the vasculature or lymph, and finally the initiation of healing 
processes. Altogether, these events avoid excessive tissue dam-
age and culminate in the return to tissue homeostasis, giving 
little opportunity for the development of chronic, non-resolving 
inflammation. On the other hand, failure of one or more steps in 
the resolution of inflammation may be involved in the pathogen-
esis of several human chronic inflammatory diseases (8).

PRO-ReSOLviNG MeDiATORS

Similar to the onset phase of inflammation, resolution of inflam-
mation is coordinated and regulated by a large panel of media-
tors. The pioneer authors in the field of resolution and other 
investigators worldwide have focused on defining the endog-
enous mediators of resolution and the mechanisms through 
which the body regulates effector cells (PMNs, monocytes, and 
macrophages). It is worth noting that anti-inflammatory effects 
and pro-resolving effects are not totally overlapping: anti-
inflammation mainly refers to an inhibitory/blocking action 
(e.g., stopping immune cell extravasation, which is a hallmark 
of acute inflammation), whereas pro-resolving actions indicate 
an inherent stimulation and activation of specific processes, 
such as apoptosis or efferocytosis. In both cases, the end point 
is the inhibition of inflammation, but pro-resolving media-
tors are those that genuinely enable resolution to take place  
(12, 22, 23). In the same vein, there is a mechanistic difference 
between an anti-inflammatory drug that blocks some specific 
pathways and a pro-resolving drug that is expected to activate 
a plethora of actions. Hence, the distinction is between block-
ing/inhibiting particular mediators, which can cause tissue 
damage, and agonism/activating cellular processes that par-
ticipate in limiting or preventing damage, the latter enabling 
an amplifying effect. It is reasoned that pro-resolving-based  
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FiGURe 1 | Overview of cellular and molecular processes that govern inflammation and its resolution. During early phase of inflammation, production of 
inflammatory mediators promotes leukocyte accumulation and survival in the inflammatory site. While the inflammatory response evolves, several mechanisms 
enable the fine-tuning of these phenomena creating a favorable environment for the resolution phase leading to return to tissue homeostasis. Chemokine 
proteolysis, sequestration by atypical receptors, and degradation by neutrophil extracellular traps (NETs) are important mechanisms to shape chemokine gradients 
restricting the influx of neutrophils, once sufficient numbers of cells have been recruited. In addition, inflammatory mediators may induce a negative-feedback loop 
downregulating the production of inflammatory cytokines. Prostaglandins generated in the active phase of inflammation are involved in the switch from 
proinflammatory lipid production to the synthesis of lipoxins and other pro-resolving lipids, within inflammatory exudates. Mediators released early in inflammation, 
like ACTH, can also enable the induction of the pro-resolving phase. Upon activation, neutrophils release microparticles containing pro-resolution mediators that 
control further granulocyte ingress and turn on a resolution and tissue reparative programs. AnxA1 is a major component of the pro-resolving properties of 
neutrophil-derived microvesicles. Many resolution mediators downregulate survival pathways and activate apoptosis of granulocytes. Apoptotic neutrophils release 
pro-resolving mediators that contribute to inhibition of continued neutrophil infiltration and to recruitment of monocytes in a non-phlogistic manner. Upon apoptosis, 
neutrophils also promote their own clearance by expressing find me and eat me signals that attract scavengers and allow the identification of the dying cell, 
respectively. In response to local mediators and upon efferocytosis, proinflammatory macrophages switch to resolution-phase macrophages. These events will 
reestablish tissue homeostasis.
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therapies will promote both anti-inflammatory and pro- 
resolution actions, differing from traditional anti-inflammatory 
agents that solely inhibit key proinflammatory mediators (20). 
In addition, we have recently pointed out that pro-resolving 
molecules are characterized by “mild-to-moderate actions,” 
since they balance pro- and anti-inflammatory responses to 
reach an equilibrium (22).

According to the first consensus report from leading authori-
ties on definitions and mechanisms in resolution (3) and sub-
sequent reviews (16, 21), pro-resolving mediators should ideally 
fulfill some fundamental criteria that include:

•	 Stop: the limitation or cessation of neutrophil tissue infiltration;
•	 Sink: the counter regulation of chemokines and cytokines;
•	 Kill: the induction of apoptosis in spent neutrophils and their 

subsequent efferocytosis by macrophages;
•	 Skew: the reprogramming of macrophages from classically 

activated to alternatively activated cells;
•	 Leave: the return of non-apoptotic cells to the blood or 

lymphatic vasculature and egress of immune cells – following 
efferocytosis, the macrophages and dendritic cells leave the 
site of inflammation;

•	 Inform: the instruction of suppressive immune cells and 
adaptive immune response to help dealing with subsequent 
encounters;

•	 Heal: the induction of tissue repair  –  return to homeostasis 
without fibrosis or scar formation marks the final step of 
resolution.

Molecules that fulfill the criteria above, which qualify a pro-
resolving mediator, are very diverse in nature (21) and include 
specialized lipid mediators [lipoxins (e.g., LXA4), resolvins (e.g., 
RvD1), protectins, and maresins] (14), proteins and peptides [e.g., 
annexin A1 (AnxA1), adrenocorticotropic hormone, chemerin 
peptides, and galectin-1] (24), gaseous mediators (e.g., H2S and 
CO) (25), a purine (adenosine) (26–28), as well as neuromodula-
tors (acetylcholine and other neuropeptides) released under the 
control of the vagus nerve (29, 30).
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Failure to produce adequate amounts of these  
anti- inflammatory and pro-resolving mediators or yet a failure 
to bind to their receptor could lead to the persistence of inflam-
mation, playing a significant etiopathogenic role in chronic 
inflammatory and autoimmune diseases. This is highly plausible 
for inflammatory bowel diseases (IBDs), such as Crohn’s disease 
(CD) and ulcerative colitis (UC), chronic relapsing inflammatory 
conditions of the gastrointestinal tract that are characterized by 
intestinal inflammation and epithelial injury (31, 32). Resolution 
mediators (e.g., AnxA1, lipoxins, and resolvins) regulate intestinal 
mucosal injury, inflammation, and repair, supporting the resolu-
tion of inflammation in the gut. Therefore, defective expression of 
pro-resolution mediators may contribute to the chronic inflam-
matory response associated with IBD. Notably, colonic mucosa 
from UC patients demonstrates defective LXA4 biosynthesis, 
which may contribute to the inability of these patients to resolve 
persistent colonic inflammation (33). Complete loss of AnxA1 
protein was detected in colonic tissues from chronic CD patients, 
which correlated with the clinical status, response to therapy, 
TNF-α expression, and lymphocyte activation (34). Vong and 
coworkers (35) documented an increase in mucosal synthesis of 
AnxA1 and LXA4, in individuals in medically induced remission 
from UC. Besides, during anti-TNF-α therapy, AnxA1 expres-
sion was upregulated in patients with a successful intervention, 
whereas non-responsive patients did not show the same expres-
sion profile (34). The contribution of AnxA1 to the remission 
of IBD was validated with a model of dextran sulfate sodium 
(DSS)-induced colitis in TNFR knockout (KO) mice, mimick-
ing the anti-TNF-α therapy. Mucosal levels of AnxA1 increased 
in the absence of TNF-α signaling, allowing early recovery of 
colitis as compared to wild-type (WT) mice (36). According to 
these findings, changes in pro-resolving mediator levels may 
predict therapeutic efficacy. Moreover, inflammation-resolution 
agonists prevent immune-mediated tissue damage and restore 
tissue homeostasis. Interestingly, pharmacological treatment 
with LXA4 or Resolvin E1 (RvE1) effectively promoted the 
resolution of trinitrobenzenesulphonate (TNBS)-induced colitis 
(37, 38). The beneficial effect of lipid mediators in colitis was 
accompanied by decreased leukocyte infiltration and proinflam-
matory cytokines. In addition, TNBS-specific IgG serum levels 
decreased after treatment with RvE1, suggesting diminished 
antigen presentation and antibody production (38). Moreover, 
AnxA1 peptides encapsulated in nanoparticles accelerated the 
recovery of experimentally induced colitis and the healing of 
colonic biopsy-induced wounds (39).

Persistent airway inflammation in lung diseases, including 
asthma, may also be due to a defect in counter regulatory signal-
ing (40, 41). Clinical findings suggest that severe asthma is associ-
ated with diminished expression of LXA4, its receptor FPR2, and 
15-lipoxygenase, the major enzyme involved in LXs generation 
(42–46). Thus, LXA4-deficient production and/or signaling might 
have a role in the progression of the disease. In a recent study, 
AnxA1 and LXA4 plasma levels were lower in wheezy infants than 
in control group (47). Once persistent wheezing in children may 
progress to asthma, this reduced level of pro-resolving molecules 
could be an early event in asthma progression (48).

In some cases, failure in the activity of specific mediators 
may contribute to the inflammatory process even when the 
expression is normal or higher, when compared to healthy 
controls. For example, CD-related inflammation is character-
ized by reduced activity of the immunosuppressive cytokine 
transforming growth factor (TGF)-β1. TGF-β is a crucial 
cytokine in inflammation resolution due to its immunoregula-
tory activities, essential to tolerance and homeostasis, and its 
role in epithelial restitution and fibrosis (49). Indeed, in vitro 
and in  vivo studies have demonstrated that TGF-β1 acts as 
a potent negative regulator of mucosal inflammation (50). 
Although TGF-β is found in high levels in human IBD tissue, 
it has reduced activity due to the overexpression of an inhibitor 
of TGF-β1 signaling, SMAD7 (51). As a result, TGF-β is unable 
to reduce the chronic production of proinflammatory cytokines 
that drives the inflammatory process in IBD and, consequently, 
inflammation is maintained (51). Notably, therapeutic strate-
gies that restore TGF-β signaling pathway may downregulate 
the inflammatory response and induce remission in patients 
with CD (51, 52).

POSiTive NeTwORKS iN ReSOLUTiON

Evidence is accumulating that a pro-resolving cascade becomes 
operative during resolution, whereby one pro-resolving mediator 
would induce another one. We reported one of the first evidence 
that fundamental pro-resolving mediators, such as AnxA1 and 
LXA4, induce the production of further anti-inflammatory 
molecules in  vivo, such as IL-10 (53). Later, Brancaleone and 
colleagues (54) provided strong evidence that the engagement of 
FPR2/ALX by LXA4 induces AnxA1 phosphorylation and mobi-
lization in human PMN. Similarly, the pro-resolving mediator 
RvE1 stimulates endogenous LXA4 production (55).

Other examples and modus operandi of this cross talk in 
resolution are emerging, as the cross talk between AnxA1 and 
glucocorticoid (GC)-induced leucine zipper (GILZ) during  
certain inflammatory events (56). GILZ mediate and mimic sev-
eral anti-inflammatory actions of GCs (57). Besides demonstrat-
ing that GILZ expression depends on AnxA1, we identified that 
the lack of endogenous GILZ during the resolution of inflamma-
tion is compensated by AnxA1 overexpression. In the model of 
lipopolysaccharide (LPS)-induced pleurisy, GILZ deficiency was 
associated with an early increase of AnxA1 and equal neutrophil 
influx and resolution as compared to WT mice. Likewise, we 
demonstrated that dexamethasone-induced resolution was not 
altered in GILZ KO mice due to compensatory expression and 
action of AnxA1 (56). These studies indicate that pro-resolution 
mediators not only communicate in positive loops but also enact 
compensatory actions to guarantee the effective engagement of 
resolution pathways.

We predict that a further definition of the positive loops of 
resolution is crucial for the discovery of new pharmacological 
targets that could resolve inflammation, especially in the context 
of chronic inflammatory diseases. A better understanding of the 
key controlling points of resolution networks may allow us to 
design specific strategies to promote resolution.
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HOw DOeS ReSOLUTiON START?

Briefly, the acute inflammatory response can be divided in two 
stages: initiation (productive and transition phases) and resolu-
tion (Figure 1) (58). Interestingly, molecular and cellular mecha-
nisms involved in the first phase of inflammation contribute to 
the initiation of the pro-resolving response. It has now become 
evident that coordinated programs of resolution initiate shortly 
after the beginning of the inflammatory response (18). In this 
context, several anti-inflammatory and pro-resolving mediators 
are endogenously produced to temper the inflammatory events. 
However, here we intend to highlight the existence of events 
and pathways that do not fulfill all criteria to be classified as  
pro-resolving, but do contribute to the initiation of resolution. 
These mechanisms provide the fine-tuning of inflammation, 
creating a favorable environment for the resolution phase to 
take place, and for homeostasis to return. As “contributors of 
resolution” these events, pathways, and mediators deserve special 
attention since they may be key targets for the pharmacological 
input or enacting of resolution, especially when it has not turned 
on, such as in chronic inflammatory settings.

Aside its well-known proinflammatory functions, nuclear 
factor kappa B (NF-κB) also has a crucial role in the initiation 
of resolution of inflammation. NF-κB proteins are a family of 
transcription factors of central importance in inflammation and 
immunity (59, 60). NF-κB and its activating IκB kinase (IKK)β 
play important roles in driving the inflammatory response by 
activating the expression of proinflammatory and anti-apoptotic 
genes (61). However, several reports have shown that NF-κB and 
IKKβ also influence anti-inflammatory response, pointing to 
their involvement in both onset and resolution of acute inflam-
mation (62–64). The functional transcription factors consist in 
homo- or hetero-dimers comprising five subunits (p50, p52, 
p65, cRel, and RelB), which utilize Rel homology domain (RHD) 
for DNA binding and dimerization (65). Dimers containing at 
least one subunit with transactivating domains (TAD) in their 
C-terminus (p65, RelB, or cRel) are required to induce gene 
transcription. In contrast, dimers that contain only subunits 
without TAD (p50 and p52) are transcriptionally inactive and 
may prevent transcriptionally active NF-κB dimers from binding 
to κB sites (66). In resting cells, NF-κB dimers are sequestered to 
the cytoplasm and maintained inactivated by reversible associa-
tion with its inhibitor IκB or unprocessed forms of cytoplasmic 
p50/p105 (NF-κB1) and p52/p100 (NF-κB2) (60, 65, 67). NF-κB 
activation in response to proinflammatory stimuli is regulated 
by IKK, which phosphorylates IκB and promotes its proteasome 
degradation and the release of NF-κB for nuclear translocation 
and gene transcription activation (61).

Nuclear factor kappa B activates many promoters containing 
highly divergent κB-site sequences. The fact that the regulation 
of gene expression is dimer-specific explains, in part, how NF-κB 
pathways can modulate both inflammation and resolution (65, 
68). Differential expression of NF-κB subunits and the differential 
effects of NF-κB dimers may be intimately associated with the 
temporal regulation of inflammatory responses (69). p65/p50 
heterodimer is the predominant form of functionally active 
NF-κB with proinflammatory activity, since this dimer enhances 

the transcription of genes related to the proinflammatory phase. 
On the other hand, p50/cRel, p65/cRel, or p50/p50 seems to be 
involved in the transcription of genes related to the recovery 
phase (70). Accordingly, the genes regulated by p50/cRel and 
p65/cRel are activated in later points after inflammatory stimula-
tion, providing the necessary period between the burst of the 
proinflammatory response and the recovery phase (69, 71). p50/
p50 homodimer exerts important anti-inflammatory and pro-
resolving effects and competes with p65/50 heterodimer for DNA 
binding (72, 73). Unlike p65/p50, p50/p50 lacks the transactiva-
tion domain and may repress proinflammatory genes (74–76). 
Bohuslav and colleagues demonstrated that increased expression 
of p50 subunit of NF-κB directly results in the downregulation of 
LPS-induced TNF production (72). Recently, the enhancement 
of efferocytosis mediated by RvD1 was associated with p50/
p50-mediated suppression of TNF-α expression (77). In this 
context, RvD1 modulates at least two different NF-κB pathways 
leading to enhanced localization of p50 in the nucleus, while 
it suppresses dissociation from IκBα and concurrent nuclear 
translocation of p65 (77). Moreover, upon LPS stimulation, 
macrophages express p65/p50 heterodimer in predominance 
over p50/50 homodimer, thereby provoking the proinflammatory 
state. However, in later time points, these macrophages show 
p105 degradation, nuclear translocation of p50, and formation of 
p50/p50 homodimer, presumably as an adaptive cellular response 
to proinflammatory insult.

During the proinflammatory phase, besides inducing proin-
flammatory genes, p65/p50 also induces the transcription of genes 
that will provide the control of the recovery phase, such as Rel, the 
gene that codifies cRel (71). For example, Muxel and colleagues 
showed that the expression of p65/cRel, crucial for inflammation 
resolution, is induced by p65/p50, which is earlier expressed in 
LPS-stimulated macrophages (69). The authors identified that 
temporal regulation of cRel promoted the synthesis of melatonin 
(via p65/cRel) by macrophages, a modulator of phagocyte function 
preventing over-activation of this cell type (78, 79). In addition, 
NF-κB negatively regulates NLRP3-inflammasome activation 
and IL-1β production (63). In macrophages, NF-κB prevents 
premature and excessive NLRP3-inflammasome activation, 
acting as a negative regulator of IL-1β secretion (63). Although 
the precise molecular mechanism underlying NF-κB-mediated 
inhibition of NLRP3-inflammasome activation remains unclear, 
NF-κB has been suggested to promote autophagy (80), a cellular 
process that negatively regulates NLRP3 inflammasome activity 
(81–83). Reinforcing this observation, a recent study revealed 
that NF-κB restricts inflammasome activation in macrophages 
via elimination of damaged mitochondria (84). This allows 
NF-κB to restrain its own inflammation-promoting activity in 
macrophages (84).

Clearly, NF-κB may have dual function in inflammation, 
which is likely the result of the central role of this molecule in the 
convergence of several inflammatory signals (62). This results in 
divergent effects of NF-κB pharmacological inhibition in inflam-
matory models. On the one hand, NF-κB inhibitors may attenuate 
inflammation and promote resolution in different experimental 
models of inflammation (62). For example, NF-κB inhibitors 
possess anti-inflammatory effects in models of LPS-induced 
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lung injury (85), traumatic brain injury (86), colitis (87), and 
 pulmonary arterial hypertension (88). Our research group showed 
that inhibition of NF-κB promotes resolution in established 
murine models of neutrophilic and eosinophilic inflammation 
associated with enhanced apoptosis of inflammatory cells (89, 
90). On the other hand, inhibition of NF-κB during the resolu-
tion of inflammation prolonged the inflammatory response and 
prevented apoptosis (62). In addition, IKKβ has also been shown 
to have an anti-inflammatory role, such as the suppression of 
M1 macrophage activation during infection through the inhibi-
tion of signal transducer and activator of transcription (STAT)1 
pathway (91). In accordance with this observation, IKKβ ablation 
results in severe neutrophilia and inflammation mediated by 
IL-1β (92). Notably, mice lacking IKKβ had hyperproliferative 
granulocyte–macrophage progenitors and pregranulocytes and 
a prolonged lifespan of mature neutrophils that correlated with 
the induction of genes encoding pro-survival molecules (92). 
Of clinical relevance, enhanced inflammation and neutrophilia 
were observed in human subjects that were treated with IKKβ 
inhibitors.

Notably, proinflammatory and resolution phases of inflam-
mation are under the control of both transcriptional and post-
transcriptional mechanisms, which regulate the expression of 
proteins that initiate and resolve inflammation. Reviewing this 
topic in 2010, Anderson (93) pointed out that post-transcriptional 
controlling mechanisms link the initiation/productive phase 
to the resolution phase of inflammation. mRNA translation is 
a highly regulated process governed by post-transcriptional 
mechanisms. Transcription is the first step in the regulation of 
gene expression, but since mRNA can be long-lived, turning 
off its synthesis does not rapidly redirect or stop the progress 
of inflammation. On the other hand, the second step, i.e., post- 
transcriptional regulation, can rapidly suppress protein expres-
sion by promoting mRNA degradation or by inhibiting its 
translation (93). Post-transcriptional control mechanisms may 
rapidly limit the expression of potentially toxic inflammatory 
mediators and help protecting the host against the pathological 
overexpression of potentially injurious proteins. For instance, 
a number of cytokine mRNAs can be regulated at the level of 
mRNA stability (94). mRNA decay and translational repression 
of target transcripts are promoted by RNA-induced silenc-
ing complex (RISC) that is composed by argonaute proteins 
bound to small non-coding RNAs, microRNAs (miRNAs). 
Importantly, the mechanisms used to ensure limited produc-
tion of the proteins involved in the inflammatory response are 
highly variable, and in some cases, interact with each other to 
define protein expression levels. It remains not fully understood 
whether post-transcriptional controlling mechanisms play a 
role in the resolution of inflammation, but exciting possibilities 
for pharmacological intervention against the overproduction 
of many inflammatory proteins are likely to emerge from this 
elucidation (95).

Importantly, miRNAs triggered by immune mediators 
have a central role in modulating NF-κB signaling pathways 
and might be involved in controlling the switch from a strong 
early-inflammatory response to the resolution phase of the 
inflammatory process, in a timely and orchestrated manner 

(96, 97). The endotoxin-responsive gene miR-146a was the first 
one to be discovered to suppress the activation of the NF-κB 
pathway (98). miR-146a has been described as a negative regula-
tor of the canonical NF-κB inflammatory cascade by targeting 
IL-1 receptor-associated kinase (IRAK) 1 and TNF receptor-
associated factor (TRAF) 6 (98, 99). Moreover, miR-146a targets 
RelB, which is mostly implicated in the non-canonical NF-κB 
pathway, and controls monocyte responses during inflamma-
tory challenge (100, 101). Some studies indicate that miR-146a 
can regulate proinflammatory gene expression by controlling 
RelB-dependent reversible chromatin remodeling (102, 103). 
Notably, deletion of miR-146a gene results in the production 
of higher levels of inflammatory cytokines by macrophages 
(104). Remarkably, the expression of many miRNAs is induced 
in an NF-κB-dependent manner after inflammatory stimulus 
or pathogen infection, promoting the control of the strength 
and longevity of an inflammatory response (97, 98, 104–109). 
miR-146a was the first reported miRNA whose expression can 
be induced through the NF-κB-dependent pathway in response 
to various immune mediators, such as LPS, IL-1β, and TNF-α 
(98, 105, 110–113). Since then, many studies have further iden-
tified subsets of miRNAs related to the TLR-induced NF-κB-
dependent pathway. Another example, miR-9 expression is 
directly induced by LPS via the TLR4-MyD88-NF-κB-dependent 
pathway in human monocytes and neutrophils. In turn, miR-9 
operates a feedback control of the NF-κB-dependent responses 
by fine-tuning NF-κB1 expression. Bazzoni and colleagues sug-
gest that miR-9 induction probably acts as a tuning mechanism 
to prevent negative regulation by p50 homodimers, as occurs in 
monocytes in systemic anti-inflammatory response syndrome 
(SIRS) (109).

Because miRNA-mediated post-transcriptional control is 
important to fine-tune the expression of genes involved in inflam-
mation, dysregulation of expression levels of miRNAs can lead 
to chronic infections, autoimmunity, allergic inflammation, or 
immune deficiency. Recent studies have identified dysregulated 
miRNAs in tissue samples of IBD patients and have demonstrated 
similar differences in circulating miRNAs in the serum of these 
patients [reviewed in Ref. (114)]. In fact, dysregulated expression 
of tissue and blood miRNAs in IBD already numbers >100 (114) 
and may be involved in the reduced apoptosis of T-cells, which is 
an important mechanism in T-cell homeostasis, and cell activa-
tion (115).

Also important for resolution initiation, the pituitary hor-
mone adrenocorticotrophin (ACTH) is released quite early 
during inflammation, in response to proinflammatory cytokines, 
including IL-1β (116). For a long time, ACTH has only been 
thought to modulate host response through the rapid generation 
of adrenal-derived GCs, which are de novo synthesized from 
cholesterol. However, recent works have revealed important 
immune-modulatory properties of ACTH, through the activa-
tion of specific receptors in the periphery (117), expressed on 
macrophages and other stromal cells such as chondrocytes 
[reviewed by Montero-Melendez (118)]. Molecules that activate 
these receptors on macrophages are able to promote resolution 
of inflammation with a downstream impact on experimental 
arthritis (119, 120).
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Chemokine Depletion Decreases 
infiltration of Neutrophils into Tissue
As discussed above, successful inflammation depends on the 
regulation of neutrophil recruitment, allowing the proper 
elimination of the inflammogen but avoiding the tissue dam-
age induced by excessive neutrophil influx and toxic content 
release. According to Headland and Norling  –  who recently 
reviewed this subject (21) – restricting the influx of neutrophils, 
once sufficient number of cells has been recruited, is a process 
through which chemokine and cytokine gradients are reduced, 
proinflammatory lipid mediators are switched to pro-resolving 
mediators, and circulating neutrophils are no longer activated 
and recruited to the inflammatory site. Chemokines are low 
molecular weight cytokines that orchestrate the migration of 
target cells to the site of inflammation. Chemokine depletion 
through mechanisms, such as chemokine cleavage by proteolysis 
and chemokine sequestration, is necessary to achieve a resolving 
environment and to abrogate neutrophil influx (16). Chemokines 
directly induce cell migration through a set of conventional 
chemokine G protein-coupled receptors. However, chemokines 
are also recognized by a small subfamily of atypical chemokine 
receptors (ACKR), previously called decoys, interceptors, 
scavengers, or chemokine-binding proteins (121). The binding 
of chemokines to their respective atypical receptors does not  
promote leukocyte migration due to the inability of ACKR to 
initiate classic G protein-dependent signaling pathways. Instead, 
ACKR sequestrate chemokines from the environment, an 
important mechanism to shape chemokine gradients. Therefore, 
ACKR are now emerging as crucial regulatory components 
of chemokine networks in a wide range of physiologic and  
pathologic contexts (122).

Chemokine proteolysis is another important mechanism for 
chemokine depletion and consequently the decrease of neutrophil 
recruitment and activation. Matrix metalloproteinases (MMPs) 
are traditionally associated with extracellular matrix protein 
degradation in several physiological and pathological processes. 
However, it is now clear that MMPs mediate homeostasis of the 
extracellular environment by modulating the biological activity of 
many bioactive molecules involved in cell function (123, 124) and 
innate immunity (125), including chemokines (123, 126–130), 
TNF-α (124, 131), α-defensin (132), and mannose-binding 
lectin (133). In this context, Dean and colleagues (134) proposed 
that macrophages aid the regulation of acute inflammatory 
responses by precise proteolysis of chemokines through MMP-
12. Macrophage-specific MMP-12 cleaves CXC chemokines in 
the ELR motif, which is fundamental for receptor binding, thus 
rendering the mediators unable to recruit neutrophils (134). In 
some cases, cleaved chemokines continue to bind to their corre-
sponding receptors, but fail to induce downstream signaling and 
chemotaxis, thus acting as antagonists dampening inflammation 
(126, 127).

Pro- and Anti-inflammatory Networks 
Help to Turn on the Resolution Program
A great number of evidence indicates that proinflammatory 
molecules can be involved in the initiation of the resolution 

program. In order to limit the undesirable consequences of an 
excessive inflammatory process, many mediators involved in 
the onset of the inflammatory response simultaneously trigger a 
program that actively resolves inflammation. In this context, our 
group has observed, in two complementary studies, the intricate 
balance and cross talk between pro- and anti-inflammatory 
cytokines during a systemic inflammatory response. In 2003, we 
described a network of TNF-α, IL-1β, and IL-10 during severe 
intestinal ischemia and reperfusion injury (135). Both, IL-1β 
and TNF-α triggered an anti-inflammatory cascade resulting in 
the production of IL-10. We identified that IL-1β plays a major 
role in driving endogenous IL-10 production and protecting 
against TNF-α-dependent systemic and local acute inflammatory 
response. IL-1β has been implicated in inflammatory events, such 
as the expression of adhesion molecules and neutrophil influx 
following reperfusion of ischemic tissues. However, some studies 
have failed to show a protective effect of IL-1β inhibition during 
ischemia/reperfusion (I/R) injury (136–138). In our investiga-
tions, we associated neutralizing strategies or selective receptor 
antagonism to prevent the actions of IL-1β with an overall 
enhancement of tissue injury, proinflammatory cytokine expres-
sion (TNF-α), and lethality (135). Members of the IL-1 family 
of cytokines (e.g., IL-1β, IL-18, and IL-36γ) display a dual role 
in regulating IBD, reinforcing the concept that proinflammatory 
cytokines may contribute to both proinflammatory responses 
and resolution of inflammation. These cytokines are upregulated 
in the inflamed mucosa during experimental colitis as well as in 
human IBD. Remarkably, they not only contribute to intestinal 
inflammation (139) but also to resolution of inflammation, as 
demonstrated by the increased susceptibility to DSS-induced 
colitis by mice lacking IL-1β, IL-18, and IL-36 receptors or 
components of their processing (140–144). In humans, polymor-
phisms leading to decreased Nlrp3 expression, and consequent 
hypoproduction of IL-1β, are associated with increased risk of 
developing CD (145).

Moreover, we and others have observed that TNF-α is central 
to the pathogenesis of reperfusion-associated injury and lethal-
ity (135, 146, 147). However, this proinflammatory cytokine 
also contributes to the production of IL-10 during intestinal 
ischemia and reperfusion (147). Furthermore, we reported that 
TNF-α modulates IL-1β production: first, inhibition of TNF-α 
was accompanied by enhanced reperfusion-induced production 
of IL-1β (147); second, administration of exogenous IL-10 was 
linked to decreased TNF-α concentration and enhanced IL-1β. 
Based on these results, we hypothesized that TNF-α could be 
inducing an intermediate molecule that controls IL-1β produc-
tion (147). It is interesting to note that recent investigations have 
identified a central role for TNF-α in upregulating a pro-resolving 
master receptor that transduces the actions of AnxA1, LXA4, and 
RvD1 (148).

Several studies have identified a mechanism feedback for IL-10 
as a potent repressor of proinflammatory cytokine production by 
macrophages, acting therefore as a key anti-inflammatory media-
tor (149, 150). In murine bone marrow-derived macrophages 
(BMDM) activated by LPS, IL-10 attenuated proinflammatory 
cytokine production via reduction of mRNA stability. IL-10 initi-
ates a STAT3-dependent increase of the expression of the RNA 
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destabilizing factor tristetraprolin (TTP) accompanied by the 
release from p38 MAPK-mediated inhibition. As a result, IL-10 
diminishes mRNA and protein levels of TNF-α and IL-1β (151).

Resolution of inflammation is 
Accompanied by an Active Switch in the 
Mediators That Predominate in exudates
In a classical acute inflammatory response, proinflammatory 
lipid mediators, such as the classical eicosanoids [prostaglandins 
(PGs) and leukotrienes (LTs)], are generated during the initial 
phase of the inflammatory response through enzymatic modifi-
cation of arachidonic acid (AA) by cyclooxygenases (COX) and 
lipoxygenases (LO) (152). These proinflammatory molecules 
have important roles in initiating leukocyte trafficking and 
stimulating blood flow changes, increasing vasopermeability to 
yield edema formation, all leading to neutrophil influx to the site 
of inflammation (14). In addition, PGs and LTB4 are involved 
in the initiating steps that permit leukocytes to leave postcapil-
lary venules via diapedesis (153). Thereby, a switch in lipid 
mediators from proinflammatory PGs to lipoxins, which are anti- 
inflammatory/pro-resolving mediators, is crucial for the transi-
tion from inflammation to resolution (154). As Serhan pointed 
out in a scholar review (20), during inflammation, neutrophils 
undergo a phenotype switch to produce different profiles of lipid 
mediators depending on the cells and substrates present in the 
local environment. Neutrophils in the peripheral blood generate 
and release LTB4 on activation, as one of their main bioactive 
products. During spontaneous resolution of acute inflammation, 
there is a switch in PMN-LO pathway products expression, from 
LTs to lipoxins and resolvins. Evidence indicates that first-phase 
proinflammatory eicosanoids “reprogram” the exudate PMN 
to produce pro-resolving lipid mediators and hence promote 
resolution. For instance, Levy and colleagues suggested that when 
circulating PMNs begin diapedesis, they are exposed to autacoid 
gradients (e.g., PGE2) that initiate phenotypic changes via gene 
expression regulation (12). In this context, local PGE2 and 
PGD2 stimulate the processing of 15-LO mRNA in leukocytes to  
produce functional enzymes for the synthesis of lipoxin. AA is 
then converted to anti-inflammatory lipid mediators, such as 
LXs (e.g., lipoxin A4 and lipoxin B2), which harness dual anti-
inflammatory and pro-resolving actions, in vitro and in vivo (20). 
Lipoxins are generated by transcellular biosynthesis, involving 
two or more cell types, since the required enzymes are dif-
ferentially expressed in the cells. Thus, at the sites of injury or 
inflammation, LXs are generated via biosynthetic routes engaged 
during cell–cell interactions. Mobilization of LX biosynthetic  
circuit occurs, for example, when infiltrating PMNs (which 
express 5-LO) interact with tissue resident cells (which express 
15-LO) in inflamed target organs. In an autocrine, paracrine, or 
juxtacrine manner, newly formed LXs can interact with specific 
receptors on leukocytes to regulate their function (12).

Cyclooxygenase-2 apparently has a dual role in the inflamma-
tory process, initially contributing to the onset of inflammation 
and later helping to resolve the process. Gilroy and colleagues 
reported that COX-2 expression and PGE2 levels transiently 
increased in the early stage of carrageenan-induced pleurisy in 

rats (155). Later in the response, COX-2 was induced again to 
even greater levels and generated anti-inflammatory PGs, such 
as PGD2 and 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2), but only 
low levels of proinflammatory PGE2. Anti-inflammatory actions 
mediated by 15d-PGJ2, a terminal product of COX-2 pathway, 
represent another negative feedback that explains how once-
initiated immunologic and inflammatory responses are switched 
off and terminated. 15d-PGJ2, a terminal product of COX-2 
pathway, is abundantly produced in inflamed sites, suggesting its 
potential role in facilitating the resolution of inflammation (156). 
15d-PGJ2 exerts potent anti-inflammatory actions, in part by 
antagonizing the activities of NF-κB, STAT3, and activator protein 
1 (AP1), while stimulating the anti-inflammatory nuclear factor 
E2-related factor 2 (Nrf2). Besides targeting the transcriptional 
machinery, 15d-PGJ2 is a potent inhibitor of protein translation. 
Interestingly, 15d-PGJ2-mediated translational repression triggers 
a stress response program that results in the assembly of stress 
granules containing untranslated mRNAs. Stress granules have 
an important role in reprogramming gene expression to allow 
stressed cells to survive to noxious stimuli (157, 158). Altogether, 
these mechanisms might combine to effectively dampen inflam-
mation (93). Thus, 15d-PGJ2, especially formed during the late 
phase of inflammation, might inhibit cytokine secretion and 
other events by antigen-presenting cells such as dendritic cells 
or macrophages. Production of the 15d-PGJ2 is a consequence 
of a series of dehydration (oxidation) of PGD2 (159). The latter 
is a major COX-2 product formed in various cells (e.g., mast 
cells) and tissues during inflammatory processes by the action 
of PGD2 synthase, which catalyzes the isomeric conversion of 
PGH2 to PGD2. The pathogenic relevance of PGJ2 is suggested 
by clinical findings of reduced levels of PGD2 in some human 
diseases, such as the cerebrospinal fluid of patients suffering 
from multiple sclerosis and schizophrenia (160). Other evidence 
of clinical relevance comes from atherosclerosis, where PGE2 is 
over-expressed in symptomatic plaques of patients who under-
went carotid endoarterectomy, while in asymptomatic ones, the 
PGD2 pathway prevails, known to be associated with NF-κB 
inactivation and MMP-9 suppression. These clinical findings sug-
gest that PGE2-dominated eicosanoid profile is associated with 
cerebral ischemic syndromes, possibly through MMP-induced 
plaque rupture (161).

Although therapeutic inhibition of COX-2 by non-steroidal 
anti-inflammatory drugs (NSAIDs) may have beneficial effects 
in the early phase of inflammation by preventing prostanoid 
production, it may also be “resolution-toxic,” by disrupting the 
production of anti-inflammatory PGs and LXs (3, 155, 162, 163). 
Disturbance of physiologic lipid mediator class switching by 
COX-2 inhibitors has deleterious consequences in humans (164) 
as well as in murine peritonitis (163), arthritis (165), and lung 
acute injury (ALI) models (166). In the study from Fukunaga 
and colleagues, COX-2 inhibition resulted in an exacerbation 
of ALI with longer recovery times. Reinforcing the dual role 
of COX-2 during inflammation, inhibition of COX-2 activity 
by pharmacologic treatment or gene targeting decreased early 
PMN trafficking to the lung but paradoxically led to dramatic 
increases in inflammation at later time points, mainly due 
to the disruption of LXA4 production (166). Furthermore,  
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COX-2 inhibition decreased macrophage phagocytosis of 
 apoptotic PMNs in vitro and reduced prostaglandin E2 and LXA4 
expression (163). During peritonitis, treatment with specialized 
pro-resolving lipid mediators [aspirin (ASA)-triggered lipoxins, 
RvE1, and protectin D1] rescued the resolution deficit promoted 
by COX-2 inhibition (163).

Aspirin is unique among other NSAIDs because it irreversibly 
inhibits COX-2 by acetylation of an amino acid serine residue 
preventing prostanoid generation (167) yet enabling the biosyn-
thesis of endogenous anti-inflammatory mediators. Therefore, 
the generation of ASA-triggered specialized lipid mediators 
(AT-SLM) (11, 168–170) may enhance resolution and counteract 
the loss in prostaglandin production by ASA (18). Low-dose ASA 
triggers the resolution phase by activating endogenous epimers of 
specialized pro-resolving lipid mediators in humans and several 
animal models (3). Low-dose ASA triggers 15-epi-LXA4 in skin 
blisters in humans to reduce PMN infiltration by inducing anti-
adhesive nitric oxide, thereby dampening leukocyte/endothelial 
cell interaction and subsequent extravascular leukocyte migra-
tion (171). In addition, low-dose ASA administration to mice 
triggered the formation of 15-epi-LXA4, which in turn attenuated 
I/R-mediated vascular inflammation (172). In a randomized 
controlled study, low-dose ASA administration to volunteers 
augmented plasma ATL levels while inhibiting thromboxane 
(173). These observations support the idea that low-dose ASA 
may be considered “resolution friendly” (18), since it mimics 
endogenous biosynthetic mechanisms to trigger new media-
tors, leading to a favorable net change (173) for pro-resolution  
(174, 175).

Neutrophils: important Cells to Turn on 
Resolution
Aborted neutrophil recruitment is one of the steps required to 
reconstitute tissue homeostasis, followed by apoptosis and clear-
ance by macrophages. Interestingly, neutrophils have pivotal roles 
in attenuating inflammatory diseases and seem to orchestrate 
both elimination of microorganisms and resolution of inflamma-
tion (21). In view of that, wound healing is delayed in neutrophil 
depletion models, indicating a critical role of these cells in the 
resolution of inflammation (176). Moreover, depletion of neu-
trophils aggravates different types of experimental UC (177, 178) 
and extends joint inflammation in a murine model of gout (179). 
Among the anti-inflammatory functions of neutrophils, it is 
worth mentioning its capacity to disrupt chemokine gradients via 
several mechanisms. For instance, neutrophils release proteases 
that not only degrade extracellular matrices and cells surround-
ing the inflammatory milieu but also deactivate inflammatory 
cytokines (180). Additionally, neutrophils modulate the cytokine 
production stimulated by bacterial peptidoglycans and LPS (181). 
In vitro studies have shown that PMN lysates and neutrophil 
elastase can degrade recombinant human IL-1β and TNF-α but 
not IL-10, and alpha1-antitrypsin can inhibit this process (180). 
Neutrophil-derived proteases are also involved in the downregu-
lation of IL-1β and TNF-α produced by mononuclear cells, an 
effect that is independent on ROS production or phagocytosis 
(180). Serine proteases released by activated neutrophils may also 

be associated with NETs, which are web-like structures composed 
of nuclear material in complex with neutrophil proteins that  
display exquisite antibacterial properties (182). A recent article by 
Schauer and colleagues revealed that at the very high neutrophil 
densities that occur at the site of inflammation, NETs build aggre-
gates that trap and degrade proinflammatory mediators via the 
proteolytic action of inherent neutrophil serine proteases (179). 
However, it remains to be investigated if this anti-inflammatory 
effect can be reproduced in physiological conditions where 
concentrations of NET may be lower. Conversely, NETs are also 
related to proinflammatory effects that in part induce further 
neutrophil recruitment (183). Recent observations suggest that 
NETs are effective activators of the inflammasome machinery in 
both human and murine macrophages, resulting in the release 
of active IL-1β and IL-18 (184). Indeed, pharmacological and 
genetic strategies that prevent NETosis have been shown to be 
protective in murine models of lupus (185), cardiac infarction 
(186), deep vein thrombosis (187), atherosclerosis (183), and 
diabetes (188). In addition, a recent work suggests that damage-
associated molecular patterns (DAMPs) released during liver I/R 
result in formation of NETs which subsequently exacerbate organ 
damage and initiate inflammatory responses (189). Moreover, 
the presence of DNAse-sensitive NETs in skin wounds impairs 
wound healing in diabetes (188). Timely degradation/removal of 
NETs is critical since its components may serve as autoantigen or 
DAMPs leading to inflammatory and chronic autoimmune dis-
eases, including systemic lupus erythematosus (SLE) [reviewed 
in Ref. (189–194)]. Furthermore, mitochondrial ROS-dependent 
NETosis may promotes externalization of proinflammatory 
oxidized mtDNA and subsequent activation of type I interferon 
(IFN) synthesis, what may contribute to lupus-like disease (195). 
Finally, serum of SLE patients show an increase in various NET 
proteins [e.g., defensins, high-mobility group box protein 1 
(HMGB1), and bactericidal proteins] compared to healthy-donor 
blood, indicating that NETosis may be implicated in the genesis 
and/or amplification of the disease (196, 197). Therefore, like 
uncleaned apoptotic and necrotic cell remnants, uncleaned NETs 
may contribute to inflammation and autoimmunity.

Another neutrophil-related mechanism that is worth 
mentioning here is the release of S100A8 and S100A9 proteins 
and their calprotectin heterocomplex, upon stimulation. These 
proteins have been shown to have dual biological functions on 
inflammation (198–201). Abundant in neutrophils, calprotectin 
is released at sites of infection where it exerts antimicrobial  
activity, which is attributed to its ability to chelate manganese 
and zinc (200–205). In addition, calprotectin activates the 
innate immune system through activation of the receptor of 
advanced glycation end products (RAGE) and TLR4, resulting 
in downstream NF-κB activation and secretion of proinflamma-
tory cytokines, such as TNF-α and IL-17 (206–208). Diverging 
properties of calprotectin related to PMN recruitment and func-
tions have been described. Calprotectin was shown to activate the 
recruitment of PMNs and stimulate their adhesion by activating 
MAC-1 β2 integrin (209). Moreover, the functional blockage 
of calprotectin reduced PMN recruitment stimulated by LPS 
in vivo (210). Conversely, studies have pointed to the ability of 
S100A8 and S100A9 to repel PMNs (fugetaxis) and inhibit their 
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chemotaxis toward chemokines in vitro. Additionally, calprotectin 
inhibited LPS-induced recruitment of PMNs in the rat air-pouch 
model of inflammation in vivo (211, 212). S100A9 differentially 
modified the responsiveness of neutrophils and dendritic cells 
to LPS, suggesting that the effects of calprotectin may be cell 
specific. While S100A9-deficient neutrophils exhibited a reduced 
secretion of cytokines (e.g., TNF-α and MCP-1) in response to 
LPS stimulation, inflammatory cytokine production in dendritic 
cells was exacerbated by S100A9 deficiency (213). Circulating 
concentrations of calprotectin increase with acute inflammation 
and during sepsis (214, 215), which has led some authors to sug-
gest a proinflammatory role for this protein (216). Supporting 
this notion, Pepper and coworkers (217) showed that calprotectin 
plays a critical role during glomerulonephritis, amplifying auto-
crine and paracrine proinflammatory effects on BMDMs, renal 
endothelial cells, and mesangial cells. Indeed, calprotectin have 
an established clinical role as a biomarker in IBD (218).

In contradiction to these findings, anti-inflammatory, antino-
ciceptive, and protective properties of calprotectin have also been 
described. In addition, regulation of S100A8 by GCs reinforces 
the idea of an anti-inflammatory role for this protein (219). 
For instance, calprotectin was suggested to be involved in the 
regulation of inflammatory processes in joints, since it produced 
marked anti-inflammatory and protective effects in models of 
adjuvant-induced arthritis in rats (220). Indeed, calprotectin 
deficiency was found in wound fluid from patients with non-
healing venous leg ulcers, when compared with that from patients 
with healing open-granulating acute wounds (221). Sun and col-
leagues proposed protective and anti-inflammatory functions for 
calprotectin in sepsis. The authors showed that mice treated with 
S100A8 increased their survival rates and reduced tissue damage, 
inflammation, and oxidative injuries to major organ systems in 
a model of LPS-induced endotoxemia (222). Calprotectin was 
also shown to inhibit the oxidative metabolism of LPS-activated 
PMNs in  vitro, which could contribute to reduce the oxidative 
organ injury seen in sepsis (223–225). Calprotectin suppressed 
NF-κB expression, proinflammatory cytokines, and inflammation 
in experimental autoimmune myocarditis (226), while the loss of 
calprotectin exacerbated T-cell activation and cardiac allograft 
rejection (227). In opposition, calprotectin aggravated post-
ischemic heart failure through activation of RAGE-dependent 
NF-κB signaling (228). The diverging biological functions 
reported for calprotectin and its subunits suggest that their effects 
might be concentration dependent and influenced by the cellular 
and biochemical composition of the local milieu (229).

A novel and intriguing pro-resolving mechanism centered 
on neutrophils involves the generation of membrane borne 
microvesicles, also called microparticles or ectosomes (21). In 
2004, Gasser and Schifferli (230) found that these microvesicles 
blocked the inflammatory response of macrophages exposed to 
zymosan and LPS. Further studies on neutrophil microparticles 
revealed that these microstructures could carry a variety of anti-
inflammatory and pro-revolving mediators, enabling important 
modulatory functions in inflammation. Dalli and colleagues (231) 
defined the proteomic content of neutrophil microparticles. These 
authors observed that neutrophils have the ability to respond to 
a specific stimulus by producing microparticles loaded with a 

distinct proteomic profile, supporting the notion that micropar-
ticles production is a regulated process and might be endowed 
with very discrete functions (231). Some proteins, such as  
alpha-2-microglobulins, were identified to be selectively confined 
in vesicles generated from neutrophils adhered to an endothelial 
monolayer, whereas AnxA1 was more enriched in vesicles 
from exudate neutrophils. AnxA1 +ve vesicles possess anti- 
inflammatory properties (232) and allow the proper externaliza-
tion of this pro-resolving mediator to gain access to extracellular 
surface receptors (i.e., FPR2) and to exert anti-inflammatory 
effects (39). AnxA1 acts as an exquisite brake for neutrophil 
adhesion to the microvascular wall, preventing over-exuberant 
cell transmigration to the inflammatory site (21, 233–235). We 
recently identified new properties for AnxA1 +ve vesicles, spe-
cifically those abundant in human synovial fluids collected from 
patients suffering from rheumatoid arthritis: these vesicles ensure 
the delivery of AnxA1 (and presumably other factors) to the chon-
drocyte in deep cartilage, enabling the activation of reparative cir-
cuits (236). In a recent review, we discussed the newly discovered 
modulatory roles of AnxA1 on neutrophil recruitment and other 
features of the resolution of inflammation (237).

Distinct Macrophage Populations Mediate 
Acute inflammation and Resolution 
Phases of inflammation
Macrophages are one of the first cells to sense injury, infection, 
and other types of noxious conditions, triggering the immune 
response through the production of proinflammatory mediators 
(1). During resolution, macrophages play an anti-inflammatory 
role and are required for the clearance of apoptotic cells. Following 
efferocytosis, macrophages undergo a functional repolarization, 
switching from a pro- to an anti-inflammatory phenotype (238). 
Accordingly, efferocytosis is coupled with increased release of 
TGF-β and IL-10 and lower levels of proinflammatory cytokines, 
such as IL-6 (238–240). This change in the phenotype of mac-
rophages also activates pro-resolving mechanisms, because they 
generate LXA4, which stimulates phagocytic activities without 
releasing proinflammatory mediators. This is an important non-
phlogistic process typical of resolution, and shared, for instance, 
by GCs (241).

In addition to participating in the lipid mediator class switch-
ing discussed above, PGE2 is also important in macrophage 
reprogramming, mediating the transition from the acute to the 
resolution phase of inflammation. Early data from Kunkel’s group 
showed a suppressive effect of PGE2 on macrophage TNF-α and 
IL-1β production (242, 243), and this has been confirmed by other 
investigators (238). This inhibitory feature allows proinflam-
matory cytokines to regulate their own production using PGE2 
as a self-induced modulator (242). Recently, MacKenzie and  
colleagues (244) reported that the addition of PGE2 to LPS-
stimulated macrophages represses proinflammatory cytokine 
production but induces IL-10. In particular, PGE2 displayed 
a biphasic effect on IL-6 transcription: at early time points, 
this eicosanoid promoted IL-6 transcription but at later time 
points, it repressed the induction of IL-6 mRNA (244). Another 
study showed that PGE2 from activated bone marrow stromal 
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cells promotes IL-10 in LPS-stimulated macrophages, an effect 
 mediated by prostaglandin EP2 and EP4 receptors (245). PGE2 in 
combination with LPS was able to induce the mRNA for Arginase 
1, LIGHT (TNFSF14), and SPHK1, potential markers of alter-
natively activated and regulatory macrophages (245), again sug-
gesting long-lasting roles for this prostaglandin in macrophage 
reprogramming.

PGE2 has also been implicated in tissue maintenance and regen-
eration. This is supported by reports that indicate that increased 
levels of PGE2 were associated with increased regenerative capac-
ity. In this regard, Zhang and colleagues showed that the inhibi-
tion of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a 
prostaglandin-degrading enzyme, potentiates tissue regeneration 
in multiple organs in mice. In a model of DSS-induced colitis, 
PGE2 elevation diminished colon ulcers, suppressed mucosal 
inflammation, and reduced colitis symptoms, in conjunction 
with increased cell proliferation in the DSS-damaged mucosa. 
Interestingly, the pharmacological induction of higher levels of 
PGE2 was associated with markedly increased rate and extent of 
liver regeneration in mice after partial hepatectomy as compared 
to control groups (246). In the lung, PGE2 is the major eicosanoid 
produced by fibroblasts, alveolar macrophages, and other lung 
cells, playing important roles in tissue repair processes and in 
immune-inflammatory response limitation (247). PGE2 directly 
inhibits several major pathobiologic functions of lung fibroblasts 
and myofibroblasts, including proliferation, migration, collagen 
secretion, and myofibroblast differentiation [reviewed in Ref. 
(248)]. Of note, diminished PGE2 production and/or signaling 
can be observed in human and animal lung fibrosis, reinforcing 
its relevance for proper resolution (249, 250).

what the Future Reserves for Resolution
Undoubtedly, the inflammatory system is greatly complex. The 
history of the discovery of proinflammatory mediators reminds 
us that several decades of research were required to define the 
biology and pharmacology of the currently known mediators 
of inflammation. Since Sir Henry Dale and Patrick Laidlaw 
described some physiological effects of histamine in  vivo, in 
1910, immunological research has tremendously advanced (251). 
Pharmacological research has accompanied this progress, as his-
torically represented by the discovery of antihistamines by Daniel 
Bovet and the identification of anti-H2R antagonists by Sir James 
Black, both awarded with the Nobel Prize in Physiology and 

Medicine (251). Subsequently, we made progress in the immu-
nological and pharmacological fields of research, appreciating 
and shaping the concept of resolution of inflammation, and the 
mechanisms underpinning it. Fundamental concept here is the 
acceptance that resolution of inflammation is an active process 
evoked by specific classes of pro-resolving mediators, which differ 
from classical “anti-inflammatories” due to their ability to stimu-
late selective molecular and cellular programs of resolution. In the 
last decade, it has become evident that the enormous complexity 
of the proinflammatory system is mirrored at the level of pro-
resolution pathways. Despite these remarkable advancements in 
the field, it seems that we have just started to scratch the surface 
of resolution mediators and other new cellular players are likely 
to be identified and defined in the near future. Likewise, we need 
to identify the major triggering pathway of these pro-resolving 
events, a phenomenon likely to be tissue- and/or disease-specific, 
as well as appreciate the complex networks among pro-resolving 
mediators. Such knowledge would be instrumental in developing 
pro-resolution based strategies to treat complex chronic inflam-
matory diseases in man, thus establishing a new area of pharma-
cology to be referred to as “resolution pharmacology” (22).
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