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Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It 
is estimated approximately 1% of humans are infected with E. histolytica, resulting in an 
estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range 
widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal 
abscesses. Like other infectious diseases, it is assumed that only ~20% of infected indi-
viduals develop symptoms, and genetic factors of both the parasite and humans as well 
as the environmental factors, e.g., microbiota, determine outcome of infection. There are 
multiple essential steps in amebic infection: degradation of and invasion into the mucosal 
layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination 
to other organs. While the mechanisms of invasion and destruction of the host tissues 
by the amebae during infection have been elucidated at the molecular levels, it remains 
largely uncharacterized how the parasite survive in the host by evading and attacking 
host immune system. Recently, the strategies for immune evasion by the parasite have 
been unraveled, including immunomodulation to suppress IFN-γ production, elimina-
tion of immune cells and soluble immune mediators, and metabolic alterations against 
reactive oxygen and nitrogen species to fend off the attack from immune system. In this 
review, we summarized the latest knowledge on immune reaction and immune evasion 
during amebiasis.

Keywords: Entamoeba histolytica, cysteine protease, glycosidase, mucin, phagocytosis, oxidative stress, 
metabolism

iNTRODUCTiON

Entamoeba histolytica is an enteric protozoan parasite that infects humans, and is the etiological 
agent of amebiasis. Amebiasis remains a worldwide health problem accounting for up to 100,000 
deaths annually (1, 2). Transmission occurs via ingestion of food and water contaminated with 
amebic cysts (1, 3, 4). In endemic areas, exposure can be extremely high: an annual incidence of 
40% was estimated among children in an urban slum in Bangladesh (5). In some parts of Asia and 
Australia, amebiasis is endemic among men who have sex with men (MSM) and can be transmitted 
sexually (6–9). Majority of infections with E. histolytica remain asymptomatic, while ~20% of the 
cases develop clinical manifestations, such as dysentery, which is characterized by colonic mucosal 
invasion and tissue destruction (10). Invasive disease includes dysentery and extra-intestinal 
amebiasis, most commonly amebic liver abscesses (ALAs), which occur in approximately 1% of 
symptomatic cases in developing countries and around 17% in Japan (11, 12).
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FiGURe 1 | Mechanisms of colonization and invasion by E. histolytica trophozoites and host immune responses to suppress and control amebic 
infection. In the lumen of the large intestine, the IEC layer is covered by the mucus layer (blue), which contains secreted mucin and IgA from the host and 
commensal microbiota. Proteases and glycosidases secreted from the amebae are involved in the degradation of mucin and extracellular matrix. The pro-domain of 
EhCP-A5 binds to and activate integrin and enhances the inflammasome formation of leading to pro-inflammatory responses. PGE2 also secreted from the amebae 
causes mucin hypersecretion and depletion of mucin from the IECs. PGE2 also elicits signaling in a cascade leading to NFκB activation in the IECs and induces IL-8 
secretion. The Gal/GalNAc lectin (lectin) and LPPG on the ameba’s surface binds to TLR2 and leads to NFκB activation and pro-inflammatory cytokine release for 
IEC. PGE2 also helps to disrupt tight junction function of the epithelium and enhances the amebic infiltration. Phagocytosis and trogocytosis are also involved in 
removal of host cells and invasion into the host tissue. Infiltrating trophozoites are attacked by complement from the circulation, ROS and NO from neutrophils and 
macrophages. The Gal/GalNAc lectin and LPPG activate CD4, CD8 T cells, and NKT cells, and, thus, enhances protective cellular immunity. CD4 T cells produce 
IFN-γ, IL-4, IL-5, and IL-13, and CD8 T cells produce IL-17. IL-17 induces neutrophil infiltration and enhances secretion of mucin, antimicrobial peptides, and IgA into 
the colonic lumen. When disseminated to the liver, the amebae are attached and removed by the dense mediated by IFN-γ secreted by NKT cells. TNF-α secreted 
from hepatic macrophages leads to abscess formation. Solid arrows depict secretion of soluble proteins and dotted arrows indicate interaction or signal 
transduction. Cytokines mainly beneficial for an elimination of the amebae are shown in black, while those involved in disease manifestations are shown in red.
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When amebic trophozoites invade the colonic epithelium, 
they activate immune response in the human host. In order to 
survive in the host, the repression of host immune systems and 
the control of the environment of parasitism are crucial. For 
instance, during extraintestinal dissemination, the amebae must 
transiently survive in the blood vessels and the spleen, in which 
a network of immune cells and humoral factors are present, 
and the amebae are exposed to high concentrations of oxygen 
(E.  histolytica are anaerobic or microaerophilic). To persist in 
such environment, amebae must subvert detection by antibody 
and complement, and resist oxidative and nitrosative attack. 

In this review, we summarize our current knowledge on immune 
response during amebic infection (Figure  1) and the parasite’s 
strategies to evade from host immune system (Figure 2).

iMMUNe ReSPONSe DURiNG  
AMeBiC iNFeCTiON

Course of Amebic infection
Entamoeba histolytica infection is initiated by parasite adher-
ence to the colonic mucin layer. Trophozoites express a galactose 
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FiGURe 2 | Possible mechanisms of immune evasion during amebiasis. Secreted or surface proteases of the amebae degrade IgA in the mucosal layer. 
PGE2 from the amebae induces IL-10 secretion from the IECs, and in turn stimulates mucin and IgA secretion, which likely prevents unnecessary inflammation. 
Overstimulation of TLR causes downregulation of NFκB activation. Removal of infiltrating immune cells by phagocytosis/trogocytosis helps to reduce immune 
responses. Some commensal microbiota, namely Clostridium XIV and IV groups and Bacteroides fragilis, induce Treg cells to downregulate immune responses. 
Polysaccharide A from B. fragilis binds to TLR2 on CD4 T cells and induces IL-10 production. The amebae in the tissues and the blood stream evade from 
complement by surface receptor capping (LPPG, lectin) and degradation of C3a and C5a by cysteine proteases. Cysteine proteases also degrade IL-1β, 
antioxidative stress defense by the TRX and PRX systems fends off the attack from ROS and NO from activated neutrophils and macrophages. LPPG binds to TLR2 
on monocytes and macrophages, which leads to secretion of cytokines, including IL-10 and TGF-β. High doses of LPPG downregulate TLR2 gene expression in 
monocyte and cause negative feedback of protective immune responses. PGE2 from the amebae and the host causes downregulation of MHC class II expression 
on macrophages in the liver, which results in anti-inflammation.
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and N-acetyl-d-galactosamine specific lectin (Gal/GalNAc 
lectin) on the cell surface and attach to host mucin and colonic 
epithelial cells (13). The colonized parasites are capable of 
extensive tissue destruction. Beside the pore-forming proteins, 
amoebapores (14, 15), hydrolytic enzymes, particularly cysteine 
proteases (CP), are considered to be essential weapons of the 
parasite to penetrate the epithelium and destroy components of 
the host’s extracellular matrix (ECM) (16–20). During and after 
penetration into the submucosal region, amebic trophozoites 
interact directly and indirectly with host immune and non-
immune cells.

Humoral immunity
While the mucosal layer in the gastrointestinal tract generally 
serves as a primary physical barrier against intestinal pathogens, 
the intestinal immune response is the secondary defense to 
E.  histolytica infection. Mucosal immunoglobulins (Ig) are the 
major component of the human intestinal defense mechanism 
(21). Among them, secretory IgA is one of the most abundant Ig 
produced by plasma cells and functions by preventing pathogens 
from adhering and removing the mucosal barrier (21). Haque 
and colleagues showed that the presence of Gal/GalNAc 
lectin-specific IgA antibodies in the stool correlated with reduced 
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re-infection rates with E. histolytica in a study on susceptible 
children from Bangladesh (5, 22, 23). This implication was also 
confirmed with patients who had recovered from ALA. Increases 
in anti-Gal/GalNAc lectin IgA antibodies in post-ALA patients 
were associated with clearance of subsequent amebic infections, 
demonstrating that post-ALA patients developed a higher 
immune responsiveness and maintained immunological memory 
(24, 25). On the other hand, IgG levels have either protective or 
non-protective effects on the susceptibility to amebic infections 
depending upon major IgG subclasses induced by infection (i.e., 
IgG1 and IgG2 induced by Th2 and Th1, respectively) (26, 27).

Cell-Mediated immunity
Cell-mediated immune responses are also important for host 
defense against E. histolytica. During the initial stage of infec-
tion, intestinal epithelial cells (IECs) bind to and recognize the 
carbohydrate recognition domain of the Gal/GalNAc lectin via 
toll-like receptor (TLR)-2/4, which activates NFκB and leads to 
the production of inflammatory cytokines, including IL-1β, IL-6, 
IL-8, IL-12, IFN-γ, and TNF-α (28–30). IECs are the second line 
of barriers against pathogens after the mucosal layer and the 
first line of host cells to encounter microbial/parasite antigens, 
they express an array of pathogen recognition receptors (PRRs), 
including TLRs (31). IFN-γ is involved in clearance of infection, 
whereas IL-4 and TNF-α are associated with disease (32–35). 
In fact, IFN-γ production by peripheral mononuclear cells was 
shown to be correlated with protection from future E. histolytica 
infection in children (36) and the serum level of IL-4 was high 
in patients with invasive amebiasis (27, 37). It has been also 
shown that IFN-γ-producing CD4+ T cells and IL-17-producing 
CD8+ T cells are involved protection in vaccinated mice (38, 39). 
IL-17 plays multiple roles in protection against amebic infection, 
including induction of secretion of mucin and antimicrobial pep-
tides, increase in IgA transport across the intestinal epithelium, 
and promotion of neutrophil infiltration (40–43).

IFN-γ-activated neutrophils and macrophages have amebi-
cidal activity in vitro (44, 45). In vivo, neutrophils predominated 
in amebic lesions where the macrophages were infrequent, sug-
gesting importance of neutrophils for clearance of amebae (46). 
Production of reactive oxygen species (ROS) and nitric oxide 
(NO) via NAD(P)H oxidase complex and iNOS, respectively, 
play critical roles in killing trophozoites (45, 47). In experimental 
ALA, protection was mediated by IFN-γ from natural killer T cells 
(NKTs), while TNF-α-producing macrophages increased tissue 
damage (32, 33). Taken together, both humoral and cell-mediated 
immune responses play important roles against amebic infection.

MiCROBiOTA-MeDiATeD 
MODiFiCATiONS OF PARASiTe 
viRULeNCe AND HOST iMMUNe 
ReSPONSe

Microbiota Affects energy Metabolism and 
Growth of the Amebae
The adult human intestine has trillions of bacteria composed of 
more than hundreds of species. Recent studies have suggested 

that the intestinal bacterial microbiota may influence the 
outcome of protozoan infections (48, 49). The growth and 
survival of E. histolytica trophozoites depends on nutrients 
from the host and the microbiota. The bacterial microbiota 
produces glycosidases that degrade complex polysaccharides 
into forms available for the absorption by the amebae and 
the host (50). Microbial glycosidase activity determines the 
levels of free colonic carbohydrates (the glycobiome). Thus, 
microbiota potentially influences central energy metabolism 
of E. histolytica trophozoites. Since E. histolytica has numer-
ous glycosidases, including amylases, β-hexosaminidases, and 
lysozymes encoded in its genome (51–55), and can degrade 
a panel of polysaccharides to yield monocarbohydrates, the 
activity and regulation of amebic glycosidases also influence 
available carbohydrate concentrations.

Microbiota influences the  
Parasite’s virulence
The commensal bacteria are generally protective against enteric 
pathogens. However, E. histolytica infection requires the presence 
of enteric bacteria. Germ-free animals were resistant to E. histo-
lytica infection, but the introduction of a single bacterial species 
restored amebic pathogenesis (56, 57).

It has been shown that axenization (i.e., removal of associating 
bacteria) of xenically cultivated trophozoites decreases virulence, 
and incubation of axenic trophozoites with live bacteria restored 
virulence in a contact-dependent manner (58, 59). Incubation of 
E. histolytica trophozoites with the enteropathogenic Escherichia 
coli (EHEC) or Shigella dysenteriae increased amebic adherence 
to and cytotoxicity against MDCK cell monolayer (60). These 
observations indicate the enteric microbiota influence E. histol-
ytica virulence during human infection (also see Perturbation of 
the Enteric Microbiota by E. histolytica).

The microbiota-dependent glycobiome has an emerging 
role in regulating the virulence of enteric pathogenic bacteria, 
such as EHEC, Clostridium difficile, and Salmonella enterica 
serovar Typhimurium (S. typhimurium) (61–63). EHEC has a 
fucose-responsive regulator of virulence genes, while C. difficile 
growth is promoted with high concentrations of free sialic acid 
reproduced by sialidase from associating bacteria (Bacteroides 
thetaiotaomicron). Similarly, the in  vivo virulence of S. typh-
imurium was shown to be dependent on both fucose and sialic 
acid (63). It has been shown that glucose starvation enhances E. 
histolytica virulence, motility, and lectin expression via URE-3BP 
(64, 65). This finding suggests that the ameba has an ability to 
sense glucose (and possibly other monosugars) to modulate its 
virulence. The amebae and the bacterial microbiota influence 
each other by providing energy source and degrading available 
carbohydrates.

Microbiota Affects Host  
immune Response
Gut microbiota plays a number of physiological roles involv-
ing digestion, metabolism, extraction of nutrients, synthesis 
of vitamins, prevention against colonization by pathogens, 
and immunomodulation (66–68). It has been demonstrated 
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that Bacteroides fragilis and cluster XIV and IV of Clostridium 
species induce the development of regulatory T (Treg) cells in 
the colon (69, 70). Treg cells have the ability to suppress inflam-
matory responses through the production of anti-inflammatory 
cytokines, including IL-10 and TGF-β, and are considered to 
be involved in self-tolerance (71, 72). The beneficial effect of  
B. fragilis depends on the expression of polysaccharide A, which 
is a unique surface polysaccharide that binds to TLR2 on CD4+ 
T cells (72). Microbiota-mediated immunomodulation is evident 
in several diseases, e. g., Rheumatoid arthritis, diabetes, obesity, 
and cancer (73–78). It seems that E. histolytica requires the intes-
tinal microbiota for pathogenesis, and, conversely, the parasite 
also needs to disrupt the homeostasis of the microbiota during 
infection.

STRATeGieS FOR iMMUNe evASiON  
OF E. histolytica

Disruption of Host Physical Barriers and 
Soluble immune Mediators by Hydrolases
Glycosidases
Hydrolases secreted by E. histolytica trophozoites are involved in 
the elimination of immune cells and degradation and/or activa-
tion of soluble immune mediators, as well as disruption of the 
host gut and liver epithelia (29, 55, 79–84). The mucosal layer 
between the lumen and the epithelia forms a physical barrier. 
Degradation of carbohydrates in the barrier is crucial for the 
initiation of colonization by the amebae. Human intestinal mucus 
is mainly composed of highly glycosylated mucins (85). Among 
>20 human mucins, MUC2 is the major gel-forming mucin 
secreted by goblet cells of the small and large intestines (86, 87). 
When the amebae colonize the colonic epithelia, they binds to 
secreted mucin oligosaccharides with the Gal/GalNAc lectin and 
penetrate through the mucosal layer. In this process, the amebae 
decompose the mucin barrier to finally reach and subsequently 
attach on IEC (13).

Secreted proteins by E. histolytica trophozoites displayed 
glycosidase activities, including β-N-acetyl-d-glucosaminidase, 
α-d-glucosidase, β-d-galactosidase, β-l-fucosidase, and α-N-
acetyl-d-galactosaminidase (88). Among these glycosidases, β-N-
acetyl-d-glucosaminidase showed the highest activity (88,  89). 
Thus, β-N-acetyl-d-glucosaminidase activity likely have a central 
role in degrading carbohydrates on mucin and exposing its protein 
backbone (88). It was previously demonstrated that the amount of 
intracellular and secreted β-N-acetyl-d-glucosaminidase activity 
increased by complement in the serum (90, 91). Huldt et al. also 
suggested that hexosaminidase activity plays a role in the amebic 
virulence (90).

Recently, it has been shown that knock down of a β-amylase 
gene by siRNA caused reduction in the degradation of the mucosal 
layer and the invasion into the human colon in an ex vivo experi-
ment (55). Furthermore, the β-amylase gene was found upregu-
lated after contact with colon tissues (55). Mucin degradation by 
amebic glycosidases may also affect the central metabolism of the 
amebae per se and also the microbiota equilibrium in the colon 

since highly glycosylated mucin is a carbon source for the amebae 
and the colonic microbiota (92, 93).

Cysteine Proteases
The E. histolytica genome has ~50 genes encoding CPs (20), which 
likely reflects robust biological importance of CPs. Of these, 
however, only four proteins, EhCP-A1, EhCP-A2, EhCP-A5, and 
EhCP-A7, are highly expressed under culture conditions and 
altogether account for more than 90% of the proteolytic activity 
in trophozoite extracts (94). After mucin was digested by amebic 
glycosidases, the protein backbone of mucin is degraded by 
robust CPs. Altogether, these mucin-digesting glycosidases and 
proteases are the ameba’s first line strategy to overcome the innate 
defense of the mucus barrier.

As suggested by various studies, among the four major CPs, 
EhCP-A5 appears to play a pivotal role in virulence, including 
immunomodulation (80, 95–102). EhCP-A5 has a capacity to 
bind integrin via the RGD motif in the pro region, and elicits pro-
inflammatory response in Caco-2 cells in vitro and the murine 
colon via NLRP3 inflammasome activation independent of the 
CP activity (100, 102, 103). CPs are also known to modulate cell-
mediated immunity by activating pro-inflammatory cytokines 
and also modulate humoral immunity (see below).

Involvement of Glycosidases and Proteases 
for Extraintestinal Propagation
When E. histolytica trophozoites propagate extraintestinally, they 
take a route similar to that of cancer metastasis (104), which 
requires both glycosidases and proteases for the disintegration of 
the basement membrane and entry into circulation (105–107). In 
case of ALA, amebic glycosidases and proteases are also needed to 
survive in the blood vessels (see Degradation of Immunoglobulins 
and Complements), and to destroy Kupffer cells, the epithelial 
cells, ECM, and hepatocytes in the liver. Thibeaux and colleagues 
have recently demonstrated that EhCP-A5 secreted from the ame-
bae activates host matrix metalloproteases (MMP), a well-known 
mediator of ECM degradation (84). Recombinant EhCP-A5 
restored the invasiveness of the EhCP-A5 gene-silenced tropho-
zoites, suggesting that proteases from both the ameba and the host 
contribute to the tissue invasion process. In contrast to proteases, 
the roles of glycosidases in pathophysiology of amebiasis are not 
well demonstrated. It is evident in cancer metastasis that the level 
of serum β-hexosaminidase correlates with the likeliness of liver 
metastasis in variety of cancers, including colon, breast, stomach, 
pancreas, small bowel, kidney, testis, melanoma, lymphoma, and 
myeloma (108). Increased levels of tissue β-hexosaminidase were 
also reported for breast, kidney, pancreas, thyroid, colon, ovary, 
brain, salivary gland, stomach, and larynx cancers (109–112). 
Thus, it is conceivable by analogy that amebic glycosidases are 
involved in tissue invasion and extraintestinal dissemination.

Degradation of immunoglobulins and 
Complements
As described above, the major component responsible for the 
intestinal immune response against amebic infection is secreted 
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Igs. It was demonstrated that anti-Gal/GalNAc lectin IgA reduces 
trophozoite colonization in the colon (5, 23, 25, 113–117). 
Intriguingly, E. histolytica surface-associated CP [most likely 
EhCP-A5, (118)] cleaves human IgA (16, 119). Amebic CPs are 
capable of cleaving both isotypes, i.e., IgA1 and IgA2 (119, 120). 
Furthermore, amebic CPs can also inactivate circulating IgG 
and, thus, believed to be involved in the survival during tissue 
invasion and extraintestinal propagation (18). Degradation of 
IgG in the blood could prevent activation of the classical path-
way of the complement system and immune cells that harbor Fc 
receptors (19).

When the trophozoites are exposed to the intravascular 
immune system, complements are the major component that 
mediates trophozoite destruction. E. histolytica trophozoites 
evade from a complement attack by cleaving and inactivating 
anaphylatoxins C5a and C3a with CPs (79). C5a and C3a are 
potent activators of inflammation and enhance the release of his-
tamine from mast cells, lysosomal enzymes from leukocytes, and 
pro-inflammatory cytokines, including IL-6 and TNF-α, from 
macrophages (121–123). C5a and C3a also increase vascular per-
meability and attract immune cells (122, 123). Reduction of these 
anaphylatoxins detracts from immune detection of the amebae 
in the blood and reduces inflammation in amebic lesions. It also 
partially explains the lack of severe inflammation in advanced 
colitis and ALA region.

Degradation of Cytokines
Cysteine proteases are also known to modulate cell-mediated 
immunity by activating pro-inflammatory cytokine IL-1β and 
inactivation of pro- and mature IL-18 (82, 124). It is not concluded, 
however, if these changes are protective against or deleterious for 
amebic infection.

Cell Surface Decorations to evade  
Host immunity
Glycosylphosphatidylinositol-Anchored Proteins
Entamoeba histolytica is also capable of evading from complement 
attach by decorating their surface with glycosylphosphatidylino-
sitol (GPI)-anchored proteins. GPI is a glycolipid required for 
anchoring many proteins and glycoconjugates to the cell surface 
in most of eukaryotes (125–127). E. histolytica trophozoites 
expose on their cell surface a complex GPI-anchored glycocon-
jugate, designated lipopeptidophosphoglycan (LPPG) (128, 129). 
LPPG on the cell surface is a component of glycocalyx that is 
composed of oligosaccharides of glycoproteins and glycolipids 
and afford trophozoites protection by creating an impervi-
ous layer to complement (130, 131). It was demonstrated that 
complement-susceptible Entamoeba dispar trophozoites possess 
a much thinner structure of LPPG-containing glycocalyx, which 
is consistent with the premise that LPPG is important for the 
evasion from complement (130). It is also known that antibody 
against human CD59, a cell surface protein that prevents 
auto-lysis by inhibiting the formation of the membrane attack 
complex (MAC) antibody cross-reacts with Gal/GalNAc lectin 
and a 21 kDa surface protein (132, 133). Later, it was shown that 

the Gal/GalNAc lectin contains a CD59-like region on the cell 
surfaces that prevents MAC formation (132). These data suggest 
that the Gal/GalNAc lectin is a cross-reactive CD59 homolog of 
the ameba and have a similar function as CD59. In agreement 
with these results, global inhibition of GPI-anchor formation 
leaves E. histolytica trophozoites susceptible to complement-
mediated lysis (131). However, functionality of 21 kDa protein 
as an inhibitor of MAC formation and its molecular identity has 
yet to be elucidated.

Surface Receptor Capping
Surface receptor capping is another strategy to hide from the 
immune system by disposing of the surface molecules that have 
been recognized by Igs or complements (134, 135). During cell 
movement, surface-bound immune complexes are translocated 
toward the uroid, where capped ligands accumulate (136). This 
polar re-distribution can be induced by concanavalin A (Con A) 
or anti-amebic polyclonal antibodies (137). It has been reported 
that serine protease, E. histolytica rhomboid protease (ROM1), 
is involved in the translocation of the complex to the base of the 
caps and subsequent release of the materials in the cap (135, 138). 
It is of note that ROM1 also cleaves the transmembrane domain 
of the heavy subunit of the Gal/GalNAc lectin (138). As the lectin 
heavy subunit is highly immunogenic, its release from the plasma 
membrane by ROM1 may interfere with host immune response 
directed to amebae.

Killing and Phago/Togocytosis  
of immune Cells
Contact-Dependent Cell Killing
Immobilization and killing of immune cells also serves as 
an ameba’s strategy for evasion from immune surveillance. 
Amebic trophozoites are able to kill a variety of cells, includ-
ing neutrophils, T lymphocytes, macrophages, and a variety of 
tissue culture lines (116, 139–141). Adherence of the ameba 
triggers multiple intracellular events leading to cytotoxic 
effects to the mammalian cells. Such events include increased 
intracellular Ca2+, production of ROS, loss of membrane integ-
rity, DNA fragmentation, phosphatidylserine exposure on the 
cell surface, and caspase-3 activation (116, 117, 139–144). It 
was reported that after host cell killing, E. histolytica prefer-
entially ingest the dead cells (117, 140, 143). This observation 
is consistent with the theory that clearance of dead cells and 
debris by phagocytosis helps to minimize pro-inflammatory 
responses (145, 146). A phagocytosis-defective line of E. his-
tolytica apparently showed decreased virulence in  vitro and 
in vivo, suggesting a potential causal link between phagocytosis 
and virulence (147, 148).

Huston and colleagues demonstrated that E. histolytica 
preferentially ingests apoptotic Jurkat cells via recognition of 
phosphatidylserine and collectins (140, 149). Amebic calreticulin 
was found to be the surface receptor for host C1q, and required 
for phagocytosis of apoptotic cells, but it did not directly medi-
ate cell killing (150). A few recent studies have started to unveil 
the detailed molecular mechanisms involved in the ameba 
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phagocytosis (151, 152). However, the molecular events that take 
place in host immune cells in particular to suppress (or augment) 
immune response, together with a missing link between the 
surface receptor to the internalization machinery, remains totally 
unknown.

Trogocytosis
Ralston and colleagues have recently reported E. histolytica 
trophozoites ingested pieces of intact living cells via trogocytosis 
(“trogo” = nibbling) (153). When trophozoites were incubated 
with a combination of live and pre-killed host cells (Jurkat T 
cells), the live cells were ingested by trogocytosis, while the 
pre-killed host cells were ingested as a whole by canonical 
phagocytosis. Trogocytosis is an active process that resembles 
phagocytosis in some ways, i.e., it requires physiological 
temperature, actin rearrangements, Gal/GalNAc lectin, C2 
domain-containing protein kinase, and phosphatidylinositol 
3-phosphate kinase signaling, and it is accompanied with a 
rapid rise in intracellular Ca2+ concentrations. Trogocytosed 
host cells finally were killed. Trogocytosis of murine IEC was 
also evident in the in vivo animal model, suggesting that both 
trogocytosis of live host cells and phagocytosis of dead cells are 
important for pathogenesis and sustained parasitism of E. his-
tolytica. Since amebic contact can potentially results in multiple 
outcomes: apoptosis and necrosis, followed by phagocytosis, 
or trogocytosis, it remains to be elucidated what factors and 
conditions differentiate these distinct manners of killing and 
ingestion of target host cells.

iFN-γ
Entamoeba histolytica regulates IFN-γ for survival in the host. 
In CBA mice, which are susceptible to E. histolytica cecal infec-
tion, the amebic infection led to upregulation of Th2 (IL-4, IL-5, 
and IL-13) and Th17 (IL-17) cytokine responses, while Th1 
cytokines, IL-12p35 and IFN-γ, were suppressed (154). This 
indicates that suppression of INF-γ causes susceptibility of ame-
biasis. From cohort studies in Bangladesh, susceptible children 
with malnutrition showed lower IFN-γ levels (36, 155). Analysis 
of asymptomatic carriers of E. histolytica showed that carriers 
had higher levels of IFN-γ, while patients with invasive amebiasis 
displayed higher levels of IL-4 (35). The significance of IFN-γ in 
susceptibility is also implicated for ALA. It is known that more 
than 80% of all ALA cases occur in adult males (156–158), and 
the male predominance is attributable to testosterone (159). 
Lotter and colleagues showed that testosterone inhibits IFN-γ 
secretion from invariant natural killer T (iNKT) cells stimulated 
by LPPG, a physiological ligand for CD1d (159). iNKT cells are 
a subset of NKT cells that recognize lipid antigens in the context 
of CD1d and produce IFN-γ and IL-4. E. histolytica LPPG is 
presented on CD1d to invariant TCR and activates iNKT cells 
in combination with TLR signaling. αGalCer, a CD1d agonist, 
stimulates production of both IFN-γ and IL-4, whereas LPPG 
induces IFN-γ but not IL-4 production (33). These data suggest 
that iNKT cells provide a link between innate and adaptive 
immunity due to their capacity to produce large amounts of 

IFN-γ and IL-4 that can bias the immune response into either 
a Th1 or Th2 direction. Production of IFN-γ helps clearance of 
E. histolytica infection and controls abscess formation, whereas 
an adequate level of IFN-γ reduces the trophozoite number and 
pro-inflammatory response at a low level, and may balance for 
trophozoites to survive.

iL-10
It is known that anti-inflammatory cytokine, IL-10, plays a 
 critical role to maintain the mucosal barrier. IL-10-deficient 
mice have compromised and highly permeable mucosal barriers 
and develop spontaneous intestinal inflammation in response to 
normal microflora (160). A murine amebic colitis model demon-
strated that IL-10 from hematopoietic cells (CD4+ T cells) acting 
upon the non-hematopoietic compartment (IEC) is required for 
innate resistance to parasite invasion (161). Furthermore, it has 
been shown that IL-10 enhances MUC2 production, suppresses 
activation of antigen-presenting cells, induces B cell class-
switching to IgA, has anti-apoptotic effects on IECs, reduces pro-
inflammatory NFκB signaling in IECs, and promotes induction 
of CD4+ Treg cells (162–165). Interestingly, in asymptomatic car-
riers, no elevation of IL-10 level was observed. On the other hand, 
the IL-10 level was increased in dysenteric and ALA patients (27, 
37). These studies indicate that invasion of the colon and liver 
by E. histolytica elicits an anti-inflammatory immune response 
and may successfully suppress immune reaction to the amebae. 
Altogether, the ameba needs to balance IL-10 and inflammatory 
cytokine levels to establish infection. It was shown that perito-
neal monocytes and macrophages exposed to LPPG secreted 
TNF-α, IL-6, IL-8, IL-12, and IL-10 via TLR2 (166). It has been 
also shown that high doses of LPPG down-regulated TLR2 gene 
expression (166, 167). Thus, LPPG-driven signaling may activate 
a negative feedback loop that attenuates inflammatory responses. 
The mechanisms of the suppression of IL-10 production by the 
ameba remain to be elucidated (see below).

Suppression of NFκB in ieCs
Entamoeba histolytica trophozoites secrete materials that induce 
a protective response in human IECs (168, 169), the first line of 
host cells to encounter microbial antigens, via PRRs, including 
TLRs. Upon binding to their ligand, PRRs trigger activation of a 
transcription factor NFκB. Gut homeostasis requires continuous 
activation of NFκB by TLR signaling in response to intestinal 
bacteria (170), commensal microbes can also disrupt NFκB 
signaling to attenuate pro-inflammatory IEC responses (171). 
It has been shown that secreted components from E. histolytica 
trophozoites induce a protective response in human IECs that 
primed by macrophage secretions through suppression of NFκB 
via heat shock protein response and increase resistance of IECs to 
apoptosis (168). Thus, it appears that E. histolytica elicits a stress 
response to IECs and promotes a hyporesponsive state toward 
trophozoites. The amebic factors that induce NFκB suppression 
have not yet determined. The factors that activate TLR2, i.e., 
LPPG and Gal/GalNAc lectin, are candidates involved in this 
pathway (172).
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Prostaglandin PGe2
Entamoeba histolytica trophozoites produce and secrete pros-
taglandin 2 (PGE2), which have contact-independent effects 
on tight junction integrity and ion absorption. Secreted amebic 
PGE2 binds to prostaglandin E receptor 4 (EP4) on IECs, disrupts 
tight junctions, and increases luminal Cl− secretion (173, 174). 
PGE2 secreted from the amebae elicits inflammatory response 
in IECs by increasing IL-8 production by IECs (173). PGE2 is 
a potent mucin secretagogue (175) that can overcome luminal 
barrier function by causing hypersecretion and, thus, depletion 
of the protective mucus barrier (176). On the contrary, it has 
been also reported that during invasive amebiasis, local PGE2 
has anti-inflammatory effect. In animal model of chronic ALA, 
hepatic granuloma macrophages do not respond to IFN-γ and 
LPS and do not produce inflammatory cytokines, show decrease 
in MHC class II expression, and are unable to kill trophozoites 
(47, 177, 178). This suppression is local during chronic ALA and 
is directly caused by the parasite (47, 177). A culture supernatant 
and an unknown soluble protein component of E. histolytica 
trophozoites decrease class II major histocompatibility complex 
(MHC II) immune-associated (Ia) antigen expression through 
a PGE2-dependent manner (178). Inhibition of macrophage 
PGE2 synthesis can partially recover MHC II Ia expression and 
TNF-α expression (177, 178). However, inhibition of PGE2 syn-
thesis does not recover iNOS expression or amebicidal activity 
in the deactivated macrophage (177). A continuous supply of 
parasite-derived PGE2 likely prevents iNOS expression and full 
recovery of MHC II and TNF-α, possibly through a concentra-
tion-dependent effect of PGE2. In short, ameba-secreted PGE2 
represses inflammation in ALA, which is beneficial for survival, 
whereas it likely enhances destruction of the colon.

PeRTURBATiON OF THe eNTeRiC 
MiCROBiOTA BY E. histolytica

It has been reported that E. histolytica infection alters the 
microbiota composition. E. histolytica-induced dysbiosis was 
characterized by fewer Bacteroides, Clostridia, Lactobacillus, 
Campylobacter, and Eubacterium species, and increased 
Bifidobacterium species (179). In vitro experiments have shown 
that E. histolytica preferentially ingest some bacterial species 
(59, 180). It is known that amoebapores, a family of the major 
pore-forming peptides, have differential activity against bacte-
ria and eukaryotes (15). Furthermore, E. histolytica infection 
induces production of colonic antimicrobial peptides, while the 
trophozoites degrade them (181). A recent study has shown that 
dendritic cells from the mouse intestine where Clostridia-related 
bacteria colonized provide IL-17A-dependent protection 
against amebic colitis (182). Detailed molecular events remain 
to be elucidated, however, by examining how alternations of the 
microbiota modulate host immune responses against amebic 
intestinal infection. Altogether, microbiota can be modulated by 
amebic infection, and in turn concentrations of carbohydrates 
(and other compounds) that affect growth and virulence of the 
amebae can strongly influence outcome of infection. It remains 
to be elucidated whether and how the amebae modulate the 
intestinal microbiota for their survival and parasitism.

STRATeGY FOR OXiDATive STReSS 
MANAGeMeNT AND MeTABOLiC CONTROL

Lack of Respiration and Antioxidative 
Stress Management in E. histolytica
Entamoeba histolytica trophozoites are microaerophilic and con-
sume oxygen. They tolerate low levels of oxygen tension. E. his-
tolytica lacks a conventional respiratory electron transport chain 
that terminates in the reduction of O2 to H2O. However, it does 
respire and tolerates up to 5% oxygen in the gas phase (183–185). 
The parasite lacks most of the components of antioxidant defense 
mechanisms that are widely present in other prokaryotic and 
eukaryotic organisms, such as catalase, peroxidase, glutathione, 
and the glutathione-recycling enzymes glutathione peroxidase 
and glutathione reductase (184, 185). However, during tissue 
invasion, trophozoites must fend off reactive oxygen and nitro-
gen species produced by activated immune cells through the 
respiratory burst. Thus, trophozoites must use antioxidative stress 
defense to survive immune surveillance.

Anti-Oxidative Stress Response 
Contributes to immune evasion in  
E. histolytica
Entamoeba histolytica trophozoites contain high levels of cysteine, 
instead of glutathione, as the major thiol in the cell. They possess 
several enzymes to defend from oxidative stress, such as perox-
iredoxin (Prx), superoxide dismutase, flavoprotein A, ferredoxin, 
thioredoxin (Trx), and Trx reductase (186, 187). The Trx/Trx 
reductase system is crucial for buffering sensitive proteins under 
oxidative stress (188). The amebicidal drugs, metronidazole and 
auranofin, are known to disrupt Trx (189, 190). Interestingly, 
the oxidative stress increases E. histolytica virulence. It has been 
shown that oxidative stress causes upregulation of a stress-induced 
adhesion factor and a phospholipid transporting P-type ATPase/
flippase (187). Both genes are involved in adhesion and phagocy-
tosis. Oxidative stress also alters metabolic flux, including glycerol 
and chitin biosynthesis, potentially triggering encystation (191). 
Furthermore, it has been shown that E. histolytica (HM-1:IMSS) 
responds more strongly to oxidative stress than E.  dispar and 
E. histolytica non-virulent Rahman strain, and surface localiza-
tion of Prx in HM-1:IMSS is associated with virulence (186). 
Altogether, antioxidative defense mechanisms in E. histolytica 
are associated with pathogenesis. For more details on the anti-
oxidative management in E. histolytica, a recent review should be 
consulted (192).

CONCLUSiON

Our understanding of molecular mechanisms of the parasite’s 
pathogenesis, such as adherence to host cells, induction of apop-
tosis, degradation of mucin and ECM, tissue invasion, and phago/
trogocytosis of host cells, has greatly advanced in recent years. So 
have mechanisms of immune evasion, such as induction of IL-10 
and suppression of INF-γ, degradation of Igs, complement, and 
pro-inflammatory cytokines. In addition, defense against ROS 
and NO and evasion from antibody and complement-dependent 
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killing also plays important roles in survival in the host. 
Furthermore, mutual signaling among the three domains in the 
complex network of the parasite, the human, and the microbiota 
with polymorphic genetic backgrounds affect outcome of amebic 
infection. Further research is needed to elucidate the molecular 
basis of the complex interaction in the intestinal ecosystem.
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