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T cells are highly concentrated in the lymph node (LN) paracortex, which serves an 
important role in triggering adoptive immune responses. Live imaging using two-photon 
laser scanning microscopy revealed vigorous and non-directional T cell migration within 
this area at average velocity of more than 10 μm/min. Active interstitial T cell movement 
is considered to be crucial for scanning large numbers of dendritic cells (DCs) to find rare 
cognate antigens. However, the mechanism by which T cells achieve such high-speed 
movement in a densely packed, dynamic tissue environment is not fully understood. 
Several new findings suggest that fibroblastic reticular cells (FRCs) and DCs control T cell 
movement in a multilateral manner. Chemokines and lysophosphatidic acid produced 
by FRCs cooperatively promote the migration, while DCs facilitate LFA-1-dependent 
motility via expression of ICAM-1. Furthermore, the highly dense and confined micro-
environment likely plays a key role in anchorage-independent motility. We propose that 
T cells dynamically switch between two motility modes; anchorage-dependent and 
-independent manners. Unique tissue microenvironment and characteristic migration 
modality of T cells cooperatively generate high-speed interstitial movement in the LN.
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iNtrODUctiON

In addition to their strategic locations throughout the lymphatic vascular system, lymph nodes (LN) 
contain a variety of immune cells, chiefly lymphocytes, which make them an ideal device for cou-
pling lymph fluid filtration to the collection of antigens and induction of adaptive immune responses 
(1, 2). Dendritic cells (DCs) that have captured antigens in peripheral tissues migrate to LN through 
lymphatic vessels and enter the paracortex, a T cell rich area. In the paracortex, antigen-presenting 
DCs initiate adaptive immune responses by activating T cells (1–4). The likelihood of T cells encoun-
tering cognate antigens in the LNs is dramatically increased because antigen-presenting cells and 
T cells are highly concentrated within the restricted area. However, it alone is probably insufficient 
for the detection of antigens by rare antigen-specific T cells efficiently.

Since 2002, it became common to perform live imaging using a two-photon laser scanning 
microscope to observe surgically exposed LN in an anesthetized mouse (intravital) or explanted LN 
under perfusion (5–7). These observations revealed robust migration of lymphocytes within LN, 
often called interstitial or intranodal migration. In particular, T cell movements in the paracortex 

Abbreviations: 2D, two dimensional; 3D, three dimensional; ATX, autotaxin; DC, dendritic cell; FRC, fibroblastic reticular cell; 
INTM, intranodal T cell migration; LN, lymph node; LPA, lysophosphatidic acid.
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occurred in a non-directional manner at high velocities (average 
>10 μm/min), and T cells made contact with large numbers of 
DCs over a limited period of time (5, 8–10). Given the extremely 
low frequency of naive T cells capable of recognizing each 
antigen (11–13), active migration by T cells is likely essential 
for the efficient detection of rare cognate antigens. However, the 
mechanism that enables T cells to achieve high-speed movements 
within a densely packed tissue environment is not fully under-
stood. Considering intranodal T cell migration (INTM) in the 
context of tissue microenvironment is beneficial to know about 
it. In this perspective article, we will discuss the various factors in 
the microenvironment of LN paracortex that control the efficient 
movement of T cells.

MiGrAtiON OF LYMPHOcYtes  
IN VITRO

Based on examinations in two-dimensional (2D) environments 
in  vitro, it became evident that immune cells show higher 
motility than many other tissue cells (14, 15). Various stimuli 
increased leukocyte motility and changed their morphology to 
an elongated shape with clear front–rear asymmetry. Changes 
in morphology depend on the remodeling of actin cytoskeleton 
and cycles of elongation–contraction motion mediated by 
actomyosin machinery (14, 16). Therefore, high motility is 
likely due to a high turnover rate or remodeling of the cytoskel-
etal machineries. In addition, relatively weak adhesiveness in 
hematopoietic cells could be a prerequisite for raising migration 
velocity (15, 17).

Chemokines are key regulators of immune cell trafficking 
and tissue localization (18). Chemokine receptors transduce 
migratory stimuli and initiate signaling cascades that culminate 
in cytoskeletal remodeling and morphological changes (14, 16). 
In lymphocytes, Gαi-coupled chemokine receptors are connected 
to a guanine–nucleotide exchange factor DOCK2 and Rac small 
GTPases, which promote actin dynamics to form lamellipodia 
in the cell front (19–21). In the rear of the cell, the activation of 
Rho small GTPases and non-muscle myosin II (nmMyoII) drive 
the elongation–contraction cycle (14, 16, 21). Front–rear polarity 
and integrin-dependent adhesion are also regulated by the small 
GTPase Rap1 (22–24).

Importantly, lymphocyte migration in 2D conditions in vitro 
revealed a marked dependency on adhesion to supporting cells 
(15, 25) (Figure 1). In particular, the integrin LFA-1 (αLβ2) plays 
a pivotal role in the motility of T cells on some supporting cells or 
immobilized ligands (16, 22, 23, 26). Extracellular stimuli, such as 
chemokines, are shown to facilitate LFA-1-dependent adhesive-
ness to ICAM-1. Thus, the first issue needed to be addressed by 
live imaging was to determine whether T cells moving in LN 
employed the same molecular mechanisms as in vitro.

MecHANisM OF iNterstitiAL  
t ceLL MiGrAtiON iN LN

Based on two-photon imaging, it has been revealed that INTM 
involves intracellular regulators that play a role in associated with 

actin reorganization. For example, the migration of DOCK2- or 
Rac1/Rac2-deficient T cells was severely impaired (29, 30). 
Likewise, T cells deficient in an actin regulator coronin 1A 
displayed a severe impairment in intranodal motility (31). The 
requirement of PI3K, a classical regulator of actin, in INTM 
was also suggested, although there are some conflicting reports 
(29, 32, 33). Moreover, Mst1, an effector kinase downstream of 
Rap1, which is a critical regulator of integrin and polarity forma-
tion, is necessary for optimal INTM (34).

Chemokine signaling controls actomyosin machinery 
that mediates both directional movements along a gradient 
(chemotaxis) and non-directional migration under uniform 
concentrations (chemokinesis) that is reminiscent of T cell 
migration in LNs. In fact, the inhibition of Gαi-coupled recep-
tors by pertussis toxin markedly reduced INTM by 40–50% in 
velocity (35, 36). Similarly, reduced motility was also observed 
in Gαi2−/− T cells (37). In the paracortex, stromal cells called 
fibroblastic reticular cells (FRCs) produce the chemokines 
CCL19 and CCL21, which control the localization of T cells 
expressing the cognate receptor CCR7 (38–40). Wild-type T 
cells in LN from CCL19/CCL21-deficient mice or CCR7−/− T 
cells in wild-type LNs showed 20–35% migration reduction, 
indicating that CCR7 ligands play a role in INTM to some 
extent (35, 36, 41).

Given that chemokines induced LFA-1-dependent adhe-
sion (16, 42), LFA-1 was also expected to participate in INTM. 
However, T cells from LFA-1-deficient (β2−/−) mice that were 
transferred to wild-type mice showed only slight reductions in 
the velocity of INTM by 15% (43). In the same report, the authors 
suggested that integrins are “silent” on chemokine-stimulated T 
cells under share-free condition, based on the observation that 
immobilized chemokines were able to induce motility but not 
firm adhesion in vitro, and most T cells seemed to keep migrating 
without any arrest in the LN, in which CCL21 is immobilized 
on FRCs. Furthermore, another group demonstrated that DCs 
lacking all functional integrins exhibited ability to migrate into 
and within LN (44). Consequently, these findings broadened 
the understanding that integrins are dispensable for interstitial 
motility of leukocytes.

ADHesiON-iNDePeNDeNt MOtiLitY  
iN cONFiNeD eNvirONMeNt

Elaborate networks constructed by FRCs and extracellular matrix 
backbone support the tissue framework of the LN paracortex, 
whereas most of the matrix fibers (collagen, laminin, fibronectin, 
etc.) are enclosed by FRCs, preventing T cells from direct contact 
to the fibers (45–48). The facts that FRCs produced chemokines 
and integrin ligands (38, 46) and most T cells appeared to 
migrate along the network (48) led to the notion that T cells 
might adhere to FRC surface as foothold. Seemingly, random 
migration was supposed as a guided movement on highly 
branched network. However, as the requirement of integrins 
became questionable, arguments regarding the mechanism of 
INTM have changed directions. It became evident that a variety 
of cells often showed anchorage-independent motility in some 
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FiGUre 1 | t cell migration in vitro (2D environment). (A) Chemokine-induced morphology and motility of T cells on primary LN stromal cells. To form a primary 
LN stromal cell monolayer, CD45− cells were isolated from C57BL/6 mice LNs by magnetic cell sorting and cultured on chamber dishes for 7–10 days (27). Total T 
cells were isolated from LNs by magnetic cell sorting and applied onto the stromal monolayer in the presence or absence of CCL21 (100 nM). Cell motility was 
examined using time-lapse video recording at 37°C (28). Representative static views (upper panels) and cell trajectories (lower panels) are shown (n ≧ 3). In some 
cases, T cells were pretreated with pertussis toxin (PTx) to inhibit Gαi or anti-LFA-1 antibody was added to medium to block LFA-1 function. Note that CCL21 
induces a characteristic polarized morphology and stimulates the motility of T cells. Gαi inhibition completely abrogates both morphological changes and migration. 
LFA-1 blockage dramatically inhibits migration but not polarization, indicating that adhesion mediated by LFA-1 to stromal ICAM-1 is required for T cell movement in 
this setting. (B) Various treatments affect T cell migration on a LN stromal monolayer [partially adapted and modified from Ref. (27)]. The mean velocity of individual 
cells (circles) and the median (horizontal red bars). Representative results of more than three experiments are shown. Note that the inhibition of Gαi completely 
blocks T cell migration. Antibody blockade of LFA-1 or ICAM-1 dramatically reduces motility. The treatment of T cells with anti-CD3 antibody or EGTA + Mg2+, both 
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of which induce high-affinity integrin activation and strong adhesion, inhibits T cell migration. (c) Adhesion of T cells to a stromal monolayer in various settings. 
Fluorescent-labeled T cells were applied onto a LN stromal monolayer and incubated in the presence or absence of the indicated treatments for 3 h (28). 
Non-adherent T cells were washed three times, and the fluorescence of remaining cells was measured to reflect the intensity of T cell adhesiveness. Results are 
shown as mean ± SD. Note that anti-CD3 antibody or EGTA + Mg2+ both induced strong T cell adhesion, while CCL21 alone stimulated relatively weak 
adhesiveness in a LFA-1/ICAM-1-dependent manner. (D) Schematic representation of T cell migration in a 2D environment. Due to gravitational force, T cells are 
settled on the surface of a supporting cell monolayer in the bottom of the cell culture chamber. Intracellular signals transduced from Gi-coupled chemokine 
receptors induce actin reorganization, front–rear asymmetry, actomyosin contraction, and LFA-1-dependent dynamic adhesion to ICAM-1 on stromal cells via 
activation of small GTPases. The high LFA-1 dependency in 2D migration assays is likely due to the requirement of anchorage to supporting cells for forward 
movement under semi-floating condition in culture media.

FiGUre 1 | continued
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three-dimensional (3D) confined environments enclosed by 
matrices or artificial substrates (49, 50). Likewise, lymphocytes 
exhibited significant motility in confined environments without 
remarkable adhesiveness (14, 51). In a narrow microchannel 
enclosed by walls of resin with little adhesiveness, lymphocyte 
increased motility in a range of space around 1-cell diameter 
and reduced as the space was expanded (52, 53). Consequently, 
INTM became considered an anchorage-independent motility 
in a kind of confined environment. However, individual T cells 
present in the LN parenchyma are surrounded by cells with 
significant plasticity and dynamics (48), which possibly makes 
confinement irregular or unstable.

recONsiDerAtiON OF LFA-1/icAM-1 
AXis iN iNterstitiAL t ceLL 
MiGrAtiON

Strong adhesiveness naturally hinders or stops T cell migra-
tion, whereas weak and transient anchorage to substrate is 
in turn likely to generate a traction force for forward move-
ment even in a 3D environment. From this viewpoint, LFA-1 
is quite suitable for anchorage-dependent rapid movement, 
because of their unique property to quickly respond to external 
stimuli (16, 23). In order to evaluate the significance of LFA-1 
in INTM, we constructed an imaging system using LN slices 
(54). The upper part of the LN was removed to expose the 
tissue parenchyma, and T cells were added directly to tissue. 
Using this model, the inherent biases of LN homing across high 
endothelial venules were alleviated. T cells were applied to the 
LN slices in the absence or presence of antibodies or drugs for 
the rapid inhibition of migration machineries. In this system, 
LFA-1 inhibition with antibody constantly reduced migration 
by 30–40% (Figure 2A) – in particular the high-speed fraction 
(>10  μm/min) and relatively straight movement were clearly 
decreased (54). Motility of wild-type T cells was similarly 
reduced in ICAM-1−/− LN slices. These suggest that LFA-1/
ICAM-1-mediated adhesion plays a significant role in INTM, 
at least in this setting.

What brings the difference between the previous works and 
results in LN slice? According to Woolf et al., β2−/− T cells also 
showed a slight but significant reduction of migration velocity, 
suggesting that LFA-1 promoted migration (43). On the other 
hand, β2−/− mice exhibited a severe disturbance in the immune 
system (55), which raises concerns regarding the nature of 

lymphocytes. In β2−/− mice, T cells develop and are able to 
distribute to LNs, despite inefficiency in the homing step that 
normally requires LFA-1 (16, 23). It is important to note that 
β2−/− T cells that enter wild-type LNs in the absence of LFA-1 may 
be enriched with a relatively high motility population that leads 
to the underestimation of LFA-1 function in INTM. Moreover, 
besides the strong binding responsible for cell arrest, LFA-1 also 
mediates dynamic adhesion mode characterized by relatively 
weak binding, which is reflected in rapid lymphocyte migration 
with remarkable LFA-1 dependency in vitro. Therefore, migra-
tion without arrest does not necessarily indicate the silence of 
LFA-1. Finally, even if DC motility does not require integrins, 
it is still questionable whether the mechanism is applicable to 
INTM as the speed and migrating morphology of DCs markedly 
differ from that of T cells (44).

On the other hand, there are a number of limitations associ-
ated with the use of LN slices. There is a possibility that cutting 
the organ causes some physical and physiological changes that 
affect T cell migration; for example, reduced internal pressure 
could expand the space between cells, which might increase 
LFA-1 dependency. However, this is not likely because similar 
results were obtained by conventional methods using LN 
explants or intravital observations (54). Antibodies or chemical 
inhibitors that are applied to LN slices could affect whole tis-
sues as well as T cells of interest, which may in turn impact cell 
pressure generated by “push and shove” from surrounding cell 
mass. In fact, even if voluntary movement is virtually blocked, 
the cell still shows a residual mobility or vibrating motion; 
thereby, velocity does not drop to 0 (Figure 2A). Non-voluntary 
movement in INTM is quite important because it could be 1/4 of 
motility represented by velocity. Nevertheless, considering that 
some reports also demonstrated the contribution of ICAM-1 in 
INTM (56–58), LFA-1 dependency might be variable depend-
ing on experimental settings. In any cases, the contribution of 
LFA-1/ICAM-1 system is clearly partial ranging between 10 
and 40% in INTM, which differs from 2D situation in  vitro 
(Figure 1).

For the imaging of INTM, T cells that are used for transfer 
to mice often contain a mixed population that is composed of 
naive CD4+ and CD8+ T cells and activated/memory T cells. 
It is worth noting that LFA-1-dependent fraction of motility is 
completely disappeared in activated T cells (Figures 2B,C). This 
finding raises a possibility that differences in the proportion of T 
cell subsets and their activation status could give rise to altered 
results in INTM.
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FiGUre 2 | interstitial t cell migration in LN. (A) Various treatments affect T cell migration in LN slices [partially adapted and modified from Ref. (27, 54)]. The 
circles represent the migration velocity (%) compared to the control in each experiment, and the horizontal red bars represent the mean (n ≧ 2). Lat.B, latrunclin B 
(actin inhibitor); Ki16425, LPAR inhibitor; S32826, ATX inhibitor; C3Tx, C3 toxin (Rho inhibitor); Bleb., blebbistatin (nmMyoII inhibitor). (B,c) Migration velocities of 
resting (Rest., green) and activated (Act., red) T cells in LN slices in the presence of control IgG or anti-LFA-1 antibody. The plot in (B) shows the mean velocity of 
individual cells (circles) and the median (horizontal bars), while the plot in (c) shows the median velocity for individual experiments (circles) and the mean of five 
experiments (n = 5, horizontal bars). For activation, total T cells isolated from LNs were stimulated with immobilized anti-CD3 and soluble anti-CD28 antibodies for 
3 days. Freshly isolated resting T cells and activated T cells were labeled with different fluorescent dyes (CFSE and CMTMR), mixed at equal numbers, and applied 
to LN slices for the examination by two-photon laser scanning microscopy. The trajectory data sets of resting and activated T cells in each treatment were obtained 
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from the same image field. Note that resting T cells but not activated T cells show the reduction of velocity in response to LFA-1 blockade, suggesting a distinct 
difference for LFA-1-dependent “speed-up” in resting but not activated T cells. Statistical analysis: Mann–Whitney U test. n.s., not significant. (D) Schematic 
representation of microenvironmental cues for high-speed interstitial T cell migration in the LN paracortex. FRCs produce chemokines (CCL19 and CCL21) and ATX 
(LPA), while DCs produce CCL19 but bind FRC-derived CCL21 on surface glycans. The CCR7 ligands input migratory signals in T cell, which induce actin 
reorganization, front–rear asymmetry, actomyosin contraction, and LFA-1-dependent dynamic adhesion to ICAM-1 on DC through the function of small GTPases. 
LPA plays additive or compensatory role to stimulate actomyosin-mediated motility and cellular deformation to adopt the complicated geometry and confinement of 
tissue microenvironment.

FiGUre 2 | continued
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icAM-1 ON Dcs MeDiAtes  
LFA-1-DePeNDeNt MOtiLitY

Given that LFA-1 participates in INTM, FRCs with high expression 
of ICAM-1 were considered target footholds for LFA-1-mediated 
anchorage. However, many DCs localized to the same area with 
much higher ICAM-1 expression. To determine which is crucial 
for LFA-1-dependent motility, bone marrow chimeras using wild-
type and ICAM-1−/− mice were made for analysis (27). Wild-type 
T cells in the LN slices from wild-type mice reconstituted with 
ICAM-1−/− bone marrow showed reduced motility, whereas T 
cells in the LNs of ICAM-1−/− mice reconstituted with wild-type 
bone marrow did not demonstrate reduced motility. This indicates 
that ICAM-1 expressed by hematopoietic cells, but not by radiore-
sistant cells, including FRCs is important. Moreover, in an ICAM-
1−/− environment, T cells restored migration when ICAM-1 was 
expressed by DCs. Therefore, ICAM-1 displayed on DCs supports 
LFA-1-dependent T cell motility in the LN paracortex. The total 
surface area of DCs is estimated to be larger than FRCs and most 
part of FRC network is covered with DCs, suggesting that T cells 
are likely to contact with DCs more frequently than FRCs. DCs are 
CCL19 producers, while they do not express CCL21 but instead 
bind it onto surface glycans (4, 59). Together, it is reasonable to 
assume that by touching DCs, T cells receive chemokine signals 
that in turn stimulate dynamic anchorage via LFA-1 to grip on 
ICAM-1 and move forward over the DCs.

MOtiLitY iNDePeNDeNt OF 
cHeMOKiNe siGNAL Or LFA-1

Even though chemokine signaling and LFA-1/ICAM-1 are inhib-
ited, T cells still retain substantial motility. We speculated that this 
residual motility was due to some unknown factor(s) produced by 
FRCs. Microarray analysis of LN FRCs revealed high expression 
of autotaxin (ATX) (27). ATX is an ectoenzyme that generates 
lysophosphatidic acid (LPA), a lipid mediator known to promote 
motility in various cells including T cells (60–62). Pharmacological 
inhibitors against ATX or LPA receptors decreased INTM in LN 
slices by ~20% (Figure 2A), and acted in concert with pertussis 
toxin or LFA-1 blockade to further decreased T cell motility (27). 
Therefore, it is likely that ATX/LPA signaling plays a role in Gαi- 
or LFA-1-independent motility. LPA was shown to promote T cell 
chemokinesis and LPA2 was recently identified as LPA receptor 
responsible for optimal INTM (27, 62–64).

LPA as well as CCL21 activate Rho in T cells, and the simultane-
ous stimulation results in an additive effect on Rho activation (27, 
65, 66). Rho function is crucial for INTM because the inhibition 

of Rho by C3 toxin markedly reduces interstitial motility through 
the suppression of rear contractility. Pharmacological inhibition 
of nmMyoII also inhibits INTM and further decreases motility 
with LFA-1 blockade (27) (Figure  2A). Therefore, the Rho-
nmMyoII pathway is indispensable for efficient INTM, especially 
in the LFA-1-independent fraction of motility that is mediated in 
part by ATX/LPA signaling.

MiGrAtiON MODALities 
iN sPeciALiZeD tissUe 
MicrOeNvirONMeNt

Actomyosin machinery is a crucial component in anchorage-
independent motility in spatially restricted environments that 
require amoeboid or squeezing deformation of cells (25, 44). This 
type of migration modality is probably required for T cells moving 
through, as avoiding obstacles, in the LN parenchyma, in which 
numerous swarming lymphocytes and supporting cell networks 
are densely packed into a complicated environment (52, 64). In 
general, Rho- and nmMyoII-mediated rear contraction in migrat-
ing cells is considered to be required for removing adhesion from a 
substrate (58, 67–69), but it is unclear how  effective it is in  rapidly 
moving naive T cells with weak adhesiveness in interstitium. 
Meanwhile, actively migrating T cells in a confined environment 
exhibit a “walking” like behavior by touching substrates intermit-
tently with small parts of the cell (52, 53, 69). A wavy surface and 
contraction of cell body generated by actomyosin function also 
facilitate a characteristic wiggling or squirming motions (52, 70). 
Thus, actomyosin-driven continuous deformation and frequent 
changes in direction are probably important for efficient move-
ment by reducing excess adhesiveness and avoiding obstacles in 
complicated LN microenvironment.

In the specialized tissue environment of the LN paracortex, 
transient anchorage to restricted substrate is likely advantageous for 
efficient migration. Instant LFA-1 binding to ICAM-1 may serve as 
traction that enables T cells to achieve high velocity. Microgeometry 
formed by DCs and FRCs is not uniform but uneven and dynamic. 
In particular, the dendrites of DCs with rapid protrusions and 
retractions are not a stable, flat scaffold. Distribution of chemokines, 
ATX/LPA, and ICAM-1 are probably uneven as well. Therefore, 
dynamically and coordinately changing subcellular structures in T 
cells would be the key to adapt to microgeometry for rapid move-
ment. Taking these into consideration, it is assumed that T cells 
receive intermittent migratory cues from the microenvironment, 
adhere to scattered anchorage spots by small cell parts, and in non-
adherent sites push the cell body forward by membrane dynamics, 
deformation, and confinement effect (Figure 2D).
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cONcLUDiNG reMArKs

We especially propose that, in a “semi-confined” environment 
of LN, T cells dynamically switch between two motility modes, 
namely, anchorage-dependent motility mediated by LFA-1–
ICAM-1 and anchorage-independent amoeboid movement. 
Unique microenvironment composed of FRCs, DCs, and 
lymphocytes, as well as characteristic migration modality of 
T cells cooperatively generate high-speed interstitial move-
ment in the LN paracortex. However, the nanoscale view of 
multiple cell–cell interactions and extracellular/intracellular 
molecular dynamics during high-speed movement in such a 
complicated tissue configuration are still largely unclear. To 
further understand these issues, technological innovation in 
live imaging with much higher spatial and temporal resolu-
tions is needed.
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