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The cyclic AMP/protein kinase A (cAMP/PKA) pathway is one of the most common and 
versatile signal pathways in eukaryotic cells. A-kinase anchoring proteins (AKAPs) target 
PKA to specific substrates and distinct subcellular compartments providing spatial and 
temporal specificity for mediation of biological effects channeled through the cAMP/
PKA pathway. In the immune system, cAMP is a potent negative regulator of T cell 
 receptor-mediated activation of effector T cells (Teff) acting through a proximal PKA/Csk/
Lck pathway anchored via a scaffold consisting of the AKAP Ezrin holding PKA, the linker 
protein EBP50, and the anchoring protein phosphoprotein associated with glycosphin-
golipid-enriched microdomains holding Csk. As PKA activates Csk and Csk inhibits Lck, 
this pathway in response to cAMP shuts down proximal T cell activation. This immuno-
modulating pathway in Teff mediates clinically important responses to regulatory T cell 
(Treg) suppression and inflammatory mediators, such as prostaglandins (PGs), adrenergic 
stimuli, adenosine, and a number of other ligands. A major inducer of T cell cAMP levels 
is PG E2 (PGE2) acting through EP2 and EP4 prostanoid receptors. PGE2 plays a crucial 
role in the normal physiological control of immune homeostasis as well as in inflammation 
and cancer immune evasion. Peripherally induced Tregs express cyclooxygenase-2, 
secrete PGE2, and elicit the immunosuppressive cAMP pathway in Teff as one tumor 
immune evasion mechanism. Moreover, a cAMP increase can also be induced by indirect 
mechanisms, such as intercellular transfer between T cells. Indeed, Treg, known to have 
elevated levels of intracellular cAMP, may mediate their suppressive function by transfer-
ring cAMP to Teff through gap junctions, which we speculate could also be regulated by 
PKA/AKAP complexes. In this review, we present an updated overview on the influence of 
cAMP-mediated immunoregulatory mechanisms acting through localized cAMP signaling 
and the therapeutical increasing prospects of AKAPs disruptors in T-cell immune function.
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iNTRODUCTiON

Cyclic AMP (cAMP) is a second messenger, which relays signals from the outside to the inside of a cell 
and triggers downstream signaling cascades. Modulation of the intracellular cAMP concentration 
reflects changes in the cellular environment and creates changes in cellular function. In the T cell, 
cAMP is known as a potent negative regulator, which dampens T-cell immune function through 
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the cAMP/protein kinase A (PKA) signaling pathway. Indeed, 
the cAMP/type I PKA/Csk/Lck [lymphocyte-specific protein 
tyrosine kinase (PTK)] signaling module has been defined as a 
dominant regulator driving the inhibition of T-cell function (1).

Specificity of cAMP signaling is achieved by compartmentali-
zation through A-kinase anchoring proteins (AKAPs). Most cells 
express between 10 and 15 different AKAPs (2) and so far 7 AKAPs 
have been identified in T cells. AKAPs are characterized by their 
cellular localization mediated through a targeting domain and 
their binding partners, which define the spatiotemporal control 
of cAMP signaling, the interaction with other signaling pathways, 
and contribute to distinct cellular functions. In T cells ezrin 
functions as an AKAP and assembles a supramolecular signaling 
complex with PKA type I, EBP50 [ezrin–radixin–moesin (ERM)-
binding phosphoprotein 50], phosphoprotein associated with 
glycosphingolipid-enriched microdomains (PAG), and Csk in the 
vicinity of the T cell receptor (TCR), which in turn modulates 
T cell immune responses (3).

The cAMP/PKA inhibitory signaling pathway controlling 
TCR signaling plays a key role in maintaining homeostasis in 
the T cell. However, any imbalance in TCR regulation can lead 
to T cell dysfunction and dramatic functional consequences. 
During diseases, such as cancer and chronic infections, T cells 
have high cAMP concentrations, which in turn cause excessive 
downregulation of TCR signaling and can favor disease develop-
ment. Regulation of the cAMP/PKA pathway is crucial to protect 
against inappropriate regulation and immunological overshoot. 
Non-steroidal anti-inflammatory drugs (NSAIDs) are known to 
negatively regulate this pathway through their inhibitory action 
on the activity of cyclooxygenases (COX). NSAIDs, aspirin, and 
coxibs (selective COX-2 inhibitors) block prostaglandin E2 (PGE2) 
synthesis, which in turn downregulates the intracellular cAMP 
concentration in T cells. A number of studies have agreed on the 
beneficial use of COX inhibitors to enhance anti-tumor responses 
cancer (4–7). Despite their efficiency, the broad-spectrum activ-
ity of COX inhibitors can trigger unwanted effects, which may be 
avoided with new drugs that target the pathway at a different level. 
Because AKAPs scaffold supramolecular complexes acting as 
signal processing hubs that coordinate multiple signals in normal 
and aberrant conditions, protein–protein interaction disruptors 
that displace particular components of such complexes emerge 
as essential research tools and potentially targeted drugs comple-
mentary to the current therapeutic strategies.

MOLeCULAR MeCHANiSMS OF 
iMMUNOReGULATiON iN T CeLLS:  
cAMP/PKA/Csk PATHwAY

Cyclic AMP is an intracellular second messenger (8) identified by 
the Nobel-Prize winning work of Earl Sutherland (9), able to trig-
ger a plethora of signaling pathways leading to different biological 
outcomes. In effector T cells (Teff), PGs (10), adenosine (11), his-
tamine (12), β-adrenergic agonists (13), neuropeptide hormones 
(14), and β-endorphin (15) induce cAMP, which acts as a potent 
negative regulator of TCR-mediated activation and proliferation 
(16–18). This contributes to regulation and maintenance of a 

healthy immune response. Any imbalance in regulatory mecha-
nisms creates immune disorders and can lead to autoimmune 
diseases, chronic inflammation, and allergic responses.

Prostaglandin e2 as a Potent 
immunosuppressor
Prostaglandin E2 is the most ubiquitous PG produced by the 
human body and plays a critical role in guiding and governing 
various aspects of the inflammatory response. The role of PGE2 
in driving acute inflammation is well established. However, 
PGE2 also elicits powerful immunosuppressive properties that 
contribute to the resolution phase of acute inflammation, the 
tissue regeneration, and the return into homeostasis. These 
multifaceted properties of PGE2 are both cell-type- and context-
specific. The production of PGs begins with the liberation of 
arachidonic acid from membrane phospholipids by phospholi-
pase A2 in response to inflammatory stimuli. Arachidonic acid 
is converted to PGH2 by the COX enzymes COX-1 and COX-2, 
and then to PGE2 by cell-specific PG synthases. Whereas COX-1 
is considered as a ubiquitous housekeeping enzyme consti-
tutively expressed and responsible for maintaining basal PG 
levels important for tissue homeostasis, COX-2 is an inducible 
enzyme that produces PGs during inflammatory conditions (19, 
20). In tumor cells, COX-2 is often overexpressed, which in turn 
upregulates PGE2 and contributes to the immune evasion and 
cancer immunotherapy resistance creating an environment rich 
in IL-10 and TGF-β, cytokines known to promote regulatory T 
cells (Tregs) differentiation and proliferation (21–29). Treg are 
known as a unique population of T cells that maintain peripheral 
immune tolerance and effectively inhibit autoreactive T cells 
(30–32) and Teff responses, such as cytokine production and 
proliferation (33). Treg produce and respond to PGE2, which 
acts as an autocrine factor and increases intracellular cAMP 
that in turn upregulates forkhead/winged helix transcription 
factor (FOXP3) expression. PGE2 enhances Treg induction and 
differentiation through FOXP3 upregulation (4, 34–38). Tregs 
have also been shown to have high endogenous cAMP levels, 
which can be explained by a FOXP3-dependent downregulation 
of phosphodiesterase 3 (PDE3 is known to decline cAMP levels) 
(39) and an adenylyl cyclase (AC) 9 upregulation (AC9 is known 
to synthetize cAMP) (40). Immunosuppressive activity can be 
mediated by intercellular transfer of cAMP from Treg to Teff via 
gap junctions (GJ) presumably formed by Cx43, which is the 
connexin in T cells (41–43). cAMP leakage into Teff have been 
found to exhibit suppressive activity by enhancing the expression 
and nuclear function of a potent transcriptional inhibitor, induc-
ible cAMP early repressor (ICER) and modulating the levels of 
surface-expressed cytotoxic T lymphocyte antigen-4 (CTLA-4) 
(44). In this case, the suppressive mechanisms triggered by 
cAMP transfer are cell-contact dependent; a close proximity 
between donor and recipient cells is required for the transfer of 
the second messenger.

Prostaglandin E2 can also act in a paracrine manner through 
direct binding and activation of the E-prostanoid (EP) family of G 
protein-coupled receptors. PGE2 can activate four subtypes of EP 
receptor at the T-cell surface, called EP1–EP4. Upon activation, 
EP receptor couples to specific G protein and activates specific G 
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protein-dependent signaling pathways. The active EP1 receptor 
coupled to Gq protein increases phosphatidylinositol hydrolysis 
and intracellular Ca2+ through activation of phospholipase-C. 
The active EP3 receptor coupled to Gi protein leads to the AC 
inhibition and intracellular cAMP decrease. Only active EP2 and 
EP4 coupled to Gs protein lead to cAMP production through 
AC activation. This in turn activates PKA that next can activate 
the transcription factor cAMP response element-binding protein 
(CREB). CREB is known for its role in cell proliferation, differen-
tiation, and survival (45). CREB has been shown to induce tran-
scription of immune-related genes that possess a CRE element, 
including interleukin-2 (IL-2), IL-6, IL-10, tumor necrosis factor 
alpha (TNF-α), and COX-2 (46, 47). CREB plays a role in T-cell 
function (48) and also drives the generation and maintenance 
of Treg in a TGF-β/FoxP3-dependent manner (45, 49–53). The 
paracrine effect of PGE2 is clearly EP receptor subtype depend-
ent, but it seems also to depend on the level of EP receptor cell 
surface expression. Indeed, during mucosal inflammation IL-2 
secretion has been found to be negatively correlated to the EP4 
expression (54).

Most studies on T cells have focused on CD4+ cells and showed 
the roles of PGE2 in the modulation of proliferation, apoptosis, 
and cytokine production. Less is known about the effect on CD8+ 
T cells, but PGE2 can inhibit CD8+ T-cell proliferation (55) and 
decrease the production of interferon γ (IFN-γ) (56). The impact 
of PGE2 in immune cells can also be cell-type-specific. Indeed 
PGE2 suppresses the function of macrophages, neutrophils,  
T helper 1 cells (Th1) cells, and natural killers, whereas it promotes 
T helper 2 cell (Th2), Treg, and T helper 17 cell (Th17) responses 
(57, 58). PGE2 has no effect on or enhances the production of Th2 
cytokines, such as IL-4, IL-5, and IL-10, but inhibits drastically 
the production of Th1 cytokines, such as IFN-γ, TNF-α, and IL-2 
(59–63). The induction of the Th2 response by PGE2 was found 
to be mainly cAMP-dependent (64) and recently the transcrip-
tion factor, cAMP response element modulator (CREM), was 
characterized as a negative regulator of Th2 responses and a key 
factor in allergic asthma (65). In addition, PGE2 has been shown 
to promote T-cell anergy (66), maintain memory T-cell survival 
(67), and inhibit γδ T-cell cytotoxicity through a cAMP/PKA-
dependent mechanism (68).

Inhibitory mechanisms triggered by PGE2 in T cells started 
to be unraveled in the late 1980s [reviewed in Ref. (20, 69–71)]. 
PGE2 triggers anti-proliferative effects through interference with 
IL-2-mediated gene expression (72, 73) and inhibition of IL-2 
receptor expression (74, 75). PGE2 inhibits IL-2 gene transcrip-
tion by downregulating the activation of its promoter. Indeed 
cAMP inhibits nuclear transcription of the human interleukin-2 
gene by targeting two transcription factors: the nuclear factor 
of activated T cells (NFAT) and the activator protein 1 (AP1) 
contained in IL-2 promoter in human T cells (76). Furthermore, 
recently Rodriguez and co-authors found that elevated intracel-
lular cAMP through a PKA-dependent pathway can disrupt 
IL-2R complex formation, Jak3 catalytic activity, and the ability 
to phosphorylate Stat5, resulting in a severe reduction in IL-2R 
signaling and T lymphocyte proliferation (77).

Despite the well-established molecular mechanisms 
unraveling cAMP inhibitory effect on T-cell function, new 

studies continue to fulfill our understanding with additional 
and/or alternative mechanisms. A recent study has described 
a potential new role for exchange protein directly activated by 
cAMP (EPAC) in the T-cell suppressive process. Downstream 
effectors of cAMP can be PKA dependent (78), cAMP-regulated 
ion channels (79, 80), and EPAC dependent (81, 82). In T cells, 
effects mediated by cAMP seem to be most likely through PKA 
activation, since EPAC and cAMP-gated channels appear to 
be expressed at low level in T cells (82). However, the cAMP 
suppressive effects on Teff have been showed to require both 
PKA and EPAC-dependent pathways. The involvement of EPAC 
in Teff suppression has been proved by the ability to mimic the 
cAMP response with an EPAC-selective cAMP analog, combined 
with the insensitivity of the cAMP response to inhibitors of PKA. 
The authors suggested that EPAC may function as an alternative 
effector to promote cAMP-dependent but PKA-independent Teff 
suppression (83).

Cyclic AMP is mostly known as an immunosuppressant, how-
ever, the regulation of T-cell activation is not the result of a linear 
control driven by cAMP gradients but the sum of competitive 
mechanisms processing in parallel of the cAMP immunosup-
pressant effects. Besides the Gs/AC/cAMP pathway, active EP2 
and EP4 receptors trigger multiple signaling pathways, which can 
counteract the immunosuppressant effect of cAMP. In addition, 
full T-cell activation generally requires accompanying signals as 
CD28 co-stimulation inducing several specific signaling pathways 
as well. Yao and co-authors have shown that cAMP-mediated 
suppression of TCR signaling can be overcome by simultaneous 
activation of PI3-kinase through activation of EP2/EP4 and/
or CD28. PGE2 promotes Th1 differentiation via synergistic 
amplification of IL-12 signaling by cAMP and PI3-kinase (84). 
These findings underscore the complexity of the regulation of 
T-cell function, which is overall the result of positive and negative 
events on the TCR signaling pathway.

The TCR Signaling Pathway and TCR 
Activation
TCR Signaling Networks
Activation of T cells is a key step in adaptive immunity and 
requires the coordination and organization of the components 
of the TCR complex with its surrounding signaling molecules 
leading to TCR signaling events. The molecular process begins 
when the TCR identifies a peptide presented by the major 
histocompatibility complex (MHC) expressed on the surface of 
antigen-presenting cells (APCs) (85) and that binds with high 
affinity to the TCR. The part of the receptor that recognizes the 
large variety of antigens is a highly polymorphic heterodimer 
of α and β chains, which is associated with polypeptides γ, δ, ϵ, 
and ζ. All CD3 chains contain immunoreceptor tyrosine-based 
activation motifs (ITAMs) (86, 87). Activation is accompanied 
by formation of the immunological synapse (88) where lipid rafts 
(membrane microdomains enriched in cholesterol and sphin-
golipids) and Src-family tyrosine kinase (SFK) Lck accumulate 
(89–91). Signal transduction requires that at least two ITAMs 
are phosphorylated by Lck (92–94). Phosphorylated ITAMs of 
CD3 chains serve as docking and activation sites for Syk family 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Wehbi and Taskén AKAPs as Regulator of cAMP-Dependent Immunomodulation in T Cells

Frontiers in Immunology | www.frontiersin.org June 2016 | Volume 7 | Article 222

kinase members as the zeta-chain-associated protein kinase 70 
(ZAP-70), which in turn is phosphorylated and activated by Lck 
(95). ZAP-70 activity is essential in conventional T cells (CD4+, 
CD8+ T cells) but apparently not in Tregs (96). Activated 
ZAP-70 phosphorylates another membrane raft component: 
the transmembrane adaptor protein “linker for activation of  
T cells” (LAT) (97, 98). LAT is phosphorylated on multiple 
tyrosine residues that next form docking sites for other adapter 
proteins, such as SLP-76, Grb-2, and Gads, and enzymes, such as 
PI3K and PLCγ1 (98–101), and is essential for downstream TCR 
signaling. Lack of LAT expression uncouples TCR-proximal 
tyrosine phosphorylation from these downstream signaling cas-
cades (100, 102). Ultimately, TCR activation triggers induction 
of gene expression. The nuclear factors NFκB, NFAT, AP1, and 
CREB are activated (103), which in turn promotes transcription 
of important genes for immune activation (104). TCR activa-
tion also triggers secretion of cytokines, such as IL-2, IL-4, IL-6, 
and IL-12 (105), and controls cytokine receptor expression 
(106), leading to qualitatively different intracellular responses. 
Moreover, TCR activation and the cytokine milieu synergically 
influence cell fate determination. Indeed, weak signals through 
the TCR trigger CD4+ T cells to differentiate to Th2 cells (107), 
whereas strong signals lead to Th1 cells differentiation (105, 
106). By guiding lineage commitment, the cytokine environment 
and TCR activation also tune the immune response. Th1 cells 
produce IFNγ, TNF-α, and IL-2, promote cell-mediated immune 
responses, and control intracellular pathogen infections. Th2 
cells produce IL-4, IL-5, IL-9, IL-10, and IL-13, promote humoral 
immune responses, and mediate resistance to parasites, such as 
helminths (105, 108–110).

The aggregation of TCR microclusters upon activation 
forms the central supramolecular activation cluster (cSMAC) 
(111, 112), which is part of the immunological synapse formed 
between a T cell and the APC (113). Co-receptors, such as CD4, 
CD8, and CD28, and signaling molecules co-aggregate in the 
cSMACs; and, overall, this creates an environment that is con-
ducive to precise T-cell activation. Appropriate spatiotemporal 
localization of proteins is a key factor determining signaling 
activity. To this end, lipid rafts play a critical role (114–116); 
they serve as signaling platforms that contain several key 
signaling components involved also in TCR signaling, such as 
SFKs, transmembrane adaptor proteins, phosphatidylinositol 
bis-phosphate (PIP2), and G-proteins, and aggregate to form the 
C-SMAC and IS. Spatiotemporal changes in this well-organized 
molecular machinery modulate TCR signaling pathways and, 
therefore, affect T-cell function.

Downregulation of TCR Signaling: Molecular 
Mechanisms Involved in the cAMP–PKA–Csk 
Inhibitory Pathway in T Cells Lipid Rafts
Upon TCR activation, cAMP is rapidly produced in lipid rafts (117, 
118) leading to the downregulation of TCR signaling, and then 
to the inhibition of T-cell proliferation and cytokine production. 
Several studies have unraveled molecular mechanisms involved 
in the inhibition of TCR signaling by cAMP and characterized 
the PTK, Csk, as a key player in TCR signaling downregulation 
(Figure 1) (1, 119–123).

Cyclic AMP serves as a second messenger within the cell and 
activates PKA, the dominant effector in T cells (82). The PKA is 
a heterotetrameric holoenzyme consisting of two regulatory (R) 
subunits that maintain two catalytic (C) subunits in an inactive 
state (125, 126). PKA exists in two classes, PKA type I and 
II that differ in the R subunit. Both R subunit and C subunit 
exist as multiple isoforms (RIα, RIβ, RIIα, RIIβ, Cα, Cβ, Cγ, 
and PrKX). The type I PKA is thought to be predominantly 
cytoplasmic and is most highly expressed in the immune 
system, whereas type II PKA associates with specific cellular 
structures and organelles and is abundant in the heart and the 
brain (127). When four molecules of cAMP bind its regulatory 
subunits, the PKA molecule releases the two catalytic subunits 
that have enzyme activity toward target proteins. Upon T-cell 
activation and formation of the immunological synapse, type I 
PKA is redistributed colocalizes with the TCR–CD3 complex 
(128). PKA type I phosphorylates the PTK, Csk, on serine 364 
(1), which in turn initiates downregulation of the TCR signal. 
Indeed, Csk negatively regulates Lck by phosphorylation of a 
C-terminal inhibitory tyrosine residue, Y505 (129, 130) that 
contributes to stabilize Lck in an inactive conformation (131). 
Csk is recruited to membrane lipid rafts and is then activated 
(132) through its interaction with a transmembrane adaptor 
protein found in lipid rafts, PAG (133, 134), also known as Csk 
binding protein (Cbp). Upon TCR activation, PAG is dephos-
phorylated by a mechanism that appears to involve the activity 
of the phosphatase CD45 (135). Dissociation of Csk relieves 
Src kinases inhibition, enabling TCR downstream signaling 
pathways. Although Csk plays a critical role in the regulation 
of Lck activity, constant and abundant Lck fractions either phos-
phorylated on Y394, the active site, or double-phosphorylated 
on Y505 + Y394 reveals a more complex regulatory mechanism 
(136). Indeed, joint actions on phosphorylation state and spatial 
distribution of Lck are necessary for a balanced T-cell activity 
(137, 138).

Phosphodiesterases, Key Players in Modulation of 
T-Cell Signaling
The balance between the activities of two families of enzymes: 
ACs and cyclic nucleotide PDE regulate the intracellular cAMP 
level and its spatiotemporal distribution. PDEs are intimately 
coupled to limitation of cAMP gradients and termination of spe-
cific signals through local pools of cAMP and, therefore, multiple 
PDEs play important roles in modulating each cellular function 
[reviewed in Ref. (139, 140)].

Phosphodiesterases comprise a superfamily of enzymes clas-
sified into at least 11 families (PDE1–PDE11) and more than 50 
isoforms that are distributed in different tissues at varying levels. 
PDEs have a highly conserved catalytic domain located near the 
C-terminus (>50% amino acid identity) flanked by regulatory 
domains in the N-terminus and the C-terminus. These family-
specific regulatory domains include phosphorylation sites, mem-
brane targeting domains, binding sites for small ligands, and 
dimerization domains [reviewed in Ref. (141, 142)]. Seven of the 
11 families of PDEs have been reported to be present in T cells 
(143, 144). In most mammalian cells, PDE3 and PDE4 predomi-
nantly hydrolyze cAMP, and PDE4 is found as the major enzyme 
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FiGURe 1 | Cyclic AMP immunoregulatory pathways inhibit TCR signaling and T-cell activation. In Teff, pools of cAMP are generated after binding of PGE2 
to its cognate receptors, which stimulates adenylyl cyclase (AC) activity and increases intracellular cAMP levels, thus, activating protein kinase A (PKA). Aided by an 
Ezrin/EBP50/PAG scaffold that holds both enzymes, PKA phosphorylates Csk, which in turn phosphorylates Lck to inhibit its activity. Lck normally acts to promote 
TCR signaling; thus, Lck inhibition through this PGE2-initiated pathway inhibits TCR signaling in effector T cells. Pools of cAMP can also be created by transfer from 
Treg to Teff through gap junctions (42). As a hypothetical model based on studies in trophoblasts (124), we speculate that this process may also require an AKAP 
bound to connexin 43 (Cx43) to facilitate PKA-mediated gap junction opening and cAMP transfer from Treg to Teff. Indeed, Pidoux and co-authors have found that 
ezrin binds to the C-terminal part of Cx43 and delivers PKA in the vicinity of gap junctions. Furthermore, the phosphorylation of Cx43 by PKA promotes opening of 
the gap junction and allows the passage of signal molecules. The authors suggested the PKA/ezrin/Cx43 macromolecular complex controlling the gap junction 
communication could be a general mechanism that regulates opening of Cx43 gap junctions in response to a cAMP increase also in other cell types. Thus, gap 
junctions may also deliver a local pool of cAMP that can dampen TCR signaling pathways by the same mechanisms described above and contributing to the Treg 
suppressive capacity of Teff.
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responsible for cAMP hydrolysis and dominant in inflammatory 
cells (145–147).

Phosphodiesterase 4 activity was detected in lipid rafts 
upon T-cell activation and especially after TCR and CD28 
co-stimulation. Indeed, CD28 activation potentiates TCR 
signaling pathways and induces full TCR activation and clonal 
expansion (117, 148). Increase in PDE4 activity in response to 
CD28 co-ligation leads to negative regulation of the spatial and 
temporal cAMP gradient and thereby upregulates TCR signaling 
pathways. More specifically in human T cells PDE4A4, PDE4B2, 
and PDE4D1/2 are recruited to lipid rafts upon TCR and CD28 
co-stimulation (117, 149). The scaffolding beta-arrestin protein 
has been reported to recruit PDE4 to the plasma membrane (150, 
151), and the recruitment is mainly induced by CD28 stimula-
tion (117). Moreover, the β-arrestin/PDE4 complex was shown 
to preexist prior to stimulation, indicating that the partners are 
recruited to the lipid rafts together (117). Stabilization of the 
β-arrestin/PDE4 complex in the lipid rafts is required for an 
efficient cAMP regulation by PDE4. Bjorgo and co-authors have 
found that recruitment of β-arrestin/PDE4 to the plasma mem-
brane happens directly through protein kinase B (PKB) better 
known as Akt, with which β-arrestin and PDE4 form a complex 
(152, 153). Indeed, upon TCR/CD28 stimulation PI3K activity 

generates phosphatidylinositol-3,4,5-trisphosphate (PIP3) 
at the plasma membrane, which in turn directly recruits PH 
domain-containing PKB and, therefore, β-arrestin/PDE4 to 
the lipid raft (153).

Specificity of the cAMP/PKA signaling pathway is determined 
by generation of local gradients of cAMP controlled by PDEs and 
by spatially and temporally restricted activation of compartmen-
talized pools of PKA at different subcellular locations facilitated 
by AKAPs. Thus, AKAPs participate in organizing the functional 
complexity of cAMP signaling pathways.

AKAPs iN T CeLLS

A-kinase anchoring proteins bind to the regulatory subunit of 
PKA and ensure specificity and diversity in signal transduction 
by placing the enzyme close to relevant substrate (154–158). 
The functional importance involves the targeting of PKA 
to specific subcellular compartments, including the plasma  
membrane, nuclei, and mitochondria (159), and thereby 
provides spatial and temporal regulation of the PKA signal-
ing events. Moreover, by interacting with additional signaling 
molecules, such as PDEs, protein kinase C (PKC), and phos-
phoproteins phosphatase 1 and 2B (PP1/2B) (160), AKAPs 
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FiGURe 2 | Localization of AKAPs in T cells. (A) Left: schematic diagram of an AKAP anchoring PKA through hydrophobic interaction between the amphipathic 
helical region of AKAP and the N-terminal dimerization region of the two R subunits of PKA. When cAMP binds to the R subunit, the C subunit of PKA is activated 
and released to phosphorylate nearby substrates. The AKAP signaling scaffold also typically has additional binding sites for other signaling proteins, such as 
kinases, phosphatases, phosphodiesterases, or potential substrates. Finally, the AKAP target the supramolecular signaling complex to the appropriate subcellular 
compartment via protein–protein or protein–lipid interactions. Right: ribbon representation of the NMR structure of the regulatory subunit (green) in complex with the 
AKAP amphipathic helix peptide (pink) [modified from (162)]. (B) AKAPs target PKA to specific compartments in T cells, including the plasma membrane (PM), 
mitochondria, endoplasmic reticulum, Golgi, nucleus, and centrosome. The same AKAP can be found in different compartments, as illustrated by the presence of 
D-AKAP-1 both in mitochondria and the endoplasmic reticulum and by finding AKAP450 in the Golgi and at the centrosome. AKAPs bind to specific partners and, 
hence, define specific supramolecular complex at discrete subcellular locales. For example, besides targeting PKA AKAP79 was shown to interact with beta 
2-adrenergic receptor (β2AR) and calcineurin (CaN) at the plasma membrane and AKAP450 with PP1 and PP2A to the Golgi and the centrosome area. The role of 
each AKAP in T cells has not yet been reported. AKAP450 appears to be needed for early events as CD3, LAT, and Vav1 activation as well as late events as IL-2 
production but the mechanism is still not determined. However, studies of the role of ezrin and AKAP79 have delineated their functions in downregulation of T-cell 
function by dampening signaling through the TCR pathway at the level of inhibition of Lck activity or by blocking IL-2 production through the inhibition of the CaN 
phosphatase activity, respectively.
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coordinate multiple signals transduction pathways and relay 
specific signals to downstream targets.

A-kinase anchoring proteins are a structurally diverse fam-
ily of functionally related proteins that comprise more than 
50 members [reviewed in Ref. (161, 162)]. All the anchoring 
proteins contain a PKA-anchoring domain, which binds the R 
subunit of PKA and a unique targeting domain directing the 
PKA–AKAP complex to subcellular structures, membranes, 
or organelles (Figure  2A). AKAPs are defined as PKA type I 
or type II specific or dual specific depending on whether they 
preferentially interact with PKA type I or PKA type II or interact 
with both. Treating cells with the anchoring disruptor peptide 

(Ht31) can disrupt PKA localization. The anchoring disruptor 
peptide binds to the R subunits of PKA, preventing their binding 
to AKAPs. Several studies have illustrated that delocalization 
of PKA blocks its ability to respond to cAMP level increases  
(163, 164).

A-kinase anchoring proteins have been identified in T cells 
and have been shown to contribute to the maintenance of T-cell 
homeostasis (3, 165). AKAPs are found in lipid rafts in T cells, 
as well as in dendritic cells, macrophages, and likely in platelets 
(3, 166–170). Among the 50 members of the AKAP family, 
seven different AKAPs have been detected in T cells: Ezrin, 
AKAP79, D-AKAP1, AKAP450, MTG8, MTG16b, AKAP95, 
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and AKAP220, but their exact and individual functional roles in  
T cells have not been fully elucidated (Figure 2B).

ezrin
Ezrin is a 78-kDa protein, which belongs to the ERM family 
of proteins that play structural and regulatory roles. Ezrin was 
originally identified as a component of sub-cortical structure 
underneath the cell membrane that contains an actin cytoskeleton 
(171, 172), and as a substrate of specific PTKs (173) [reviewed 
in Ref. (174)]. Ezrin and Moesin are expressed in lymphocytes 
(175, 176). They are cytoskeletal adaptor proteins that crosslink 
cell membrane and cytosolic proteins to the actin cytoskeleton 
and thereby govern membrane structure, its organization, and 
help to regulate diverse signaling routes. Ezrin has an N-terminal 
containing a four-point-one and ERM (FERM) domain, a central 
α-helical region spanning the A-kinase binding domain, AKB, 
linking ezrin to PKA (3, 177), and a C-terminal actin binding 
domain (178). The ERM family interacts with effectors of intra-
cellular signaling either directly through the FERM domain or 
indirectly through adaptor molecules, such as EBP50 (179–181). 
In the cytoplasm, ezrin exists in a dormant form, which is unable 
to interact with its ligands; the binding sites for interaction part-
ners are masked due to an intramolecular interaction between 
the FERM domain and the C-terminus. Phosphorylation by PKC 
or Rho kinase of the threonine residue, T567, at the C-terminal 
of ezrin, induces the conformational switch from the dormant 
to the active form, the intramolecular bond is released. In the 
active form, the N-terminal region binds to plasma membrane 
lipids and cytoplasmic tails of transmembrane proteins, while the 
C-terminal region binds to F-actin (174).

In T cells, ERM proteins control cell shape, cytokinesis, and cell 
adhesion (182–184) and participate in immune synapse forma-
tion (180, 185). In addition, the ERM family maintains lipid raft 
structures in T cells (179, 180) and contributes to control apopto-
sis signaling (186). Although generally described as functionally 
redundant, ezrin and moesin can display distinct and critical roles 
in the T-cell cortex during IS formation, thus promoting T-cell 
activation (187). Indeed, phosphorylated ezrin directly interacts 
and recruits ZAP-70 in the IS formation, whereas dephosphoryl-
ated moesin is removed, along with CD43, to prepare a region of 
the cell cortex for IS (188). The first evidence that ERM proteins 
play an important role in T-cell activation came precisely from 
studies on CD43, a large, glycosylated surface protein abundantly 
expressed on lymphocytes. CD43 seems acting in part as a 
negative regulator of T-cell activation by impeding the effective 
interactions of other surface receptors. Indeed, interaction with 
antigen-presenting cells leads to the removal of CD43 from the 
IS region (189, 190). ERM protein colocalizes with CD43 at 
the distal T-cell pole, and disruption of the interaction, either 
by overexpression of the FERM domain or by mutation of the 
relevant amino acids in CD43, leads to loss of CD43 movement 
and disruption of some aspects of T-cell activation.

Identified as an AKAP (177), the function of Ezrin was 
refined as the most important AKAP for PKA type I in T-cell 
lipid rafts (3). Indeed, the inhibitory effect of PKA on T-cell 
function is released by disruption of PKA and ezrin interaction 
by using specific PKA-anchoring disruptors [peptides Ht31, RI 

anchoring disruptor (RIAD)], which displace PKA type I from 
the lipid rafts (3, 191, 192). Furthermore, small interfering 
RNA (siRNA)-mediated knockdown of Ezrin abrogated cAMP 
regulation of IL-2 secretion (3), whereas reconstitution with 
siRNA-resistant wild-type Ezrin restored the cAMP regulation 
of IL-2 secretion (3, 192). Mapping studies of Ezrin reveal that 
the PKA RIα binding sequence is located in the α-helical region 
between the FERM domain and the C-terminus (3). Thus, Ezrin 
places PKA type I in the proximity of its TCR-proximal substrate 
Csk that is bound to PAG/Cbp. Moreover, ERM proteins through 
EBP50 have also been shown to interact with PAG/Cbp in lipid 
rafts (180). Together, the AKAP ezrin, EBP, and PAG/Cbp form 
a scaffold that holds and colocalizes PKA and Csk (3, 119, 193). 
Combinations of knockdown and reconstitution experiments 
with ezrin have demonstrated that cAMP/PKA regulation of Csk 
is heavily dependent on the supramolecular complex formation 
organized by ezrin (3, 192).

In the coming years, the role of ezrin in T cells regulation could 
be expanded. A new role for ezrin as an AKAP for the Connexin 
43 has already been suggested by Pidoux and co-authors (124).

Connexins are a family of multiple-span membrane proteins, 
which construct GJ intercellular channels. Connexins have 
a short (~20 amino acid) cytoplasmic amino terminus and a 
highly variable (18 amino acids in Connexin 26, 156 amino 
acids in Connexin 43, and 275 amino acids in Connexin 57) 
cytoplasmic carboxyl terminus, which determines their overall 
size (194). Connexin43 (Cx43) has been described as a funda-
mental constituent of the immunological synapse (194), and 
as contributing in the regulation of proliferation of peripheral  
T cells (195). In Treg, Cx43 contributes not only to the formation 
of GJs with target cells (42), but has also been found to enhance 
the generation of Treg through the regulation of FoxP3+ expres-
sion (196). Besides intercellular communication, Cx43 through 
its C-terminal cytoplasmic domain interacts with cytoskeleton 
and signaling molecules, such as PKA and PKC (197). cAMP-
enhanced GJ assembly has been reported to be PKA mediated 
(198). PKA activation increases intercellular communication, 
whereas PKC activation abrogates communication through GJs 
(199), suggesting regulatory mechanism balancing phosphoryla-
tion on GJ mediated by PKA and PKC. In human trophoblasts, 
Pidoux and co-authors proposed a model to explain the control 
and the regulation of communication through GJs. They have 
found that as an AKAP ezrin binds to the C-terminal part of 
Cx43 and delivers PKA in the vicinity of GJ (124). Indeed, upon 
local cAMP increase, after human chorionic gonadotropin (hCG) 
stimulation, PKA bound to ezrin is activated and phosphorylates 
Cx43. The phosphorylation of Cx43 by PKA promotes opening of 
the GJ and allows the passage of signal molecules. Ezrin promotes 
gap junctional communication by facilitating the spatiotemporal 
control of Cx43 phosphorylation by PKA, thereby controlling 
trophoblast cell fusion (124, 200).

The authors suggested that the PKA/ezrin/CX43 macromo-
lecular complex control of GJ communication could be a general 
mechanism that regulates opening of Cx43 GJs in response to a 
cAMP increase also in others cell types (Figure  1). This study 
suggested an extended role of Ezrin as an AKAP in T cells, not 
only crucial to gather PKA type I, EBP50, PAG/Cbp, and Csk in 
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the vicinity of TCR contributing to the control of receptor activity 
but also as a key regulator for the cAMP transfer from Treg to Teff, 
thereby contributing to Treg suppressive capacity.

AKAP5 (AKAP79)
A-kinase anchoring protein 5 was named AKAP79 in humans 
and AKAP150 in rodents. AKAP79 has been found in T lympho-
cytes (201) and more recently in dendritic cell lipid raft (167). 
The C-terminus of AKAP79 has been shown to interact with the 
PKA regulatory subunit II, PKC, and the protein phosphatase-
2B/Calcineurin (CaN) (202, 203). NFAT proteins have crucial 
roles in the development and function of the immune system, and 
are regulated by the phosphatase activity of CaN. Indeed, CaN 
dephosphorylates the transcription factor NFAT, which facilitates 
its translocation into the nucleus and the IL-2 transcription (204). 
The association AKAP79/CaN with the T-cell plasma membrane 
has been shown to inhibit CaN phosphatase activity and, there-
fore, the NFAT activity (201, 203, 205).

A-kinase anchoring protein 79 has also been found to bind 
to the beta2-adrenergic receptor (β2AR) contributing to receptor 
phosphorylation and signaling (206). Riether and co-authors 
have found that upon β2AR stimulation on TCR-activated CD4+ 
T cells the cellular activity of the protein phosphatase CaN was 
drastically reduced along with a reduction in Th1-cytokine pro-
duction and T-cell proliferation. Moreover, upon β2AR activation, 
the disruption of the interaction between PKA and AKAP79 
by the inhibitor peptide St-Ht31 fully blocked CaN inhibition, 
demonstrating that PKA–AKAP79 interaction is essential for 
the β2AR-mediated CaN inhibition. These findings suggested 
that upon activation β2AR interacts with PKA and CaN through 
AKAP79 forming the supramolecular complex β2AR/AKAP79/
PKA/CaN, which leads to inhibition of the CaN activity and, 
therefore, blocks IL-2 production and T-cell proliferation. These 
findings provide evidence for a link between the β2AR and TCR 
signaling pathways and describe a novel AKAP-dependent intra-
cellular mechanism that can lead to the downregulation of T-cell 
function (207).

D-AKAP1 (AKAP149/S-AKAP84/AKAP121)
D-AKAP1 (also known as AKAP149, S-AKAP84, and AKAP121) 
is a member of the AKAP1 gene family (208). D-AKAP1 was 
reported as a dual-specific AKAP binding both RI and RII, and 
the N-terminus of PKA RI or RII is sufficient for its interaction 
with D-AKAP1 (209). D-AKAP1 is a differentially targeted 
AKAP, which can be localized to the mitochondrial membrane 
or to the endoplasmic reticulum (ER) depending on its NH2-
terminal targeting motif (208). Experiments have found the pres-
ence of AKAP149 in T lymphocytes and more precisely in lipid 
rafts but so far no functional role was identified for AKAP149 in 
T-cell activation and regulation (3, 202). Lemay and co-authors 
have found an interaction between AKAP149 and HIV-1 reverse 
transcriptase in infected Jurkat T cells with a potential role in 
HIV-1 reverse transcription (210).

A-Kinase Anchoring Protein 450
The scaffolding protein AKAP450 also known AKAP9, 
AKAP350, or CG-NAP (centrosome and Golgi localized protein 

kinase N-associated protein) is associated, as the name suggests, 
with the centrosome and the Golgi apparatus. AKAP450 has 
been found in T cells (211) anchoring several protein kinases 
(PKN and PKA RIIα) and phosphatases (PP1 and PP2A) (212, 
213). Even if the mechanism is not fully understood, AKAP450 
is reported to be required for T-cell activation by regulating the 
conformational activation of Lymphocyte function-associated 
antigen 1 and TCR/CD3 molecules at the immune synapse (214), 
which may have to do with its role in orchestrating cytoskeletal 
rearrangements. Indeed upon TCR activation, AKAP450 was 
needed for early events, such as CD3, LAT, and Vav1 activa-
tion, and late events, such as IL-2 production. AKAP450 was 
described as an important component of T-cell response to 
antigen stimulation (214).

Myeloid Translocation Gene Family
Two members of the myeloid translocation gene family (MTG) 
family have been defined as AKAPs and are found in T cells: MTG8 
and MTG16b. The proto-oncogene MTG8 was originally found 
as part of the leukemic fusion gene, AML1–MTG8 (215–217). 
MTG8 is expressed ubiquitously in human tissue but with vary-
ing levels of expression (high in brain, heart, and muscle and low 
in hematopoietic tissues) and cell-dependent localization (found 
in the nucleus or in the cytoplasm) (218). MTG8 was identified 
as a transcriptional suppressor by its tight association with the 
nuclear matrix (219). MTG16b, which is another MTG family 
member, was originally identified in patients with acute myeloid 
leukemia, but the normal physiological function of this protein 
has not been reported (220). MTG8 and MTG16b interact with 
the PKA RII subunit with some differences in location. Whereas 
MTG16b target PKA to the Golgi of T lymphocytes, MTG8 and 
PKARII were found in Golgi/centrosome area (202, 219). Their 
physiological functions as AKAPs in T cells have, however, not 
yet been reported.

A-Kinase Anchoring Protein 95
A-kinase anchoring protein 95 was cloned and characterized in 
the rat (221) and human (222). AKAP95 specifically binds the 
RIIα subunit of PKA with high affinity and also has a DNA bind-
ing domain (221). The interaction between AKAP95 and PKARII 
is cell cycle-dependent and has only been detected during mitosis 
when the nuclear envelope is disassembled (222, 223) and the 
PKA/AKAP95 complex has a role in controlling chromosome 
condensation (224, 225).

The presence of AKAP95 has been reported in T cells (202) but 
no functional role has been identified for AKAP95 in regulating 
T-cell activation.

A-Kinase Anchoring Protein 220
A 220-kDa AKAP220 was the first AKAP described able to coor-
dinate the location of PKA and the type 1 protein phosphatase 
catalytic subunit (PP1c) (226, 227). AKAP220 has been found 
to interact with the PKA RII (2) and its presence was detected in 
Jurkat T cells but not in primary T cells (228).

The diversity of AKAPs in T cells and their functional role, 
when known, suggest critical new roles that could help to unravel 
the T-cell function. AKAPs, their interacting partners and 
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appropriate targets shape the biological role of these scaffolds and 
supramolecular signaling complexes inside T cells; AKAPs are 
able to interact with PDEs, providing a route of cAMP degrada-
tion. The compartmentalization of such enzymes is crucial for the 
generation of intracellular cAMP gradients. The ability to form 
and shape intracellular cAMP pools depends on targeted PDE 
activity. In T cells, AKAP95, AKAP149, and MTG8/16b are in 
complex with PDE4A, AKAP450 with PDE4D3 (229), whereas 
only MTG8 is in complex with PDE7A. AKAP79 did not form a 
complex with either PDE4A or PDE7A (230). The specific inter-
action between PDE4A and selective AKAPs in T lymphocytes 
creates a regulatory-feedback signaling allowing localized PDE 
activity, compartmentalized cAMP production and PKA activity 
and, consequently, controlling T-cell activation with a specific 
pattern. This finely tuned regulatory process is not exempt from 
facing diverse defects, which can lead to abnormal conditions 
and, therefore, disease development (231, 232).

CYCLiC AMP iMMUNOReGULATiON iN 
DiSeASe CONDiTiONS

Several human tumors and infectious diseases are characterized 
by high levels of intracellular cAMP (233–236). Rising cAMP 
concentrations have been correlated with upregulation of COX-2 
levels and PGE2 and modulation of immune responses (16, 29, 
69, 236–238). For example, T cells from HIV-infected patients 
contain twice as much cAMP as those of healthy controls leading 
to downregulation of TCR signaling and immunosuppression 
through an aberrant activated cAMP/PKA signaling pathway 
(233, 234, 239, 240).

The tumor microenvironment may foster immune tolerance 
by attracting and/or inducing immunosuppressive networks to 
escape tumor-specific immunity in favor of disease progression 
(241). Several studies have defined Treg as a leading player in 
cancer progression through a PGE2/cAMP-dependent suppres-
sive ability (4, 37, 38). Patients with several forms of cancer, 
including gastrointestinal, lung, and ovarian tumors, have been 
shown to display increasing numbers of circulating and tumor-
associated Treg compared with healthy controls (242–245). 
Moreover, Treg depletion in animal models has been shown to 
enhance anti-tumor responses underscoring the role of Treg to 
the impaired anti-tumor immunity (246–248). In addition, the 
percentage of Treg has been associated not only with the disease 
progression but also with disease outcomes. Indeed, the percent-
age of Treg in peripheral blood was inversely correlated with 
disease prognosis in patients with gastrointestinal malignancies 
(244). Use of COX-2 inhibitors has been shown to reverse Treg 
suppressive effects (38). For example, in a murine lung cancer 
model, inhibition of COX-2 has been found to enhance anti-
tumor immune responses (4, 5). COX-2 is overexpressed in 85% 
of human colorectal cancers (CRCs) and approximately 50% of 
colorectal adenomas leading to high PGE2 concentrations and 
chronic inflammation around the cancer (249). Regular use 
of COX inhibitors, including aspirin reduces the incidence of 
CRC by 30–45% (250–253). In CRC patients, the anti-tumor 
immune responses of Treg are reported to be COX-2/PGE2/

cAMP dependent and can be reversed by COX-2 inhibitor, PKA 
inhibitor, or Treg depletion (6). COX-2 overexpression is also 
correlated with the development of CRC metastases (254). Indeed 
in CRC patients with recurrent disease, T cell phenotyping has 
revealed high frequencies of COX-2 and high plasma PGE2 levels 
after surgery. Brudvik and co-authors have established strong 
correlation between Treg level, PGE2-mediated suppressive anti-
tumor activity and disease recurrence (69).

Prostaglandin E2 plays a crucial role in the neoplastic process 
by stimulating tumor cell proliferation, tissue invasion, pro-
moting angiogenesis, and by suppressing tumor cell apoptosis 
(255–257). Through Gs-coupled EP receptor signaling pathways, 
PGE2 expands and recruits Treg in tumor environment, which 
in turn suppresses T-, B-, and NK-cell immune responses, and 
contributes to tumor immune tolerance (38, 119, 258, 259). 
This combined with EP receptor activation, which triggers the 
cAMP/PKA/Csk signaling pathway, leads to downregulated TCR 
signaling and then further decreased T-cell immune function 
(6, 259, 260). All together these findings highlight the significant 
impact of the cAMP/PKA/Csk pathway on PGE2 control of tumor 
immune responses.

Along the same line, hyper-activation of the cAMP/type  
I PKA pathway is involved in T-cell dysfunction in immunode-
ficiencies. HIV-1 infection is associated with increased levels of 
cAMP and enhanced activation of PKA (233, 234). The HIV-1 
protein gp120 functionally activates Treg by binding to CD4 and 
inducing enhanced AC activity and elevated intracellular cAMP 
levels in Treg, thereby increasing their suppressive activity on Teff 
(42,  261, 262). Moreover, cytokine networks have been found 
to be under cAMP-mediated regulation in T cells from HIV-
infected patients. These findings indicated that high intracellular 
cAMP concentrations contribute to T-cell anergy in HIV infec-
tion. Accordingly, drugs that decrease intracellular cAMP levels 
may restore T-cell proliferation and cytokine networks providing 
a stronger antiviral response and be beneficial in the treatment 
of AIDS (240, 263). A similar mechanism has been found to 
contribute to the T-cell dysfunction in a subset of patients with 
common variable immunodeficiency (CVID) (264). Low level of 
IL-10 secreted by T cells observed in CVID patients has been 
related to the cAMP/PKA type I signaling. This pathway could 
represent a novel target for therapeutic immunomodulation in 
CVID (265). Similarly, in the murine AIDS (MAIDS) model 
induced by the murine leukemia virus, hyper-activation of the 
cAMP/PKA pathway, related to high level of PGE2, was found to 
contribute to severe T-cell anergy, typical feature of the pathology 
(238, 266). All together these findings support the idea that the 
cAMP/PKA pathway in T cells is a target for treating immunode-
ficiency diseases, chronic infections, and cancer.

Control of the cAMP/PKA pathway could help to kill tumor 
or infected cells, restore, or build a specific environment for 
robust immune responses. To this end, different strategies are 
possible, either upstream of the cAMP/PKA cascade by using 
COX-2 inhibitor, EP receptor antagonist, or downstream, block-
ing the intracellular cAMP/PKA cascade or its anchoring or 
even combining these strategies. Alone or in combination with 
other clinical therapeutic strategies, COX-2 could be a target 
to improve the efficiency of cancer and HIV treatments. In vivo 
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experiments in the MAIDS model have shown that treatment 
with COX-2 inhibitor reduces PGE2 levels, reverses T-cell anergy, 
and thereby restores T-cell immune function (238). Moreover, 
combination between COX-2 inhibitors and antiretroviral treat-
ment of HIV-infected patients has contributed toward improv-
ing T-cell proliferation and persistent immune activation. The 
modulation of cAMP may represent a therapeutic strategy in HIV 
infection in addition to antiretroviral therapy (237, 267, 268). As 
mentioned earlier effectiveness of selective COX-2 inhibitors 
has also been supported by several studies in cancer treatment 
and often associated with reduction of mortality rate. However, 
COX-2 inhibitors have also been related to serious cardiovascular 
events, which has resulted in interruption of long-term trials for 
cancer prevention (269, 270). Modulation of targets downstream 
of COX-2 is expected to improve the drug efficacy, specificity, 
and safety. Indeed, COX-2 inhibitor activity, through reduction 
of PGE2 synthesis, is not exclusive to the cAMP/PKA pathway. 
Actually G protein-dependent and -independent EP signaling 
pathways as well as crosstalk between EP signaling and paral-
lel signaling pathways are blocked by COX inhibitor treatment. 
Such broad action leads to unwanted effects and call to delineate 
appropriate targets in order to better define exclusive inhibitors. 
Current knowledge has already defined several proteins required 
in the cAMP/PKA signaling activation, all of which could become 
potential targets for inhibitors, each with presumably different 
biological consequences. A study in a mouse model developing 
multiple adenomas in the intestinal tract at an early age has 
illustrated these potential biological differences. Indeed, whereas 
the anti-tumorigenic effects were correlated to COX inhibitors, 
the anti-proliferative effects were linked to PKA antagonism (7). 
These findings have identified specific chemo-protective actions 
related to the nature of the inhibitor and more precisely to its 
target and its action in the PGE2 signaling pathway. In a previous 
study, a specific PKA type I antagonist, Rp-8-Br-cAMPS, has 
been found to increase T-cell proliferation and restore immune 
responses of T cells from HIV-infected patients. These findings 
suggested a novel strategy in treatment of HIV infection, which 
would combine treatment modalities counteracting PKA type I 
activity and antiretroviral therapy (233, 239). Given the impor-
tance of the cAMP/PKA pathway, compartmentalized cAMP 
signaling and PKA activity in immune responses regulation, the 
targeting of AKAPs complexes for new therapeutic intervention 
in cancer and chronic infection has become clearly apparent. All 
together, these findings underscore the importance to develop 
agents able to specifically disrupt AKAP type I complexes.

Disruption of AKAP Complexes in T Cell 
and Therapeutic Perspectives
Generation of peptides that disrupt AKAP complexes is challeng-
ing especially for therapeutic purposes. One strategy to disrupt 
the interaction between AKAP and PKA is to selectively displace 
PKA subtype from the AKAP platform with peptides that mimic 
the amphipathic helices domain of AKAP. Such disruptors of 
the AKAP complex have to be cell permeable and require high 
specificity and high binding affinity for their target. Most AKAPs 
bind avidly to the RII isoform (271), whereas others, such as 

Ezrin, are RI-selective AKAPs (3). A third class of AKAPs, termed 
dual-specific AKAPs, can bind both the RI and RII isoforms, yet 
their preference for binding the RII isoform strongly predomi-
nates (209). The first AKAP disruptor peptide described, Ht31, is 
derived from the RII-binding domain of AKAP-Lbc (AKAP13) 
(272). Ht31 is a peptide, which forms an amphipathic helix 
mimicking that found in AKAPs (273). The helix binds to the 
regulatory subunits of PKA disrupting localization with both 
RI and RII from AKAPs (274). Disruption of the AKAP–PKA 
interaction with Ht31 was shown to induce cytokine production 
(increase of IL-2, IL-4, IL-5, and IFNγ secretion) and in synergy 
with Ag to enhance T-cell proliferation, suggesting that PKA is 
necessary for maintaining T cells in a resting state. Furthermore, 
Ht31 treated cells were insensitive to the inhibitory effects of 
cAMP on IL-2 production, indicating that anchored PKA activity 
is necessary for cAMP-mediated inhibition of T-cell activation 
(165). Moreover, use of Ht31 peptide as an inhibitor of the binding 
between ezrin and PKA type I has shown a release of the cAMP/
PKA type I-mediated inhibition on T-cell proliferation (3).

Since then, studies have identified multiple high-affinity 
RII-selective disruptors. In 2003, the first high potent RII 
inhibitor peptide, AKAP-in silico (AKAP-IS), was designed by a 
bioinformatics approach combined with peptide array screening 
(275). This peptide was shown to have higher affinity for RII 
as compared to Ht31 peptide. The initial peptide had limited 
solubility in aqueous solution and was not cell permeable. The 
introduction of a peptide derived from the TAT protein of the 
HIV-1 greatly improved cell permeability (276). A later version 
called SuperAKAP-IS was developed with high affinity for RII 
and almost none for RI (277). Because of structure instability, 
disruptor peptides may lose their cell-penetration abilities, 
specificity for the target or binding affinity and become more 
susceptible to degradation. Stabilization of their bioactive struc-
ture, thus, rapidly became a  priority for cell-based assays. The 
all-hydrocarbon staple has emerged as one solution combining 
two distinct conformational stabilization strategies [reviewed 
in Ref. (278)]. The stabilized conformation was associated 
with increase in target affinity, stability against proteolysis, and 
robust cell-penetration while remaining safe in in  vivo models 
(279–281). Using this technique, two stapled AKAP disruptor 
(STAD) peptides were developed: STAD-2 and STAD-3 (282). 
The new class of AKAP disruptors, highly cell permeable, has 
been shown to block interactions between AKAPs and RII and 
was described as a promising tool to study compartmentalized 
RII-regulated PKA signaling in cells.

Designing peptides for RI-selective interaction has been more 
challenging than for RII-selective peptides. Indeed one RI-specific 
disruptor peptide, PV-38, was designed from D-AKAP2 (283). In 
parallel, a bioinformatics analysis combined with a peptide array 
screening had led to the development of a peptide that binds RIα 
with high affinity and specificity. This high-affinity binding pep-
tide called RIAD has been found to specifically disrupt anchoring 
of PKA type I from intracellular locations and inhibited type I 
regulation of T-cell effector function and steroid biosynthesis 
(191). RIAD was proposed as a tool to define anchored PKA type 
I signaling events and has been used extensively like in a MAIDS 
model described later in this review (284). Wang and co-authors 
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also designed a series of RI-Stapled Anchoring Disruptors 
(RI-STADs) where two peptides, RI-STAD-1 and RI-STAD-2, 
were reported to have improved cell permeability and to selec-
tively disrupt the interactions between AKAPs and PKA-RI in 
biochemical and cell-based assays (285).

Despite technical advances improving the specificity for PKA 
subtype I or II, these disruptor peptides will non-specifically 
inhibit all AKAP interactions with either RI or RII isoforms. 
Taking into account that most of cell types express at least 10–15 
different anchoring proteins (2), and so far seven identified in 
T cells, the specificity for PKA subtype I or II is obviously not 
enough to specifically displace interaction between PKA and 
one specific AKAP. Recently, a new approach based on a phage 
selection procedure was employed to engineer RII sequences 
(Rselect) able to selectively target particular AKAP. Biochemical 
and cell-based experiments validated the efficacy of Rselect mutants 
for AKAP2 and AKAP18 (286). Described as a new class of 
reagents, these genetically encoded AKAP-selective probes could 
help to design new compounds targeting specifically individual 
AKAP and to unravel the functions of different AKAP-targeted 
PKA. Another strategy would be to disrupt individual AKAP 
complexes by displacing interaction partners other than PKA, 
such as the substrate for PKA if that is bound to the AKAP. For 
example, interaction between AKAP18δ with phospholamban 
(PLN) was disrupted by using a short peptide derived from the 
PLN interaction site for AKAP18δ. This pharmacologic tool has 
allowed determining partners, conditions of formation, and bio-
logical consequences of the supramolecular complex formed in 
cardiac myocytes (287). Another possibility would be to disrupt 
the interaction between the AKAP targeting domain and the 
interaction partner providing its subcellular localization. As an 
example, a cell-permeant peptide of the Ezrin binding domain in 
EBP50 (EBP50pep) has been shown to displace Ezrin and reverse 
the cAMP/PKA-mediated inhibition of T-cell activation due to 
loss of PKA proximity to Csk (288). Along the same line, an 
inducible competing muscle-specific A-kinase anchoring protein 
(mAKAP) fragment (residues 585–1286) was used to displace 
the mAKAP from the perinuclear membrane highlighting the 
importance of its localization in the control of cardiomyocyte size 
(289). These strategies might offer higher selectivity.

Because peptides need to be administered parenterally, possess 
a short half-life hampered by limited stability in serum, and may 
generate immune responses, their potential therapeutic applica-
tions are limited. Non-peptidic agents, such as peptidomimetics 
and small molecules, could be one solution to counteract these 
drawbacks. Peptidomimetics are compounds whose essential 
elements mimic a natural peptide or protein in the three-
dimensional space. Peptidomimetics, thus, provide a possible 
strategy for the modulation and regulation of AKAPs with the 
ability to interact with the biological target and, therefore, to 
displace other potential interactions without degradation. RIAD 
peptidomimetics were developed by adding unnatural amino 
acids at different positions, increasing the stability in serum while 
keeping their specificity to disrupt the AKAP/PKA-RI interaction 
(290). The RIAD peptidomimetic, RIAD-P3, was shown to limit 
HIV-1 viral replication and stabilize CD4 levels by disrupting 
AKAP/PKA-RI in human T cells and humanized mice (291). 

Thus, peptidomimetic research emerges as an indispensable 
tool of structure–activity relationships in drug discovery. Small 
molecules are also promising alternatives to disruptor peptides 
and offer several manufacturing and delivery advantages for drug 
discovery. Several examples have shown the ability of small mol-
ecule to disrupt protein–protein interactions (292). Small mol-
ecules interfering by orthosteric or allosteric binding have been 
identified (293, 294). In summary, the specificity and diversity 
of protein–protein interactions offer promising opportunities to 
develop highly selective inhibitors. However, their development 
requires detailed knowledge about the interaction between the 
two proteins (295). Displacing selected proteins from AKAP 
complexes could improve efficacy and specificity of anchoring 
disruptors with fewer side effects. This approach may lead to 
alternative strategies for the treatment of diseases associated 
with altered cAMP signaling. All together improved peptides, 
peptidomimetic and small molecules can help to characterize 
and understand molecular mechanism converging and emerging 
from AKAP platforms. These agents could help to define “drugga-
ble” target and alternative therapeutic strategies for the treatment 
of diseases associated with altered cAMP signaling.

Despite challenges to find and generate selective AKAP 
disruptor peptides, recent technical breakthroughs and find-
ings from in vitro and in vivo studies strongly depict targeting 
protein–protein interaction as promising therapeutic strategies. 
Indeed, experiments using Ht31 peptides in in vitro experiments 
in T cells (3, 165) and a specific PKA type I antagonist, Rp-8-
Br-cAMPS in T cells from HIV-infected patients as well as in 
a CRC mouse model (7, 233, 239) have underscored the major 
role of the AKAP, ezrin, in T-cell immune functions. Moreover, 
identification of an additional PKA-binding determinant, 
the RI specifier region (RISR), upstream of AKB in Ezrin has 
strengthened the role of Ezrin/PKA complex in T-cell signaling 
regulation. Indeed mutations in the RISR of Ezrin have been 
shown to perturb RI anchoring and alter the suppression of 
T-cell signaling through the cAMP/PKA type I/Csk pathway. 
The RISR was shown to act in synergy with the AKB to enhance 
anchoring of PKA type I (192). In an extended study, RIAD 
transgenic mice were generated by expressing a soluble ezrin 
fragment with the endogenous RISR and RIAD substituting the 
endogenous AKB domain under control of the lck distal pro-
moter (284). Peripheral T cells from RIAD transgenic mice were 
resistant to cAMP-mediated inhibition and displayed enhanced 
T-cell signaling and responsiveness. Furthermore, these mice 
did not develop MAIDS when infected with the murine leuke-
mia virus, as did wild-type littermates or mice infected with a 
mutated transgene that did not bind and displace PKA (284). 
These findings define the cAMP/type I PKA pathway in T cells 
as a putative target for therapeutic intervention through AKAP 
complex disruption in immunodeficiency diseases and cancer. 
Besides ezrin, D-AKAP1 is also involved in the progression of 
HIV infection. D-AKAP1 was shown to interact with the HIV-1 
reverse transcriptase and to support viral replication during 
HIV infection (210). The full mechanism is still unknown but 
PKA and PDE4, key players in the cAMP signaling pathway and 
anchored by D-AKAP1 to mitochondria, can stimulate HIV-1 
replication and infection (296–298). Hence, D-AKAP1 could 
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affect reverse transcription through a PKA-dependent signaling 
pathway. Based on these results, D-AKAP1 could be another 
potential target in HIV therapy.

CONCLUDiNG ReMARKS

Cyclic AMP is a potent regulator of the immune response. 
Insights into molecular mechanisms causing and controlling the 
generation of cAMP and its propagation through the cAMP/PKA 
pathway are undoubtedly crucial to generate immunomodula-
tory agents. Several studies have assessed the efficiency of 
non-NSAIDs to regulate intracellular cAMP concentration and 
then further to control T-cell function. However, their efficiency 
could be impaired by lack of specificity. Indeed their early 
inhibitory action on PGE2 production blocks all EP receptor 
signaling pathways instead of specifically inhibiting the cAMP/
PKA signaling pathway, which could create unwanted effects with 
biological consequences. Unraveling mechanisms surrounding 
PKA phosphorylation events and localization with AKAPs will 
hopefully support the development of more targeted therapies. 
Bolstered by both technological advances and learning from 

in  vitro and in  vivo experiments, AKAP disruptors emerge as 
essential tool, which selectively probe anchored PKA signaling 
and decode functions of AKAP/PKA interactions. AKAPs have 
crucial role in T-cell function and are involved in development 
and regulation of multiple chronic diseases, which make AKAPs 
potential targets for drug discovery. In a broader perspective, 
their ubiquitous nature and capacity to act as signaling hubs 
where multiple signals converge also offer other promising 
targeting perspectives.
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