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Chemokines and their receptors are key mediators of the inflammatory process regulating 
leukocyte extravasation and directional migration into inflamed and infected tissues. The 
control of chemokine availability within inflamed tissues is necessary to attain a resolving 
environment and when this fails chronic inflammation ensues. Accordingly, vertebrates 
have adopted a number of mechanisms for removing chemokines from inflamed sites to 
help precipitate resolution. Over the past 15 years, it has become apparent that essential 
players in this process are the members of the atypical chemokine receptor (ACKR) 
family. Broadly speaking, this family is expressed on stromal cell types and scavenges 
chemokines to either limit their spatial availability or to remove them from in vivo sites. 
Here, we provide a brief review of these ACKRs and discuss their involvement in the 
resolution of inflammatory responses and the therapeutic implications of our current 
knowledge.
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iNTRODUCTiON

An effective inflammatory response requires carefully regulated initiation, maintenance, and 
resolution phases (1). Inflammation is characterized by a stepwise recruitment of leukocytes, with 
neutrophils typically being the first recruited cellular population, followed by macrophages and 
lymphocytes. The precise molecular control of inflammation has not yet been fully worked out, 
although it is clear that the primary regulators of in vivo leukocyte migration to inflamed tissue 
sites are the chemokines, or chemotactic cytokines (2). Chemokines are members of a large family 
of proteins defined by the presence of a conserved cysteine motif in their mature protein sequences. 
Chemokines are divided into CC, CXC, XC, and CX3C subfamilies according to the specific nature of 
the cysteine motif (3). Chemokines are exclusive to vertebrates (4), and the primordial chemokine is 
almost certainly CXCL12, which was evolved to regulate stem cell migration during embryogenesis. 
From this one ancestral gene, the family has expanded to the point at which mammals have around 
45 different chemokines, which are involved, in sometimes extremely complex and subtle ways, in 
regulating immune and inflammatory cell migration in vivo. Chemokines can be broadly defined as 
being either inflammatory or homeostatic according to the contexts in which they function (3, 5). 
Inflammatory chemokines are not normally expressed at significant levels but are induced extremely 
rapidly following tissue insult, or infection, and serve to recruit inflammatory leukocytes to any 
compromised body site. In all likelihood, all cells are capable of producing inflammatory chemokines 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00224&domain=pdf&date_stamp=2016-06-10
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00224
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:g.graham@clinmed.gla.ac.uk
http://dx.doi.org/10.3389/fimmu.2016.00224
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00224/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00224/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00224/abstract
http://loop.frontiersin.org/people/56326/overview
http://loop.frontiersin.org/people/24068/overview


TABLe 1 | Ligands and expression patterns for the ACKRs.

Gene Ligands expression

ACKR1 CCL2, 5, 7, 11, 13, 14, 
17; CXCL5, 6, 8, 11

Erythrocytes, vascular endothelial cells, and 
Purkinje cells

ACKR2 CCL2, 3, 3L1, 4, 5, 7, 
8, 11, 12, 13, 17, 22

Lymphatic endothelial cells, leukocytes 
(especially B1 B cells), keratinocytes, and 
trophoblasts

ACKR3 CXCL11, 12 Hematopoietic cells, lymphatic endothelial 
cells, mesenchymal cells, and neuronal cells

ACKR4 CCL19, 21, 25; 
CXCL13

Lymphatic endothelial cells and epithelial 
cells
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and thus initiating inflammation. In contrast, homeostatic 
chemokines are involved in the basal recruitment of cells involved 
in immune responses, and these control much more specific cel-
lular navigation processes.

Chemokines interact with their target cells by binding to 
receptors belonging to the 7-transmembrane-spanning family 
of G protein-coupled receptors (6). Thus far, 10 receptors for 
CC chemokines, 7 for CXC chemokines, and single receptors 
for the XC and CX3C chemokines have been identified. Again, 
these receptors can be defined as being either inflammatory or 
homeostatic according to the class of chemokines they bind. 
One complex feature of chemokine receptors, particularly those 
involved in regulating inflammatory leukocyte migration, is that 
they display promiscuous ligand binding. In addition, individual 
chemokines can bind to more than one receptor and individual 
receptors are expressed on numerous different leukocyte cell types 
(6). Moreover, the formation of receptor dimers and oligomers at 
the cell surface can modify their chemokine binding and signal-
ing activity, further complicating biology (7). This biological 
complexity, and the likely existence of biased-signaling in terms 
of receptor/ligand interactions (8, 9), suggests that chemokine 
receptor involvement in inflammatory responses is complex and 
potentially redundant.

In the context of an inflammatory response, it is clear from 
a number of studies that numerous inflammatory chemokines 
are simultaneous expressed at damaged sites. These then attract 
leukocytes by interacting with inflammatory chemokine recep-
tors and initiate inflammatory responses. While inflammation 
typically is transient, and resolves efficiently, occasionally, it 
can be associated with chronic inflammatory disease. The fact 
that chemokines and their receptors are the primary drivers of 
inflammatory leukocyte recruitment therefore highlights them 
as important therapeutic targets (10). Despite this exciting 
opportunity, progress toward development of clinically useful 
receptor antagonists has been extremely disappointing (11). 
Indeed, 25  years since the cloning of the first inflammatory 
chemokine receptor (12), there are still no chemokine receptor 
antagonists licensed for use in treating inflammatory diseases. 
While there are many pharmacological reasons for this, one 
over-riding reason is that we currently have a relatively poorly 
developed understanding of precisely how chemokines and their 
receptors orchestrate inflammatory responses and of the layers 
of complexity introduced as different inflammatory leukocytes 
enter, and exit, inflamed sites. Thus, a much more comprehensive 
understanding of this process is required for it to be effectively 
therapeutically targeted.

The resolution of the inflammatory response is a key step at 
which inflammation can transition, from an acute and transient 
response, to one that is chronic and pathological. Accordingly, 
there have been numerous studies into the molecular regula-
tion of the resolution of the inflammatory response, which has 
highlighted lipid mediators, such as resolvins (13), as important 
regulators. In terms of removal of chemokines during resolution, 
this is achieved in two separate ways. First, most chemokines 
(and indeed other inflammatory cytokines) are removed from 
inflamed tissue by drainage through the lymphatic system (14). 
This almost certainly accounts for the high levels of inflammatory 

mediators and chemokines in the plasma of patients with chronic 
inflammatory pathologies. However, recent data have highlighted 
active roles for chemokine-scavenging atypical chemokine recep-
tors (ACKRs) in the resolution of inflammatory responses (15). 
In this review, we discuss the roles for ACKRs in the resolution 
of the inflammatory response and highlight their potential thera-
peutic value.

ATYPiCAL CHeMOKiNe ReCePTORS

Atypical chemokine receptors (6, 16), (Table 1), in contrast to 
canonical chemokine receptors, are mainly expressed by non-
leukocyte cell types, such as erythrocytes, lymphatic or vascular 
endothelial cells, although some expression of ACKRs (especially 
ACKR2 and ACKR3) is detected on leukocytes (6, 17, 18). 
ACKRs bind chemokines with high affinity and do not induce 
cell migration as a result of their structural inability to couple 
to G proteins. In fact, ACKR activation of β-arrestin-dependent 
pathways modulates chemokine bioavailability by transporting 
chemokines to intracellular degradative compartments or, in the 
case of polarized cells, to the opposite side of the cell monolayer 
(19). ACKRs can also modulate the chemokine system by regulat-
ing the expression, or signaling, of other canonical chemokine 
receptors (18).

Four molecules have been officially named and included in 
the ACKR subfamily: ACKR1, previously called duffy antigen 
receptor for chemokines (DARC); ACKR2, also known as D6 
or CCBP2; ACKR3, also called CXC-chemokine receptor 7 
(CXCR7) or RDC1; and ACKR4, previously called CC chemokine 
receptor-like 1 (CCRL1) and also known as CCX-CKR. Two 
other molecules, CCRL2 and PITPNM3, tentatively included in 
the ACKR family as “ACKR5” and “ACKR6,” respectively, will 
not be covered by this review as they are awaiting functional 
confirmation (16). It may be that additional ACKRs exist and 
these will be incorporated into the systematic nomenclature as 
they are identified (16). One of the problems in routinely iden-
tifying such receptors, for example, by de-orphanizing known 
orphan GPCRs is their lack of canonical signaling. Thus, each 
of the known atypical receptors has been identified through ser-
endipity rather than through directed signaling-based screening 
approaches.

Here, we will review the involvement of the four characterized 
ACKRs in inflammation and its resolution.
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ACKR1 (DARC)

ACKR1 binds over 20 inflammatory chemokines belonging 
to the CC and CXC families (20). It is expressed by eryth-
rocytes and endothelial cells lining small veins and venules 
(21). From a structural perspective, it is completely lacking 
the DRYLAIV motif in the second intracellular loop and 
has a low percentage of sequence homology with the other 
chemokine receptors (22). Thus, in contrast to the other 
ACKRs, the genes for which sit within chromosomal loci 
incorporating other canonical chemokine receptors, ACKR1 
appears to share limited evolutionary relationship to the 
other receptors.

ACKR1 expressed by erythrocytes regulates the bioavail-
ability of circulating chemokines by binding them with high 
affinity (23, 24). African people, referred to as “Duffy null” or 
negative because they lack ACKR1 expression on erythrocytes 
(but not endothelial cells), have higher concentrations of 
circulating chemokines (25), and genome-wide association 
studies have linked the ACKR1 variant Asp42Gly with serum 
CCL2 and CXCL8 levels (23). During inflammatory condi-
tions, ACKR1 can function as a “sink” but also as a buffer 
for chemokines, increasing their systemic bioavailability and 
avoiding excessive changes in the concentration of circulat-
ing chemokines (26). In addition, it was found that ACKR1 
expressed by endothelial cells is able to induce chemokine 
internalization and trancytosis (19, 27), thereby facilitating 
presentation of inflammatory chemokines on the luminal 
surface of vascular endothelial cells.

In the context of resolution of inflammation, the role of 
ACKR1 was studied in models of acute or chronic inflammation 
in WT and ACKR1 KO mice. Lack of the receptor results in 
reduced neutrophil recruitment to the lung after intratracheal 
administration of CXCL8 or LPS (28, 29) and in a model of acid-
induced injury (30). Reduced neutrophil recruitment was also 
found in ACKR1 KO mice in a model of acute kidney damage 
induced by ischemia or LPS and was associated with renal pro-
tection (31). In a model of bone fracture, ACKR1 KO mice have 
decreased levels of pro-inflammatory cytokines (IL-1β, IL-6, and 
CCL2) and fewer macrophages around fractures (32). ACKR1 
plays also a role in chronic inflammation, as demonstrated by 
the use of the ApoE KO mouse model of atherogenesis. ACKR1 
KO mice are partially protected from atheroma development, 
and this is associated with decreased levels of inflammatory 
chemokines in the aorta and modest changes in T lymphocytes 
and inflammatory monocyte numbers in plaques (33). A role 
for ACKR1 was also found in infectious diseases: it is the recep-
tor for the human malarial parasites Plasmodium vivax and 
Plasmodium knowlesi and individuals lacking ACKR1 (Duffy 
negative), or carrying polymorphic variants, are less susceptible 
to P. vivax infection (34).

The emerging picture is that ACKR1 expressed by erythro-
cytes acts as a chemokine buffer and can limit excessive leukocyte 
extravasation. In contrast, endothelial ACKR1 promotes acute 
and chronic inflammation by reducing chemokine concentra-
tions in the inflamed tissues and creating a gradient that increases 
neutrophil and monocyte extravasation.

ACKR2 (D6 OR CCBP2)

ACKR2 is able to bind a broad panel of inflammatory CC 
chemokines. It is expressed by lymphatic endothelial cells, 
trophoblasts in the placenta, and some leukocytes such as 
alveolar macrophages and innate-like B cells (35). ACKR2 is a 
chemokine scavenger receptor which functions, in a catalytic 
manner, by transporting chemokines to degradative intracel-
lular compartments (36, 37). It is able to dynamically adapt its 
scavenger function to the extracellular chemokine concentration 
activating a β-arrestin-dependent pathway that increases its 
plasma membrane localization without affecting the internaliza-
tion rate (38, 39). ACKR2 promotes the resolution of inflam-
mation and regulates lymphatic vessel function (40) and density 
(14), and ACKR2 KO mice in different pathological contexts 
exhibit dysregulated inflammatory reactions due to the lack of 
chemokine clearance and associated accumulation of inflamma-
tory cells (41).

In response to phorbol ester, ACKR2 KO mice develop a severe 
skin inflammatory response resembling psoriasis (42), and after 
injection of complete Freund’s adjuvant, KO mice develop larger 
granulomas compared to WT mice (43). ACKR2 also controls 
inflammatory responses in the gut (44, 45) and in the lung (46). 
ACKR2 expressed by trophoblasts inhibits inflammation in the 
placenta, where it protects from inflammation-associated miscar-
riage and allogeneic embryo rejection (47, 48). After myocardial 
infarction, ACKR2 prevents excessive infiltration of classical 
monocytes and neutrophils by scavenging CCL2, promoting 
cardiac remodeling (49). ACKR2 is also important for the control 
of inflammation in infectious diseases such as Mycobacterium 
tuberculosis (50). The role of ACKR2 in the context of autoim-
mune diseases is still controversial. It was reported that ACKR2 
KO are resistant to the induction of experimental autoimmune 
encephalomyelitis (EAE) (51) and have reduced renal inflamma-
tion in a model of diabetic nephropathy (52). More recently, it 
appears that ACKR2 deficiency does not suppress autoreactive 
T-cell priming and autoimmune pathology, but can enhance 
T-cell polarization toward Th17 cells (53).

In addition to these data indicating that ACKR2 promotes 
resolution of the inflammatory response by chemokine clear-
ance and inhibition of excessive leukocyte recruitment, it was 
reported that ACKR2, expressed by leukocytes, inhibits their 
 pro-inflammatory phenotype. ACKR2 restricts neutrophil migra-
tion (54) and regulates macrophage efferocytosis and cytokine 
secretion (55). Finally, a key role for ACKR2 in regulating the 
promotion of inflammation-dependent cancers has been shown 
using mouse models of both cutaneous (56) and colorectal cancer 
(45). In these contexts, ACKR2 functions essentially as a tumor 
suppressor gene by limiting tumor-promoting tissue inflamma-
tory responses.

ACKR3 (CXCR7 OR RDC-1)

ACKR3 binds two chemokines, CXCL12, the ligand of CXCR4, 
and CXCL11, one of the ligands of CXCR3 (57). It is expressed by 
endothelial cells, some hematopoietic cells, mesenchymal cells, 
and neurons. ACKR3 mainly signals through β-arrestin pathways 
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TABLe 2 | Phenotype of ACKRs knockout mice in inflammation and 
infection models.

Gene 
deletion

Phenotype Reference

ACKR1 Reduced neutrophil recruitment in acute 
inflammation models

(28–30)

Renal protection in ischemia or LPS induced acute 
kidney damage

(31)

Reduced macrophages infiltration in bone fracture 
model

(32)

Reduced atheroma development in the Apo E KO (33)

ACKR2 Severe skin inflammatory reaction similar to 
psoriasis

(42)

Increased granulomatous inflammatory response (43)
Increased gut and lung inflammation (44–46)
Increased tissue damage after myocardial 
infarction

(49)

Increased inflammation-associated miscarriage 
and allogeneic embryo rejection

(47, 48)

Uncontrolled Mycobacterium tuberculosis infection (50)

ACKR3a Exacerbates neointimal hyperplasia (65)

ACKR4 Excessive Th17 responses (72)

aTamoxifen-inducible knockout.
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activating extracellular signal-regulated kinases (ERKs) or pro-
tein kinase B (PKB or Akt) (58). ACKR3 modulates CXCL12 
activity in several ways. It downregulates CXCL12 concentrations 
by scavenging and modulates CXCR4 expression and signaling 
activity by forming heterodimers with CXCR4 (59). Elegant stud-
ies using zebrafish embryos have demonstrated important and 
evolutionary conserved roles for ACKR3 in the regulation of key 
cellular populations during embryogenesis (60). These studies 
have shed important light on the importance of ACKR3 for the 
generation of tissue gradients during cellular migration within 
the embryo. ACKR3 KO mice have defects in brain, heart, and 
kidney development (61–63).

During inflammatory conditions, both leukocytes and 
endothelial cells increase ACKR3 expression. Peripheral blood 
lymphocytes from patients with inflammatory bowel disease have 
enhanced ACKR3 expression, which was also upregulated upon 
stimulation (CD3) or costimulation (CD3/CD28) (64). ACKR3 
was found expressed by macrophages in the atherosclerotic 
plaque and was associated with a pro-inflammatory phenotype 
that includes production of inflammatory chemokines and 
phagocytic activity (65). ACKR3 is also prominently expressed 
in a wide range of tumors both within the tumor cells and by cells 
of the tumor vasculature (66). It has therefore been highlighted as 
a potential therapeutic target in oncology.

In relation to endothelial cells, ACKR3 is expressed in 
rheumatoid arthritis synovium, in which it promotes the 
inflammatory process increasing angiogenesis (67). In addition, 
ACKR3 is induced in brain microvascular endothelial cells dur-
ing experimental inflammatory conditions, such as permanent 
middle cerebral artery occlusion and EAE, and favors leukocyte 
extravasation by enhancing leukocyte adhesion to the endothelial 
surface (68). It should be noted that CXCR7 is also expressed by 
neurons and astrocytes in various brain regions and, during EAE, 
it is upregulated by oligodendrocyte progenitors, important cells 
for the remyelination process (69).

In summary, ACKR3 expression promotes inflammation 
inducing a leukocyte pro-inflammatory phenotype, enhancing 
angiogenesis and leukocyte extravasation.

ACKR4 (CCRL1 OR CCX-CKR)

ACKR4 binds the homeostatic chemokines CCL19, CCL21, 
CCL25, and CXCL13. It is expressed by thymic epithelial cells, 
bronchial cells, and keratinocytes. ACKR4 is a constitutively 
internalizing receptor with chemokine-scavenging function (70). 
After chemokine binding, it recruits β-arrestin 2, but it is not 
known if it activates signal transduction pathways.

Few data are available on the in  vivo role of ACKR4 in the 
context of inflammation. It appears to be important in the cor-
rect trafficking of dendritic cells for the induction of adaptive 
immune responses. Indeed, ACKR4 expression in lymph nodes is 
necessary for creating a gradient of the CCR7 ligands, CCL19 and 
CCL21, in the subcapsular sinus (71). In addition, using ACKR4 
in KO mice, it was demonstrated that homeostatic chemokine 
clearance is necessary to control excessive Th17 responses that 
can lead to immunopathologies (72).

CONCLUDiNG ReMARKS

The identification and characterization of the ACKRs has rep-
resented a major advance in our understanding of the overall 
orchestration of chemokine-driven immune and inflammatory 
responses. These receptors have been shown to play important 
roles in regulating cell migration in developmental, inflamma-
tory, immune, and pathological contexts (Table 2). In this con-
text, these receptors control the chemokine system by scavenging, 
transporting, or storing chemokines, but also by regulating the 
activity of canonical chemokine receptors with which they share 
the ligands by forming heterodimers or modulating their expres-
sion levels or signaling activity.

The essential roles that they play, particularly in the context 
of resolving inflammatory responses, highlights them as poten-
tial therapeutic targets. While the normal pharmacological 
approach is to develop chemokine receptor antagonists, in the 
case of the atypical receptors what would be more useful would 
be small molecule inducers of either expression or activity. 
Such inducers could work through known cytokine pathways 
that induce ACKRs (73) or by capitalizing on our developing 
understanding of the kinetics of cell surface mobilization of 
these receptors (37, 38).

If developed, these could be used to increase ACKR func-
tion and thus neutralize chemokine activity in a number of 
inflammatory pathologies. Topical application of such regula-
tors could be envisaged as having therapeutic potential in, 
for example, psoriasis and intranasal administration in the 
context of lung inflammatory responses. Furthermore, it may 
be possible to adapt these molecules for use in cancer therapy 
to restrict cancer access to pro-tumorigenic inflammatory 
leukocytes.
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Atypical chemokine receptors therefore represent novel thera-
peutic targets likely to benefit in a number of pathologies with 
unmet clinical need.
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