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Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in ger-
minal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they 
play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the 
unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. 
Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs 
and TLOs. In this review, we discuss recent findings that explain how this stromal cell 
type can arise in almost any tissue during TLO formation and, furthermore, focus on the 
mechanisms of antigen capture and retention involved in the generation of long-lasting 
antigen depots displayed on FDCs.

Keywords: follicular dendritic cells, tertiary lymphoid organs, antigen, B-cell responses, antigenome, germinal 
centers, antigen trapping

Follicular dendritic cells (FDCs) are cells of stromal origin that are indispensable for secondary 
lymphoid organ (SLO) and tertiary lymphoid organ (TLO) development and maintenance. They 
are located in the central region of primary follicles and in the light zone of germinal centers [GCs; 
(1, 2)]. Their most striking feature is the ability to capture and retain native antigen. This was first 
observed in 1965, when Mitchell and Abbott analyzed the location of iodine-125 labeled flagella of 
Salmonella Adelaide in draining lymph nodes of mice using high-resolution electron microscopic 
autoradiographs (3). Since then, the role of FDCs as crucial players in antibody responses has 
been widely accepted. Their main function being the presentation of native antigen, in the form 
of immune complexes (ICs), to B cells, thereby driving their affinity maturation during the GC 
reaction.

In this review, we focus first on recent findings that help to explain, how FDCs can arise in almost 
any tissue undergoing TLO formation and, second, on their ability to retain antigen in B-cell follicles. 
For a more detailed description of FDC biology, we refer the reader to other recent reviews (4, 5).

ReQUiReMeNTS FOR FDC DeveLOPMeNT

After the first mentioning of FDCs little more than half a decade ago, initial experiments, mainly 
using bone marrow chimeras (6, 7), indicated that FDCs are of stromal, radioresistant, and likely ses-
sile character. In the meantime, extensive data were brought forward attributing important functions 
to FDCs in B-cell responses, such as the provision of the chemokine CXCL13, essential to allure B 
cells into the follicles in a CXCR5-dependent manner (8). Interestingly, the dependence of B cells and 
FDCs was found to be mutual; in the absence of B cells, FDCs did not form (9). B cells were shown 
to be the main source for lymphotoxins (LT) and tumor necrosis factors (TNF), which upon binding 
to their respective receptors, LTβR and TNFR1, present on the surface of FDCs and their precursors, 
acted as potent drivers of FDC maturation (9–16). Furthermore, after the initial generation of FDCs 
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TABLe 1 | Human diseases with lymphoid neogenesis.

Autoimmune diseases Chronic allograft rejection

Rheumatoid arthritis (88–91) Organ transplantation (118, 119)
Hashimoto’s thyroiditis and Graves’ 
disease (92–95)
Myasthenia gravis (96–98) Other chronic inflammations
Sjogren’s syndrome (99–101) Ulcerative colitis (120, 121)
Multiple sclerosis (102–104) Atherosclerosis (122, 123)
Cryptogenic fibrosing alveolitis (105, 106)
Systemic lupus erythematosus (107, 108) Cancer

Non-small cell lung cancer (124, 125)
infectious diseases Colorectal carcinoma (126)
Chronic hepatitis C (109, 110) Ductal breast carcinoma (127, 128)
Helicobacter pylori-induced gastritis 
(111–115)

Melanoma (metastasis) (129)
Mucosal-associated lymphoid tissue 
lymphoma (115)Chronic Lyme disease (116, 117)
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sustained LT signaling was shown to be required for keeping 
them in a differentiated and functional state (17).

While it was soon recognized that FDCs are a central com-
ponent of B-cell follicles in spleen and in lymph nodes, their 
appearance was not limited to SLOs. FDCs were also shown to 
contribute to non-encapsulated lymphoid structures, such as the 
isolated lymphoid follicles of the intestine (18). In addition to this, 
FDCs were frequently observed during certain chronic inflam-
mations in non-lymphoid tissues. As a result of an unresolved 
inflammation during autoimmunity (e.g., rheumatoid arthritis) 
or during chronic infections (e.g., hepatitis C infection), such 
tissues can undergo remodeling into TLOs (19–21), containing 
FDCs and microanatomically segregated T and B cell areas. 
Autoimmune diseases and chronic inflammations with FDC 
involvement are summarized in Table 1. The notion that FDCs 
can possibly be generated everywhere in the body suggests that 
their precursors sport either considerable motility or that they are 
derived from a non-migratory ancestor. Bone marrow chimera 
experiments, where FDCs in spleen and LN were generated from 
host cells, added evidence to the latter hypothesis (6, 7). The idea 
that FDCs could have differentiated from a local precursor, was 
further supported by the finding that FDCs shared markers with 
other stromal cells of SLOs and TLOs and showed similarities 
with fibroblasts and mesenchymal cells (1, 22, 23). In parabiont 
experiments, where the blood circulation of two mice was surgi-
cally connected for 3 months, no FDCs had been generated from 
the surgically attached counterpart (24). This also corroborated 
a model of a non-migratory and rather local precursor, giving 
rise to FDCs.

In a murine model of chronic inflammation, transgenic 
overexpression of LTα under the rat insulin promoter (RIP-
Lta) leads to the formation of TLOs in kidneys, including fully 
matured FDCs (25–27). When these mice were treated with 
LTβR-Ig decoy receptors (17) to remove mature (renal) FDCs 
followed by transplantation of their kidneys into recipient mice, 
this led to the reformation of FDCs exclusively derived from 
cells of the transplanted donor kidneys. This finding proved 
that, even during the generation of TLOs, FDC precursors 
are tissue-intrinsic (25). Detailed analysis of the expression of 
the FDC-expressed molecule Mfge8 [FDC-M1; (28)] during 
splenic organogenesis as well as in mice lacking FDCs, further 

suggested that the earliest FDC precursor was located in the 
splenic perivascular space. These putative precursors expressed 
PDGFRβ and SMA. Since mature FDCs do not express 
PDGFRβ, lineage-tracing experiments (using Pdgfrb-Cre 
mice) were performed and confirmed that FDCs had derived 
from such PDGFRβ-positive precursors. The expression of 
PDGFRβ and SMA as well as their localization indicated that 
these cells were in fact mural vascular cells. Depending on the 
localization (surrounding small capillaries or larger vessel) and 
their appearance, mural cells are divided into single-layered 
pericytes or several layers of vascular smooth muscle cells. 
Mural cells can be isolated from the stromal-vascular fraction 
of white adipose tissue (29). The transplantation of PDGFRβ-
positive cells, sort-purified from the stromal-vascular fraction, 
into the kidney capsule of mice lacking endogenous FDCs gave 
rise to artificial lymph nodes containing fully differentiated 
FDCs. This showed that FDCs are generated from perivascular 
cells. The ubiquity of such perivascular cells and, therefore, 
likely FDC precursors also explains why it is possible for FDCs 
to arise in any tissue or organ (25). It remains to be shown, 
whether any mural cell can give rise to FDCs or whether it 
needs to be derived from specific tissues, such as the adipose 
tissue. This is of particular interest as LN anlagen usually are 
inserted within fat pads. Indeed stimulation of LTβR signaling 
inhibits adipocyte differentiation and promotes a fibroblast-like 
phenotype (30).

Follicular dendritic cells are not the sole stromal cell of SLOs. 
Fibroblast reticular cells (FRCs) contribute to the structure and 
function of the T-cell zone, while marginal reticular cells (MRCs) 
are important for the function and the structure of the splenic 
marginal zone (MZ) (31). Recently, novel stromal subpopula-
tions were identified, such as the versatile stromal cells at the T 
cell–B cell border of inflamed B-cell follicles [VSCs; (32)] and the 
CXCL12-expressing reticular cells of the GC dark zone [CRCs; 
(2)]. FDCs, MRCs, and FRCs share the expression of many mark-
ers, such as LTβR, BP-3, VCAM-1, and ICAM-1 (25, 33–35), 
which could also suggest a common precursor. To identify this 
potential precursor, labeling experiments were performed with 
fetal mesenchymal progenitors of spleen and lymph nodes. 
Splenic mesenchymal precursors were followed using either 
Nkx2-5-Cre or Islet1-Cre reporter mice and found to contribute 
to FDCs, FRCs, MRCs, and mural cells (36). A reporter mouse 
for neural crest cells (Wnt-1-Cre), embryonic progenitor cells 
that give rise to mesenchymal structures of the head and the 
neck region, was used to test if FDCs in auricular and cervical 
lymph nodes were derived from such cells. Indeed, Jarjour et al. 
could show that FDCs as well as MRCs and other stromal cells 
can be labeled with this technique (24). While the authors did not 
confirm if the Wnt-1-Cre reporter also labeled PDGRβ+SMA+ 
perivascular precursors in lymph nodes, FRCs, and precursors 
thereof, have been attributed a pericyte-like character and 
reside as CCL21+CCL19+PDGFRβ+SMA+ cells in perivascular 
locations of inguinal and popliteal lymph nodes (35,  37). The 
transplantation of fetal splenic Nkx2-5-reporter positive cells 
or adult adipose PDGFRβ stromal vascular cells generated 
artificial lymph nodes, further supporting the idea that these 
early precursors can contribute to all stromal compartments and 
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FiGURe 1 | Model of FDC development. Mural cells and lymphoid tissue 
organizer cells line blood vessels (top panel) at places where future lymphoid 
tissues develop. The arriving lymphoid tissue inducer cells (LTi) express 
membrane bound LTα1β2 and trigger expansion of lymphoid tissue organizer 
cells and upregulation of the chemokine CXCL13 (second panel). Further 
recruitment of T and B lymphocytes provisioning LTα1β2 leads to the 
induction of marginal reticular cells (MRC), follicular dendritic cell (FDC), and 
fibroblast reticular cell (FRC) precursors, all likely to be generated from 
lymphoid tissue organizer cells (third panel). Shared expression of markers of 
MRC and FDC suggest a close lineage relationship, further supported by 
appearance of mature FDC next to MRC. The influx of T and B cells further 
leads to a zonal segregation and differentiation of blood vessel into marginal 
sinus and central arteriole as shown in case of the spleen (bottom panel). 
Markers used to identify specific stromal populations are highlighted in bold.

3

Kranich and Krautler How FDCs Shape the Antigenome

Frontiers in Immunology | www.frontiersin.org June 2016 | Volume 7 | Article 225

even includes stromal organizer cells able to initiate lymph node 
anlagen (25,  36). A  model for FDC development is illustrated 
in Figure 1.

THe DiSCOveRY OF FDCs

As mentioned above, the deposition of antigen within SLOs 
was studied extensively in the 1960s, using radioactively labeled 
microbial antigens, such as isolated flagellin derived from 
Salmonella. Immunofluorescent detection of antigens, which was 
a very new technique at that time, was also used in some of the 
studies (38, 39). A common observation was that even though 
most of the antigen was endocytosed by phagocytic cells, some 
remained extracellularly on the surface of cells, whose identity was 
obscure at that time. Miller and Nossal described that within the 
follicle cell surface-bound antigen was trapped on fine processes 
of cells, which at that point they believed to be a phagocytic cell 
subset (39). However, later electron-microscopy studies clarified 
that antigen was rather associated with the dendritic processes of 
non-phagocytic reticular cells and that these cells formed large 
web-like structures (3, 40, 41).

While further studies in the following years dealt with the 
exact distribution of antigen within the lymph node and GCs, the 
precise nature of these antigen-retaining reticular cells remained 
unclear for several more years. Various different names were used 
for these cells by the different laboratories that studied them. So 
they were also sometimes referred to as dendritic macrophages 
or dendritic reticular cells (40, 42). However, the common feature 
recognized by all these studies (43) was the extraordinary ability 
of these cells to retain antigen on their cell surface. Hence, these 
cells clearly differed from the typical phagocytic cells. In 1978, 
Chen et al. published a detailed anatomical and functional study 
of these cells. They introduced the name “FDCs” owing to their 
long cytoplasmic processes, and not because of relations to classi-
cal dendritic cells (DCs) (44). The authors realized that the name 
may not be ideal and suggested that at a later time point, when 
more would become known about these cells the name might 
need to be reconsidered (44). However, even when it became 
evident that FDCs lacked MHC class II expression, a molecule 
expressed at high levels by conventional, hematopoietic DCs, the 
name FDCs persisted (45) with the consequence that FDCs are 
still often confused with conventional DCs.

Using electron-dense tracers, Chen et al. showed that FDCs, 
unlike macrophages, do not actively endocytose (43, 44), a view 
that has recently been challenged by a study that showed that FDCs 
endocytose ICs, which they acquire from non-cognate B cells. In 
contrast to macrophages, ICs endocytosed by FDCs retain their 
native form and recycle to the cell surface (46), a feature essen-
tial for long-term antigen display. Electron microscopy further 
revealed that FDCs have unique cellular structures, including 
large, irregular nuclei, containing little heterochromatin, and 
only few organelles. One striking feature was that FDCs only 
had small cell bodies, while their cytoplasm extended into many 
filiform dendrites, forming an extensive net-like structure, which 
seemed to act like a cap covering the secondary follicle (43, 44).

iMMUNe-COMPLeX TRAPPiNG – THe 
CARDiNAL FUNCTiON OF FDCs

In the 1960s, researchers tried to address the molecular require-
ments for antigen retention in B-cell follicles. Nossal et  al. 
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compared antigen distribution in non-immunized rats with 
those that either had received a passive or an active immuniza-
tion against Salmonella prior to administration of radiolabeled 
Salmonella flagellin. Strikingly, they observed that immunization 
greatly influenced the distribution of antigen within the lymph 
node. Rats that were actively or passively immunized before 
they received radiolabeled antigen had a faster and more intense 
accumulation of antigen in their follicles than non-immunized 
animals. The increase in follicular antigen deposition seen in 
immunized rats led the authors to conclude that an opsonin was 
responsible for the efficient targeting of antigen to the follicle, and 
that this opsonin was likely to be an antibody (47). This observa-
tion was also confirmed to hold true in other species: Humphrey 
et al. immunized rabbits with non-microbial antigens (radiola-
beled hemocyanin or human serum albumin). Prior to injection 
of radiolabeled antigen, the rabbits were either immunized with a 
single injection of unlabeled antigen, received repeated injections 
of antigen shortly after birth (inducing antigenic tolerance) or 
had remained untreated (naive). While uptake of radiolabeled 
antigen by medullary sinus macrophages did not differ between 
the three treatments, no antigen was retained by FDCs in the 
follicles of naive rabbits. Furthermore, tolerized rabbits had no 
detectable levels of antibody and showed no follicular antigen 
retention by FDCs. Thus, it was established that for the follicular 
retention of antigen the presence of antigen-specific antibodies 
was crucial (48).

Still, some studies had shown that low-level retention of antigen 
also occurred in non-primed animals (47). Hence, some doubts 
remained, whether the “follicular opsonin” was the antibody itself 
or if another, antibody-induced substance, was involved.

Experiments by Williams then showed that a substance pro-
duced by lymphocytes was important: he had previously seen a 
diminished uptake of Salmonella flagellin in lymphoid follicles 
after depletion of peripheral lymphocytes by partial irradiation 
with shielded bone marrow (49). This observation had led him to 
assume that lymphocytes produced substances with opsonizing 
activity. To test this hypothesis, he monitored the accumulation 
of flagellin in follicles in the absence of peripheral lymphocytes 
and assessed how the application of normal rat serum or anti-
body influenced follicular antigen deposition. A decline in the 
retention of radiolabeled antigen was observed from day 5 after 
irradiation onward. Jaroslow and Nossal had previously shown 
that FDCs are highly resistant to irradiation, so an impairment 
of FDC function could be excluded as the reason for reduced 
antigen accumulation following irradiation (50). To restore the 
antigen retention, normal rat serum or anti-flagellar immune 
serum was injected. Immune serum significantly improved anti-
gen trapping, as did normal rat serum, but for the latter 25-times 
more volume was required. By contrast, fetal calf serum did not 
improve the antigen uptake in follicles, showing that serum-
dependent antigen trapping was species specific. Furthermore, 
neither injection of lymphocytes nor supernatant from cultured 
lymphocytes showed an effect. While this study had pitfalls 
mainly due to the irradiation, still an important conclusion 
could be drawn from this study; immune serum contained 
large-amounts of the “follicular opsonin,” also supporting the 
idea, that antibodies might be the crucial opsonin. However, the 

finding that non-immune serum also was able to restore antigen 
retention in the follicle even though at a much lower efficiency, 
suggested the presence of additional opsonins (49).

While it became generally accepted that antigen–antibody 
complexes were crucial for efficient targeting of native antigen 
to FDCs, years had to pass until other factors essential for 
IC-trapping, namely complement, were identified. Only in 1974 
Pepys found that depletion of the complement component C3 
by cobra venom factor, strongly reduced T-cell-dependent 
B-cell responses to sheep red blood cells (SRBC), illustrating the 
central role of C3 in the induction of antibody production (51). 
One year later evidence that complement was required to retain 
antigen in the GC came from Papamichail et al., who reported 
that complement inhibition with cobra venom factor blocked 
trapping of aggregated IgG in the splenic follicle (52). In line 
with this, Klaus and Humphrey observed that chronic depletion 
of C3 inhibited memory B-cell formation and concluded that the 
assembly of an antigen–antibody–C3 complex on FDCs is crucial 
for B-cell memory (53). More than 20 years later, the complement 
receptors 1 and 2 (CR1, CR2) were found to be responsible for 
capturing of C3-containing ICs (54). In humans, two separate 
genes encode for CR1 and CR2; in mice, however, the Cr2 locus 
encodes for both CR1 (CD35) and CR2 (CD21) and expression 
of either CR1 or CR2 is determined by alternative splicing. CR2 
binds degradation products of C3, such as iC3bm C3d,g, C3d, 
while CR1 binds C3b and C4b (55). All mature B cells express 
CR2, but particularly high levels are found on MZ B cells. FDCs 
predominantly express CR1 (56). On B cells, CR2 acts as a B-cell 
receptor (BCR) co-receptor. Fusing antigen with one or more 
copies of C3d lowered the amount of antigen needed to induce 
B-cell responses up to 10,000 fold in a CR2-dependent manner 
(57). Several studies have shown that FDCs utilize CR1/2 to retain 
antigen on their surface (54, 56, 58, 59).

In addition to complement receptors, FDCs use other recep-
tors to bind ICs. Ex vivo IC-trapping experiments on splenic 
cryosections of immunized mice were tested in presence or 
absence of serum for the retention of ICs. In presence of serum, 
most trapping depended on CR1/2, since CR1/2 blocking anti-
bodies dramatically reduced IC-capturing. However, in absence 
of complement (without serum), some trapping on a subset of 
FDCs still occurred. This residual trapping could be blocked with 
anti-FcγRIIβ antibodies (59). The importance of Fc-receptors for 
IC-trapping by FDCs was also confirmed in vivo, since Fcgr2b−/− 
mice showed significantly reduced IC-trapping, and although 
primary antibody responses are unaltered in mice with FcγRIIβ-
deficient FDCs, recall responses are diminished (60).

In summary, the crucial components to deliver antigen to 
FDCs are antigen-specific antibodies and complement factors. 
But how exactly antigen reaches FDCs has remained unclear for 
a long time.

MeCHANiSMS OF ANTiGeN 
DeLiveRY TO FDCs

Already in 1983, Szakal et  al. described antigen transport cells 
(ATCs) that supposedly transported antigen from the subcapsular 
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FiGURe 2 | iC acquisition. In the spleen (left panel), non-cognate marginal zone (MZ) B cells capture ICs, consisting of antigen, IgM or IgG, and C3 degradation 
products (C3d and C3b), from the blood stream (1). MZ B cells, which have captured ICs in a C3d/CR2-dependent fashion, then migrate into the follicle, where they 
transfer the ICs onto FDCs, which bind them via C3b and CR1 (2). The ICs are then released from the MZ B cell (3). In the lymph node (right panel), subcapsulary 
sinus macrophages (SCSMϕ) capture ICs consisting of antigen, IgM or IgG, and C3d and C3b degradation products from the lymph (1). SCSMϕ migrate into the 
follicle and transfer ICs to follicular (FO) B cells in a CR2-dependent manner (2). Subsequently, FO B cells transfer the ICs onto FDCs (3, 4).
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sinus to the FDCs. These cells were non-phagocytic and had mor-
phological similarities with FDCs, leading to the assumption that 
these cells might be pre-FDCs, an observation which remained 
unconfirmed (61, 62).

It was shown that in the spleen MZ B cells capture IgM-
containing immune complexes (IgM-ICs) and transport and 
deposit them onto FDCs within the B-cell follicle (63, 64). This 
transfer was dependent on complement and CR1/CR2, and mice 
deficient for those factors, showed no accumulation of IgM-ICs 
on FDCs. Still, how would antigen be brought to FDCs in lymph 
nodes that lack MZ B cells? This was revealed by two-photon 
microscopy studies (65, 66). Phan et  al. showed that in lymph 
nodes subcapsulary sinus (SCS) macrophages capture immuno-
fluorescently labeled ICs [Phycoerythrin:ICs; (65)]. These mac-
rophages monitor the lymph fluid that arrives in the subcapsular 
sinus, bind large amount of ICs and have little endocytic activity. 
ICs travel along the processes of these macrophages and transfer 
antigen onto non-cognate follicular B cells in a complement 
receptor-dependent manner. Subsequently, ICs are shuttled from 
the B cells onto FDCs (66). Mechanisms of IC delivery to FDCs 
are depicted in Figure 2.

THe ROLe OF FDC-BOUND iCs  
iN B-CeLL ReSPONSeS

Immune complexes bound by FDCs are organized in a bead-like 
formation, as the so-called iccosomes. These IC-coated bodies 
can be endocytosed by tingible body macrophages (TBMϕs) and 
B cells (67). The effect on B-cell activation, GC development, 
affinity maturation, and memory B-cell maintenance of FDC-
bound ICs has been studied in great detail (1). It is generally 
accepted that FDC function as storage of native antigen. During 
the GC reaction, high-affinity B cells access antigen, internalize, 
process, and display it to T helper cells, thereby receiving BCR 
stimulation as well as additional T helper cell-derived survival 
signals (68, 69). Early studies assessing the influence of FDCs on 
B-cell activation were performed in vitro using FDC-enriched 

clusters. They showed that only in the presence of FDCs, ICs (in 
the form of isolated iccosomes) were able to strongly activate B 
cells, evidenced by substantially increased antibody production 
against the cognate antigen. Hence, FDCs stimulate B cells via 
FDC-bound antigen, but also via antigen-independent FDC 
products (70). In addition to this, Boes et  al. found that in 
the absence of secreted IgM antigen trapping by FDCs was 
reduced and GC formation as well as antibody affinity matura-
tion impaired (71).

Based on these and other studies, the view that FDCs can 
take part in B-cell activation and play an important role during 
affinity maturation by displaying native antigen and by presenting 
survival signals to B cells and that they are involved in memory 
B-cell development has become generally accepted.

However, this view has been challenged by results obtained 
from mice that produce only membrane bound IgM, hence, 
unable to make ICs. These mice showed normal GC formation, 
despite absent IC-trapping by FDCs (72). Furthermore, CR1/2-
deficient mice are also able to form GCs and B cells of such 
mice even undergo affinity maturation, although numbers and 
size of the GCs were reduced and antibody levels much lower 
than those in their wild-type counterparts (73, 74). The role of 
FDCs and ICs trapped by them has then been critically discussed 
(75, 76). Haberman and Shlomchik concluded that the role of 
FDCs in providing non-specific support for the GC reaction is 
undisputed, but ICs on FDCs might only be important under 
certain conditions. By contrast, Kosco-Vilbois stresses that 
immune responses are still most efficient in the presence of 
ICs on FDCs. Thus, an efficient vaccine should maximize the 
deposition of ICs on FDCs.

SPeCULATiONS ON ADDiTiONAL 
FUNCTiONS OF FDCs

While the consequences of IC-trapping by FDCs are still not 
fully understood, other functions of FDCs have been identi-
fied. The expression of cytokines directs B cells to primary and 
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FiGURe 3 | FDC influence on B cells. Recruitment: FDCs secret the B cell attracting chemokine CXCL13 (1). GC B cells express the CXCL13-binding chemokine 
receptor CXCR5 and are thereby attracted towards the B cell follicle (2). Survival: FDCs produce B-cell activating factor [BAFF, (1)], which is involved in regulating GC 
B cell survival (2). IC presentation: Via their CR1s FDCs present naive antigen to GC B cells (1). Antigen-specific GC B cells, recognizing the antigen via their BCR, 
endocytose, and process it into peptides (2), and subsequently present it to T follicular helper cells (TFH cells) in form of peptide-MHCII (3). TFH cells then supply 
cognate B cells with survival signals. It is assumed that after each round of somatic hypermutation, B cells with high-affinity BCRs are able to access antigen 
presented by FDCs and, thus are able to interact with TFH cells. This leads to the positive selection of such B cells, while others bearing lower affinity receptors are 
unable to compete for binding to limiting amounts of antigen and undergo apoptosis. Removal: the large number of GC B cells that fail to bind antigen presented by 
FDCs and do not receive TFH help die by apoptosis. To prevent autoimmunity, these cells have to be cleared efficiently. FDCs secrete the apoptotic cell binding 
protein Mfge8 (1). Mfge8-opsonized apoptotic cells (2) are then recognized and removed by tingible body macrophages (TBMϕs, 3, 4).
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secondary follicles (1, 77), they supply B cells with trophic factors, 
such as B-cell activating factor [BAFF; (78)] or instruct TBMϕs 
to remove apoptotic GC B cells through the secretion of the 
phosphatidylserine-binding bridging molecule Mfge8 (28). The 
main functions of FDCs are shown in Figure 3.

However, we still think that apart from the role of FDCs in 
establishing the correct follicular microarchitecture and enabling 
the formation of GCs (79), one of the most important functions 
of FDCs lies in the trapping of antigen and activation of B cells. 
FDCs are the only known cell type that extensively trap ICs for 
long periods of time in a way that protects native antigen from 
degradation (46). Therefore, FDCs shape the antigenome – the 
sum of all native antigens that can be detected by B cells, in 
primary and secondary follicles. However, although evidence is 
lacking, we postulate that FDCs might not only trap antigen in the 
form of ICs, but also in a way that does not require the presence of 
antigen-specific antibodies, hence, would allow antigen trapping 
also in individuals that have not previously been exposed to the 
antigen.

The reasons why we think a trapping mechanism independ-
ent of antibodies might exist are the following. It is still widely 
unknown how naive B cells are activated in a non-immune host, 
where ICs are absent. While in immune hosts not only the captur-
ing of antigen by FDCs is dependent on ICs but also the antigen 
transport into the follicle requires ICs. It has been shown that 
native antigen is captured by subcapsulary sinus macrophages 

(SCSMϕ) in lymph nodes (66) and by MZ B cells in the spleen 
(63) in an IC-dependent manner. These cells then transport the 
antigen inside the follicle and deposit it onto FDCs, where it then 
can activate naive B cells.

While natural IgM is certainly of importance to control 
infections before high-affinity antibodies are generated (80), 
natural IgM does not seem to be sufficient to deposit easily detect-
able amounts of antigen onto FDCs (47–49). Furthermore, it is 
known that some viral glycoproteins (such as HIV gp120) quite 
successfully evade recognition by antibodies, e.g., by shielding 
their epitopes with glycans (81). This makes it very hard for the 
infected host to develop antibodies against such antigens. In such 
a case, it seems counterintuitive that antibody-containing ICs are 
required to mount a B-cell response, especially since such an IC 
would potentially mask the rare epitope needed for the initial 
BCR engagement in order to activate the cognate B cell.

Another study showed that soluble antigen readily diffuses 
through the follicle and is capable of activating B cells (82). 
However, this study used adoptively transferred BCR transgenic 
B cells, with the consequence that an unphysiological high num-
ber of antigen-specific B cells are located in the follicles. If soluble 
antigen is efficient enough to trigger B-cell responses, in a more 
natural setting, where antigen, as well as antigen-specific B cells 
are limiting, remains an open question.

Using BCR transgenic B cells specific for HEL and DCs 
that were pulsed with HEL, Qi et al. showed in a two-photon 
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microscopy approach that DCs can carry unprocessed antigen 
into the lymph node and activate cognate B cells in extra-
follicular regions (83). If this is a general mechanism of antigen 
transport into the lymph node and how efficiently this activates 
B cells under more physiological conditions remains to be 
addressed.

While all these possibilities are certainly able to trigger B-cell 
responses, the presentation of antigen via FDCs (46) seems to be 
the most intuitive and effective way to bring antigen in contact 
with antigen-specific B cells.

Secondary lymphoid organs are considered to be specialized 
structures to ensure that a DC, presenting pathogen-derived 
peptides via MHC class II molecules, finds and activates the rare 
cognate T cell that recognizes these peptides. Accordingly, we 
think that the network-like structure of FDCs within B-cell fol-
licles ensures that a rare cognate B cell meets its specific antigen. 
To do so FDCs retain native antigen sufficiently long, protected 
from degradation and at the same time concentrating it at the 
location where many B cells reside. This strongly increases the 
likelihood of antigen-encounter by the rare cognate B cell. Such 
a mechanism is especially important when antigen and cognate 
B cells are limited. In artificial systems where large quantities of 
antigen are combined with a high frequency of antigen-specific 
B cells (like in models that use BCR transgenic B cells), naive B 
cells might readily get in contact with their antigen even without 
the need of FDCs. Thus, although, it is often assumed that FDCs 
play no or only a minor role in the initial priming of naive 
B cells (84), we, therefore, postulate that efficient mechanisms 
exist, which allow FDCs to capture, retain, and present antigen 
in non-immune hosts in an antibody-independent manner and, 
thus, can play an important role in the initial activation of B 
cells.

CONCLUDiNG ReMARKS

The biology of FDCs has been extensively studied, nevertheless, 
many questions regarding these cells remain unanswered.

Although there have been some controversies about their 
importance in the past (75, 76), FDCs are now generally accepted 
as indispensable for efficient, high-affinity antibody responses. 
Importantly, FDCs are the only known cell type that functions 
as a long-term antigen depot. We think it is important to under-
stand what the consequences of such antigen storage are for the 

activation of B cells, especially during chronic inflammations, 
where FDC-containing TLOs arise in non-lymphoid tissues, e.g., 
during rheumatoid arthritis (85). There, FDCs might function 
as a tissue-specific depot of antigen. Although, little is known, 
how antigen is acquired by FDCs in TLOs, it might differ from 
antigen acquisition in lymph nodes or spleen. Also the nature 
of the antigen might be different from antigen that circulates in 
the blood stream and is then captured by FDCs in the spleen 
or from antigen that is transported by the lymph flow to the 
draining lymph node. It is possible that FDCs in TLOs might 
preferentially capture antigens that are released in the affected 
tissue by local tissue damage and that this drives GC formation 
and chronic inflammation or autoimmunity in affected tissues. 
Hence, FDCs have long been considered an attractive target for 
therapeutic intervention, e.g., by administering LTβR-Ig fusion 
proteins, which lead to FDC ablation (86). However, clinical tri-
als assessing efficacy of LTβR-Ig fusion proteins (Baminercept) 
in RA patients did not show a measurable effect in treated 
patients (87). Other studies, assessing, for example, the efficacy 
of Baminercept to treat Sjögren’s syndrome are still ongoing 
(study ID NCT01552681).

Being “dynamic antigen libraries” (5), FDCs hold valuable 
information about antigens and antigen epitopes that trigger 
antibody responses. This information would be of relevance in 
autoimmunity, chronic inflammation, and cancers with intratu-
moral TLOs to identify antigenic triggers of disease or cancer 
antigens that can be used to fight tumors. However, there are 
currently no techniques available to screen and define the antige-
nome of FDCs. It would be important to develop techniques 
that allow the isolation of the FDC antigenome. Subsequent 
proteomic analysis of the FDC-trapped antigens would provide 
valuable information that could be exploited for development of 
novel vaccines or for therapeutics against chronic inflammation.
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