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The diseases caused by African trypanosomes (AT) are of both medical and veterinary 
importance and have adversely influenced the economic development of sub-Saharan 
Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy 
is the only strategy available to treat the disease. These strictly extracellular protozoan 
parasites are confronted with different arms of the host’s immune response (cellular as 
well as humoral) and via an elaborate and efficient (vector)–parasite–host interplay they 
have evolved efficient immune escape mechanisms to evade/manipulate the entire host 
immune response. This is of importance, since these parasites need to survive sufficiently 
long in their mammalian/vector host in order to complete their life cycle/transmission. 
Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model 
organism) employ, comprising both tsetse fly saliva and parasite-derived components to 
modulate host innate immune responses thereby sculpturing an environment that allows 
survival and development within the mammalian host.
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iNTRODUCTiON

Trypanosomatids, which include African trypanosomes (AT), American trypanosomes (i.e. 
Trypanosoma cruzi causing Chagas’ disease) and different Leishmania species, comprise a large 
group of flagellated unicellular protozoa with a parasitic and complex digenetic life cycle. These 
diseases, exhibiting high morbidity and mortality rates, affect millions of impoverished populations 
in the developing world, display a limited response to chemotherapy, and are classified as neglected 
tropical diseases by the World Health Organization (WHO) (1, 2). In contrast to the other two 
trypanosomatids, the diseases caused by AT are of both medical and veterinary importance and 

Abbreviations: BBB, blood–brain barrier; DMG, dimyristoyl glycerol; GPI, glycosylphosphatidylinositol; Hb, hemoglobin; 
Hp, haptoglobin; HpHbR, haptoglobin–hemoglobin receptor; LS, long slender; M1 cells, classically activated myeloid cells; 
NHS, normal human serum; SR-A, scavenger receptor type A; SRA, serum resistance antigen; SS, short stumpy; TbAdC, 
T. brucei adenylate cyclase; TbKHC, T. brucei kinesin heavy chain; TgsGP, T. b. gambiense-specific glycoprotein; TLF, 
Trypanosome lytic factor; TLTF, T-lymphocyte-triggering factor; TSIF, trypanosome suppression immunomodulating factor.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00233&domain=pdf&date_stamp=2016-06-24
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00233
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:bstijlem@vub.ac.be
http://dx.doi.org/10.3389/fimmu.2016.00233
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00233/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00233/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00233/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00233/abstract
http://loop.frontiersin.org/people/108970/overview
http://loop.frontiersin.org/people/325070/overview
http://loop.frontiersin.org/people/73998/overview
http://loop.frontiersin.org/people/132941/overview
http://loop.frontiersin.org/people/324991/overview


2

Stijlemans et al. Trypanosomes Sculpture Host Immune Responses

Frontiers in Immunology | www.frontiersin.org June 2016 | Volume 7 | Article 233

adversely influence the economic development of sub-Saharan 
Africa. Indeed, upon transmission through the bite of their 
blood-feeding vector (i.e., the tsetse fly, Glossina spp.), these 
parasites can cause fatal diseases in mammals, commonly called 
sleeping sickness in humans [Human African Trypanosomosis 
(HAT)] or Nagana (AAT, Animal African Trypanosomosis) in 
domestic livestock. According to the WHO, from the 60 million 
people living in the risk areas (i.e., the “tsetse” belt), approximately 
300,000 people are currently infected with trypanosomes leading 
to 10,000–40,000 deaths annually (3, 4). The human pathogens 
Trypanosoma brucei gambiense (accounting for over 95% of 
cases) and Trypanosoma brucei rhodesiense (accounting for the 
remainder of cases) do not only differ in geographical distribution 
but also differ biologically, clinically, therapeutically, and epide-
miologically and cause separate diseases (3, 5, 6). By contrast, the 
animal pathogens causing either Nagana (Trypanosoma brucei 
brucei, Trypanosoma congolense, Trypanosoma vivax) or Surra 
(Trypanosoma evansi) or Dourine (Trypanosoma equiperdum), 
do not cause disease in humans. Of note, some atypical human 
infections with animal trypanosomes, such as T. evansi, have been 
reported, which relate to deficiencies in the innate resistance to 
these otherwise non-human pathogens (7). Yet, AAT mainly 
caused by T. congolense and to a lesser extent by T. b. brucei and 
T. vivax forms a major constraint on cattle production. Hence, 
Nagana has a great impact on the nutrition of millions of people 
living in the most endemic areas, and on the agriculture econom-
ics of their countries, resulting in an estimated annual economic 
cost of about US$ 4 billion (8). Furthermore, the lack of prospect 
for vaccine development against AT is reinforced by (i) the fact 
that pharmaceutical companies are less prone to engage/invest in 
drug discovery/development against diseases that affect the poor-
est people, (ii) the political instability of the affected regions, (iii) 
the fact that wild animals function as reservoir of the parasite and, 
therefore, hamper the control of the disease, and (iv) the inap-
propriate use of the available drugs resulting in the emergence of 
drug resistance (8–11). Nevertheless, so far chemotherapy using 
compounds that target unique organelles of trypanosomes (i.e., 
glycosomes and kinetoplast) that are absent in the mammalian 
host and/or trypanosome metabolic pathways that differ from the 
host counterparts (carbohydrate metabolism, protein and lipid 
modifications, programed cell death) remain the only therapeutic 
choice for these diseases (12–16).

In contrast to the other two trypanosomatids, AT are strictly 
extracellular. Hence, they have developed efficient immune 
escape mechanisms to evade/manipulate the entire host immune 
response (cellular and humoral), involving an elaborate and effi-
cient vector–parasite–host interplay, to survive sufficiently long 
in their mammalian host in order to complete their life cycle/
transmission. Most of the research on AT uses murine models, 
which are more easily amenable compared to cattle or other 
domestic animals. Furthermore, given that the HAT causing 
T.  b.  rhodesiense and T. b. gambiense parasites highly resemble 
T.  b.  brucei (a non-human pathogenic subspecies causing 
Nagana), and chronic murine HAT models are scarce, the major-
ity of research uses T. b. brucei as a model (17, 18). In this review, 
we will give an overview of the immunological events occurring 
during the early stages of infection within the mammalian host, 

using T. b. brucei as a model organism. We will also describe the 
different strategies that trypanosomes developed to sequentially 
activate and modulate innate immune responses to successfully 
escape immune elimination and maintain a chronic infection. 
Finally, we will discuss briefly how the host innate/adaptive 
immune response can culminate in immunopathogenicity 
development in trypanosusceptible animals.

evASiON MeCHANiSMS OF AFRiCAN 
TRYPANOSOMeS iN THe 
MAMMALiAN HOST

Trypanosoma brucei parasites cycle between the alimentary tract/
salivary glands of the tsetse fly vector and the blood/tissues of the 
mammalian host. In each host, parasites undergo many life cycle 
changes (i.e., in the tsetse fly as procyclic/epimastigote/metacyclic 
forms and in the mammalian host as bloodstream forms) with 
discrete/important morphological and metabolic changes, which 
are programed precisely to adapt to different growth conditions/
nutrient availability imposed by the different hosts and microen-
vironments they inhabit (19–22). These include, fine-tuning of 
energy metabolism, organelle reorganization, and biochemical and 
structural remodeling, which is supported by major changes in gene 
expression and proliferation status to adapt/survive in the different 
hosts (23). Furthermore, within the mammalian host, the complex 
life cycle of T. brucei consists of a succession of proliferative [long 
slender (LS)] and quiescent [short stumpy (SS)] developmental 
forms, which vary in cell architecture and function (23). Hereby, 
in response to a quorum sensing mechanism involving a stumpy-
inducing factor (SIF) (24, 25), the LS forms differentiate into SS 
forms that are pre-adapted for the next developmental transition 
to procyclic forms, which occurs after ingestion by a tsetse fly (26).

Due to millions of years of co-evolution, these parasites have 
been able to thwart host innate responses and escape early recog-
nition, allowing the initiation of infection in their respective hosts. 
In this section, we will give an overview of how trypanosomes 
can benefit from tsetse fly saliva components to initiate infection 
and subsequently how trypanosomal components can dampen/
sculpture distinct innate immune responses in the mammalian 
host, which are pivotal in allowing early parasite infection and 
subsequent chronic infection.

Tsetse Fly Saliva Components Sculpture 
an immune-Tolerant Microenvironment 
to Allow establishment of Trypanosome 
infections
A typical infection in the mammalian host begins when the infec-
tive stage, i.e., the metacyclic form, is co-injected with saliva intra-
dermally by the tsetse fly. Hereby, the skin of the vertebrate host 
is a crucial anatomical barrier that pathogens have to overcome 
in order to establish infection. Within this microenvironment, 
pharmacological as well as immunological processes occur aimed 
at preventing pathogen development, whereby cells (lympho-
cytes, myeloid phagocytes, keratinocytes,…) sense the presence 
of damage-associated molecular patterns (DAMPs) as well as 
pathogen-associated molecular patterns (PAMPs) via different 
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pattern recognition receptors (PRRs), leading to the secretion of 
pro-inflammatory cytokines, type-I IFN, chemokines, reactive 
oxygen and nitrogen species, and antimicrobial peptides (27–29). 
Yet, during evolution, the skin has become a key interface for 
arthropod-borne diseases, whereby the pathogen in concert with 
saliva components transforms the skin barrier into an immune-
tolerant organ supporting parasite development (30–32). This 
was strengthened by the observations by Caljon et al. (33) that the 
presence of tsetse fly saliva allowed a faster onset of the disease, 
which was associated with a reduced induction of inflammatory 
mediators at the site of infection and the interference of tsetse fly 
saliva with host hemostatic reactions (34). Indeed, tsetse fly saliva 
was shown to exert a dual pharmacological role (see Figure 1, 
red panel), (i) interfere with vertebrate host responses to enable 
successful blood feeding via the suppression of vasoconstric-
tion, platelet aggregation, and coagulation [involving the anti-
coagulant thrombin inhibitor (TTI), a 5′Nucleotidase-related 
apyrase and Adenosine Deaminase-related proteins (ADA)] 
(35–41) and (ii) modulate the host immune environment at the 
bite site that impacts pathogen transmission (42–44). Saliva was 
also reported to be highly immunogenic/allergenic in nature, 
thereby promoting infection onset in saliva immunized animals 
(45). For instance, Tsetse Antigen5 (TAg5) was shown to sensitize 
mice and trigger acute hypersensitivity reactions, which in turn 
could allow more efficient parasite extravasation into the blood 
circulation (46). A recently identified immunoregulatory peptide 
Gloss2 in tsetse fly saliva was shown to inhibit the secretion of 
trypanolytic molecules, such as TNF, and other pro-inflammatory 
cytokines, such as IFN-γ and IL-6, which could allow parasites to 
avoid initial elimination (44). Yet, through the use of transcrip-
tome analyses and the availability of a partially annotated tsetse 
genome, it might be expected that many more proteins will be 
identified in the near future (34, 47).

Within the local immune-tolerant skin microenvironment, the 
metacyclic parasites respond to the increased temperature and 
rapidly transform into blood-stage trypomastigotes (LS forms), 
which divide by binary fission in the interstitial spaces at the bite 
site. Subsequently, they disseminate via the draining lymph nodes 
(48, 49). The first visible sign of a trypanosome infection coincides 
in many but not all instances with the occurrence of a “chancre,” 
several days after infection (48, 50, 51). This development (onset, 
size, and duration) of the chancre correlates with the number 
of metacyclic parasites inoculated into the skin and is due to a 
local immune response directed against the variable antigen type 
(VAT) of the proliferating metacyclic forms (48). This consists 
of buildup of metabolic waste and cell debris from apoptotic 
cells, mainly neutrophils, releasing their intracellular cargo [i.e., 
neutrophil extracellular traps (NETs), antimicrobial peptides] 
aiming at capturing and subsequently killing the pathogens (52). 
Of note, although there are so far no reports documenting the 
contribution of neutrophils at the early stages of AT infection, 
the contribution of these phagocytes are documented in many 
other protozoan infections, such as Leishmaniasis and Malaria 
(52–54). Subsequently, the apoptotic cells in concert with 
parasite- and vector-derived components will be internalized by 
myeloid phagocytic cells (MPC) and degraded/processed to initi-
ate innate immune responses (52–54). Also CD4+ T lymphocytes 

were shown to play a key role in chancre formation, since in vivo 
depletion of CD4+ T cells before inoculation of trypanosomes 
via a tsetse-fly bite resulted in a significant reduction of chancre 
formation (50).

Trypanosome-Derived Components 
Allow Parasite Survival and Sculpture 
Host Responses
SRA and TgsGP Allow Resistance to Normal 
Human Serum-Mediated Lysis
An important first step in the initiation and establishment of 
a trypanosome infection in the mammalian host is associated 
with cell cycle re-entry and metabolic/morphological/structural 
changes (see Figure 1, blue panel). This is required for acquisition 
of nutrients (i.e., glucose/iron/heme) in order to proliferate and 
subsequently activate immune evasion mechanisms to establish 
infection (20, 48, 55). Since trypanosomes are deficient in heme 
biosynthesis and heme cannot diffuse through the parasites’ 
membrane (56–58), they require uptake of exogenous heme 
by the haptoglobin (Hp)–hemoglobin (Hb) receptor (HpHbR) 
located in the parasites’ flagellar pocket (59). Following release 
of Hb from destroyed erythrocytes, it will be complexed with 
Hp, forming a Hp–Hb complex, which can be recognized by 
the myeloid phagocyte system (MPS) via CD163 and by the 
trypanosomal HpHbR. This will allow parasites to acquire and 
incorporate heme into intracellular hemoproteins required for 
optimal parasite growth and resistance to the oxidative burst 
by host cells. However, the HpHbR is also involved in primate 
innate immunity against certain trypanosome species (60, 61). 
Indeed, the serum of catarrhine primates and humans contains 
two trypanolytic particles: (i) a 500 kDa high-density lipoprotein 
(HDL)-bound trypanosome lytic factor (TLF)-1 and (ii) a 2 mDa 
large lipid-poor (<2%) IgM/apolipoprotein A-1 complex called 
TLF-2, that harbor the trypanolytic primate-specific apolipopro-
tein L1 (ApoL1), ApoA1, and Hp-related protein (Hpr) (62–65). 
Importantly, Hpr is a gene duplication product exhibiting high 
homology with Hp, which interacts with Hb to form an Hpr–Hb 
complex on the TLF-1 particles (66, 67). Following binding of the 
TLF-1 particle to the HpHbR (60, 68, 69), the entire TLF-1 particle 
is endocytosed and targeted to the lysosome. Subsequently, ApoL1 
forms a pore in the endolysosomal membrane and triggers lyso-
somal swelling leading to the lethal release of lysosomal content 
into the parasites’ cytosol (70–76). In addition, it was shown that 
the C-terminal kinesin TbKIFC1 is involved in ApoL1-mediated 
lysis, whereby it transports ApoL1 from the endolysosomal mem-
brane to the mitochondrion, leading to mitochondrial membrane 
depolarization and fenestration and subsequently lysis (77). Two 
different models are proposed to explain TLF-2 mediated killing; 
(i) since both Hpr and ApoL1 are present in this particle and 
TLF-2 killing of T. b. brucei is partly dependent on the TbHpHbR 
receptor for uptake, TLF-2 may function in a manner similar to 
TLF-1 (60, 69). Yet, given that TLF-2 killing was not inhibited 
by the addition of Hp, a potent competitive inhibitor of TLF-1 
uptake, it is more likely that TLF-2 has a different mode of inter-
nalization than TLF-1 (62, 73). (ii)  TLF-2 uptake may also be 
linked to ApoL1 interaction with the T. b. brucei variable surface 
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FigURe 1 | Saliva components and parasite-derived factors sculpture the skin microenvironment. Upon the bite of a trypanosome-infected tsetse fly, 
trypanosomes and saliva components are inoculated intradermally leading to modulation of the skin microenvironment into a trypanosome receptive habitat. To this 
end, saliva components, such as TTI, a 5′Nucleotidase-related apyrase and Adenosine Deaminase-related proteins (ADA) prevent blood coagulation and platelet 
activation/aggregation, while the TAg5 allergen leads to activation of mast cells. Subsequently, these mast cells degranulate and release histamine and TNF, thereby 
increasing vasodilatation and allowing extra/intravasation of immune cells [myeloid phagocytic cells (MPC)] as well as parasites. In addition, this will allow infiltration of 
antibodies as well as complement factors needed for early parasite elimination. Yet, also the complement system (via C3a and C5a) can contribute to (i) increased 
vasopermeability and (ii) recruitment and activation of immune cells (PMN,…). By contrast, the Gloss2 peptide is able to downregulate inflammatory responses that are 
triggered upon breaching the skin anatomical barrier and/or encounter of metacyclic trypanosomes. Within the skin, these metacyclic parasites transform into LS 
bloodstream forms, which is associated with metabolic/structural/morphological changes, including switching of their metacyclic VSG into a blood-stream form VSG, 
required for survival within the mammalian host. The PAMPs of these pathogens (such as VSG and CpG) can be recognized by tissue-resident MPC or keratinocytes 
expressing PRR, leading to their activation and subsequent release of innate immune response triggering signals. For instance, release of chemokines will trigger the 
recruitment of MPC, which can amplify the immune response needed to eliminate skin-associated trypanosomes. Yet, trypanosomes try to dampen the initial pro-
inflammatory immune response by (i) releasing TbKHC or (ii) following phagocytosis of altruistic parasites releasing TbAdC, thereby allowing the remaining parasite to 
survive and proliferate. Within the blood circulation, the parasites encounter the trypanolytic molecules TLF-1 and 2, leading to elimination of non-primate infecting 
parasites. Yet, HAT-causing parasites express SRA or TgsGP, which inactivate the (ApoL1/HpR) TLF-1/2-mediated trypanolytic effects, thereby allowing proliferation 
within the blood circulation.
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glycoprotein (VSG) coat or TLF-2-associated IgM may bind  
T. b. brucei, as it is the only protein component that distinguishes 
both classes of TLF (78). Yet, so far no results supporting either 
mechanism of TLF-2 binding to T. b. brucei have been reported.

In contrast to the widespread T. b. brucei subspecies, which is 
highly infectious in many non-primate species that do not express 
Hpr and ApoL1 (79), the human pathogenic subspecies T. b. rho-
desiense and T. b. gambiense express resistance proteins. Indeed,  
T. b. rhodesiense expresses a serum resistance antigen (SRA) and 
T. b. gambiense expresses a specific glycoprotein (TgsGP) coun-
teracting ApoL1 activity (80–82), thereby enabling these parasites 
to evade the lethal action of TLF particles (see Figure  1, blue 
panel). Furthermore, T. b. gambiense exhibits low-level HpHbR 
expression and harbors an amino acid substitution (L210S) in 
HpHbR, leading to reduced TLF-1 uptake (76, 80–85). Recently, 
it was shown that SRA can be transferred from T. b.  rhodesiense 

to T. b. brucei by membranous nanotubes that originate from 
the flagellar membrane and disassociate into free extracellular 
vesicles (EV) (86). Hence, this could result in the exchange of 
virulence factors that confer resistance to innate elimination.

T. brucei-Derived Kinesin Heavy Chain (TbKHC1) and 
Adenylate Cyclase Dampen Inflammation and 
Promote Parasite Growth
Besides parasite-derived factors playing a role in resistance to nor-
mal human serum (NHS), some parasite-derived molecules (see 
Figure 1, blue panel) are also able to dampen pro-inflammatory 
responses (TNF, NO) by classically activated macrophages (M1), 
needed for initial parasite control. One such important T. brucei 
protein is the Kinesin Heavy Chain 1 (TbKHC1) (87), which is 
released by the parasites in the environment via an unknown 
mechanism and sustains the development of the first (most 
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prominent) peak of parasitemia in the blood and its control 
by the host. Following binding of TbKHC1 to the SIGN-R1 
molecule (i.e., a surface C-type lectin expressed mainly by 
marginal zone macrophages within the spleen), the arginine/
NO metabolism is modulated in favor of arginase activity via an 
IL-10-dependent induction of arginase-1 and down-regulation of 
iNOS activities. In turn, this stimulates the production by the host 
of l-ornithine and hereby the synthesis of polyamines, which are 
essential nutrients for growth of trypanosomes in the host (88). 
Consequently, IL-10/arginase-1-producing immune cells are 
impaired in their capacity to destroy the parasite, thereby favor-
ing parasite settlement. Another factor that trypanosomes use to 
establish infection comprises in the large family of transmem-
brane receptor-like adenylate cyclases (AdCs), called T.   brucei 
Adenylate Cyclase (TbAdC) (89), which converts ATP into 
cyclic adenosine monophosphate (cAMP). During steady-state 
conditions, the TbAdC levels are low as is the cAMP production, 
yet upon stress (such as phagocytosis by M1 cells) the TbAdC 
levels can be elevated ~250-fold above the basal cellular content 
(89, 90). Subsequently, the cytoplasmic cAMP levels within the 
phagocytes increase, activating protein kinase A and leading to 
the inhibition of the synthesis of the trypanolytic cytokine TNF 
(91, 92). Hence, it seems that trypanosomes have developed a 
system whereby altruistic parasites are phagocytosed, thereby 
disabling the M1-mediated innate immune response required for 
parasite control (see Figure 1), and paving the way for initiation 
and establishment of the first wave of parasitemia.

Surface Coat Remodeling Prevents Elimination 
by the Humoral Immune Response
Given that AT are strictly extracellular parasites, they are con-
fronted with the hosts’ humoral immune response. Yet, one of 
the most fundamental changes occurring when parasites are 
inoculated into the mammalian host is the remodeling of the 
parasite cell surface (93). Indeed, within the mammalian host 
the metacyclic forms rapidly transform into the typical LS blood-
stream forms expressing a different uniform VSG coat (94). This 
VSG coat consists of 5 × 106 homodimers of 50–60 kDa subunits 
held on the extracellular face of the plasma membrane by a 
glycosylphosphatidylinositol (GPI) anchor (95), which consists 
of a ethanolaminephosphate-6-mannose-α1,2-mannose-α1,6-
mannose-α1,4-glucosamine-α1,6-myo-inositol-1-phospholipid 
motif and a short galactose chain (96–99). Despite great varia-
tions in primary sequence, the secondary and tertiary structural 
features are highly conserved within the ordered coat structure 
(100). Although VSG molecules are free to diffuse in the plane of 
the membrane (101, 102), this ~15-nm-thick VSG coat has a dual 
role: shield off buried invariant proteins from recognition by the 
hosts’ innate/acquired immune system and protect bloodstream 
parasites against complement-mediated lysis. Indeed, activa-
tion of the alternative pathway, which occurs in the absence of 
specific antibodies (Abs), may potentially play a crucial role 
in parasite clearance during the early stage of infection. Yet, it 
was shown by Devine et al. (103) that T. b. gambiense parasites, 
which are covered by C3, specifically inhibit the activation of the 
alternative pathway through their VSGs by masking sites on the 
plasma membrane, which are capable of promoting alternative 

pathway activation (104). Hence, the activation of the alternative 
pathway did not proceed further than the establishment of the 
C3 convertase, thereby impairing the generation of the terminal 
complex (C5–C9) which normally induces trypanolysis (103). In 
addition, soluble complement molecules, such as C3a and C5a, 
secreted during early stages of trypanosome infection, can further 
contribute to the initiation of the early inflammatory immune 
response within the chancre and may also act as (i) chemotactic 
agents attracting phagocytes to the site of infection and (ii) release 
histamine from mast cells thereby increasing microvascular 
permeability (105), which would allow/enable parasite extrava-
sation into the blood circulation. Of note, the classical pathway, 
activated by immune complexes of trypanosome antigens and 
Abs, seems to contribute to trypanosome clearance through 
antibody-mediated trypanolysis and/or phagocytosis, which 
is of importance during peak parasitemia clearance (see later). 
Yet, also in this scenario, parasites are able to eliminate/remove 
surface-bound IgG (immune complexes) as well as complement 
through their rapid VSG recycling system and thereby prevent 
elimination (106). Furthermore, since complement is essential 
in antibody-mediated destruction of trypanosomes, by releasing 
vast amounts of soluble VSG (sVSG), mainly observed at the peak 
of parasitemia, this will scavenge complement factors and, hence, 
induce a state of hypocomplementemia (107, 108). This might 
favor the survival and escape of a minority of the parasites.

Additionally, binding of anti-VSG IgG or IgM to the trypano-
some’s coat results in parasite aggregation. Yet, trypanosomes are 
able to disaggregate in an energy-dependent manner involving 
protein kinase-C as part of the defense against the host humoral 
immune system (109). Hence, this could function as a survival 
strategy in the presence of antibody prior to the occurrence of 
VSG switching (109). The parasite’s surface consisting of repeti-
tive monotypic VSG molecules can cross-link B cell receptors 
(BCRs) and subsequently lead to T-cell-independent B-cell 
activation (110). However, during the process of antigenic 
variation (from metacyclic form toward trypomastigote form) 
mediated via changing VSG expression sites (i.e., in situ switch-
ing or transcriptional control) or by gene replacement resulting 
in a switch of the terminal telomeric VSG gene, heterologous 
VSG molecules are presented on the surface, thereby forming a 
mosaic VSG coat, which prevents direct B cell activation until a 
VSG uniformity is obtained (111, 112). This in turn might allow 
parasites to transiently escape T cell-independent B cell-mediated 
elimination and gives time to transform into trypomastigote 
forms adapted to survive in the mammalian host. Hence, this 
process gives the parasites an immunological advantage during 
the process of antigenic variation and is an efficient mechanism 
to escape antibody-mediated elimination during the early as well 
as chronic stage of infection (111).

VSG and VSG-Derived Fragments Trigger Different 
Cellular Innate Immune Responses
The VSG coat plays a key role in the interaction with the host, 
whereby it is involved in a population survival strategy through 
antigenic variation as well as in an individual cell survival strategy 
through rapid endocytosis, removal of bound antibody, and recy-
cling back to the cell surface (106). The parasites not only use the 
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VSG as an efficient escape mechanism jeopardizing the induction 
of an effective antibody response (113–115), but also use it as 
means to modulate the hosts’ cellular responses. Indeed, T. brucei 
parasites contain an endogenous phospholipase C (PLC) known 
as the GPI-PLC, which is activated upon hypotonic lysis, stress, 
or during antigenic variation (90, 116, 117), and shown not to be 
essential but rather to act as a virulence factor given that a PLC−/− 
mutant was attenuated in mice (118). Activation of the GPI-PLC 
hydrolyzes the GPI-anchor on the VSG (119, 120). This hydrolysis 
will convert the hydrophobic membrane-form VSG (mfVSG) 
into a water sVSG (117), thereby leaving the dimyristoyl glycerol 
(DMG) compound of the GPI-anchor in the membrane and 
releasing the glycosylinositolphosphate (GIP)-VSG part (121). 
Both components (DMG and GIP-VSG) exhibit distinct functions 
as far as activating potential of host immune cells is concerned 
(121, 122). Indeed, the GIP-VSG moiety is recognized by a Type A 
scavenger receptor expressed on myeloid cells, thereby initiating 
the activation of NF-κB and MAPK pathways and the expression 
of pro-inflammatory genes, such as TNF-α, IL-6, IL-12p40, and 
GM-CSF (123). This is further amplified when myeloid cells are 
primed with T-cell derived IFN-γ (124). Hereby, the galactose side 
chain of VSG is responsible for TNF-α production following acti-
vation of the protein tyrosine kinase (PTK) pathway (121, 125). 
However, reversing the order of exposure (i.e., exposing myeloid 
cells to GIP-VSG before IFN-γ stimulation) resulted in a down-
regulation of IFN-γ-inducible responses, including transcrip-
tion of inducible NO synthase and secretion of NO, which was 
associated with reduction in the level of STAT1 phosphorylation 
(126). This event might be of importance during the initial stage 
of infection, i.e., when sVSG is released from metacyclic forms 
during the early transition into bloodstream forms (see Figure 2). 
The GPI moiety, and in particular its DMG anchor that is released 
mainly during the descending phase of acute infection and during 
chronic infection, activates the protein kinase-C (PKC) pathway, 
and mediates macrophage priming/hyperactivation and LPS 
hyper-responsiveness in a MyD88-dependent manner (121, 122, 
127, 128). Importantly, also in experimental bovine models, the 
DMG compound was shown to be crucial for M1 over-activation 
(129). In addition, the DMG compound of the mfVSG anchor 
seems to be crucial, via its IL-1α-inducing and -priming activity, 
in further fueling TNF induction (130).

CpG DNA is Used as Immunomodulatory Molecule 
to Trigger Macrophage Activation and Early 
Polyclonal B Cell Activation
Non-mammalian genomic DNA (i.e., CpG DNA) can also induce 
a host immune response (131). In this context, low amounts of 
tsetse-inoculated metacyclic parasites or SS blood-stream form 
parasites, continuously generated during the parasite cycle in the 
mammalian host, are eliminated/lysed giving rise to release of 
CpG DNA into circulation (see Figure  2). In turn, these CpG 
oligonucleotides trigger TLR9 signaling leading to the induction 
of M1 activation and polyclonal B-cell activation and subsequent 
isotype switching (132, 133). Importantly, CpG-mediated signal-
ing can independently or synergistically with parasite-derived 
lipid or protein molecules (see further) activate the production 
of pro-inflammatory cytokines and NO needed for optimal peak 

parasitemia control. Indeed, as shown by Drennan et al. (127), 
during T. brucei infections, there is partial requirement for TLR9 
signaling in the production of IFN-γ and VSG-specific IgG2a 
antibodies and for mammalian TLR family and MyD88 signaling 
in the innate immune recognition of T. brucei. Polyclonal B-cell 
activation, on the other hand, which is induced independently of 
BCR specificity, may play an important role in the defense against 
infections by enhancing natural antibody production and induc-
ing memory B cells. Hence, polyclonal B cell activation increases 
the levels of natural antibodies to keep up with multiplication 
of the microorganisms, thus containing pathogen dissemination. 
Although triggering of polyclonal B  cell activation is a natural 
innate immune response induced by many pathogens, the induc-
tion of polyclonal B cell activation (B cell expansion) might also 
be used as an immune evasion mechanism, whereby unselectively 
differentiating B cells can differentiate into short-lived plasma-
blasts (producing unspecific IgM), which ultimately results in 
apoptosis/elimination of the targeted B cell population (134, 135). 
In addition, regulatory B cells might also be induced and exert 
an immunosuppressive function by the secretion of IL-10, IL-17, 
IL-35, and transforming growth factor-β (TGFβ), and thereby 
dampen the initial pro-inflammatory immune response aimed at 
controlling infection (110, 136). However, so far no evidence of 
the occurrence of regulatory B cells is provided in this model.

TLTF Triggers IFN-γ Production by CD8+ T Cells
Another trypanosome-derived factor documented to play a 
key role in early parasite–host interactions is the trypanosome-
derived lymphocyte-triggering factor (TLTF), a secreted 185 kDa 
invariant glycoprotein able to trigger IFN-γ production by CD8+ 
T  cells (137–140). It was shown by Hamadien et  al. (138) that 
early during T. brucei infection (day 3 p.i.) high levels of TLTF 
could be measured in the serum prior to IFN-γ production. Yet, 
later on during infection, these levels declined and coincided with 
increased levels of anti-TLTF antibodies. Of note, it was suggested 
that detection of TLTF and anti-TLTF antibodies in cerebrospinal 
fluid of HAT patients could be used as a tool for detection and 
staging of the disease (141). In addition, work from the same 
group and Nishimura et al. (142), revealed that IFN-γ was also 
able to trigger TLTF secretion in in  vitro cultures of T. brucei 
parasites in a dose and tyrosine protein kinase-dependent man-
ner and to stimulate parasite growth (143, 144). This suggests that 
TLTF and IFN-γ exert bidirectional activating signals between 
parasites and CD8+ cells. Hence, these molecules might play a 
crucial regulatory function in the parasite–host interactions and 
influence the disease course during experimental African trypa-
nosomosis (see Figure 2), whereby (i) TLTF released by T. brucei 
parasites triggers early IFN-γ production by CD8+ T cells leading 
to the activation of M1 cells, (ii) IFN-γ triggers further secretion 
of TLTF by the proliferating parasites and was also suggested to 
be a growth factor for trypanosomes (142, 145). However, an 
alternative explanation for the apparent IFN-γ-mediated parasite 
growth effects, which cannot be excluded in in vivo settings, is 
that the early expansion of proliferating parasites (cf. ascending 
phase of first peak parasitemia) releases more TbKHC which 
in turn stimulates the synthesis of the essential nutrients, i.e., 
polyamines (see above) (88).
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TbTSIF Induces M1 Cells and Triggers 
T-Cell Suppression
Several trypanosome components have been shown to exert 
a macrophage-activating potential, leading to NO-dependent 
suppression of T-cell proliferation (146, 147). Another 
parasite-derived molecule exerting the potential to modulate 
the host immune network is the T. brucei-derived Trypanosome 
Suppression Immunomodulating Factor (TSIF) (148). Since 
this molecule plays a role in triggering suppressive M1, it is 
most likely released during the descending phase of infection 
(see Figure  2), at the moment that M1 cells exert their most 
prominent effects (i.e., production of trypanolytic molecules 
TNF/NO). Furthermore, as shown by Gomez-Rodriguez et  al. 

(148), this molecule is able to (i) block T-cell proliferation in a 
cell–cell contact and IFN-γ/NO-dependent manner and (ii) limit 
secretion of immune-protective IL-10 by alternatively activated 
macrophages (M2) required to dampen M1-mediated pathogenic 
effects. Hence, TbTSIF could play a dual role, i.e., contribute to 
initial parasite control (via TNF/NO) and fuel suppressive M1 
and T-cell suppression leading to pathogenicity. However, T-cell 
suppression could also be a means of the parasite to negatively 
affect/inhibit B-cell development and thereby impair effective 
humoral responses (see later) and allow/guarantee parasite 
survival. In addition, it seems that TbTSIF is also essential for 
T. brucei development/biology since TbTSIF knock-out parasites 
were not viable and died within 2 days.
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Host innate/Adaptive Responses 
Determine Trypanosome-Associated 
Pathogenicity
Since AT can establish chronic infections in their mammalian 
host, which is associated with different forms of pathogenicity 
(anemia, liver injury, weight loss, neuropathology,…), it is clear 
that the innate response is insufficient for complete elimination 
of the parasites and, hence, will require the help of the adaptive 
immune response to combat infection. Yet, the modulation of the 
innate immune response might also affect the rejoinder of the 
adaptive immune response. In this section, we will elaborate on 
what is happening during the later stage of infection once the 
trypanosome infection is established in the mammalian host.

Trypanosome-Infections Impair B-Cell Functionality
As mentioned before, although trypanosomes use antigenic 
variation of their VSG coat as an efficient way to escape host 
humoral responses, trypanosomes also directly/indirectly affect 
B  cell development as an additional means to escape elimina-
tion. Important to mention is that experiments in μMT (B cell 
deficient) and IgM−/− mice revealed that the initial development 
of peak parasitemia is independent of infection-induced anti-
VSG antibodies. In addition, in vivo parasite VSG switching is 
an intrinsically programed genetic process that is independent 
of B cells or antibody pressure, with the function of antibodies 
mainly limited to the elimination of the remaining non-switched 
parasites (149). Studies in experimental rodent infection models 
have implicated T-cell-independent anti-VSG IgM responses to 
be the first line of host defense against proliferating parasites 
(150) (see before). Although B cells aid in periodically clearing 
circulating parasite levels by VSG-specific antibodies, they are 
limited by their VSG-specificity, yet they are required for long-
term survival, while IgM antibodies play only a limited role in 
this process (149, 151–153). Importantly, similar observations 
were obtained in a Cape Buffalo model for natural trypanoso-
mosis resistance (154). An additional aspect that plays a role in 
antibody-mediated recognition of trypanosomes is that though 
polyclonal antibodies are raised against different parts of the VSG 
molecule (155), only surface exposed regions (N-terminal more 
variable region) of the VSG could play a role in parasite elimina-
tion given that the buried epitopes (C-terminals more conserved 
region) are inaccessible for conventional antibodies (102, 156). 
Indeed, the VSG coat functions as a protective coat shielding of 
conserved buried epitopes/proteins, thereby preventing elimina-
tion of successive waves of trypanosomes expressing a different 
VSG coat.

The data so far indicate that T. brucei parasites affect B cells 
already early during infection (within 1  week p.i.) at different 
levels, resulting in the loss of humoral immune competence in 
trypanosusceptible hosts. This early undermining of humoral 
responses is important given that the production of high-affinity, 
antigen-specific, class-switched, antibodies takes up to 10  days 
after immunization (157). First, as mentioned before, there is 
induction of non-specific, polyclonal B-cell activation leading to 
clonal exhaustion (158–160). Second, there is destruction of the 
splenic B cell compartment that is manifested by the occurrence of 

marginal zone and follicular B cell (FoB) depletion. Hereby, IFN-
γ was shown to play a key role in destruction of FoBs (161), which 
was associated with enhanced expression of the death receptor 
Fas, leading to loss of protective B cell memory responses against 
unrelated antigens. Third, it was shown that during T.   brucei 
infection there is an impaired B-cell lymphopoiesis in the bone 
marrow and spleen already at the level of transitional B cells (159, 
162). Hereby, there was massive cell death observed in transitional 
B cells in vitro through a contact-dependent mechanism, which 
is not dependent on TNF or prostaglandin-dependent death 
pathways (159). Of note, the mechanism(s) of T. brucei-induced 
transitional B-cell depletion in vivo remains to be fully elucidated.

Collectively, trypanosomes deliberately undermine the 
host’s capacity to sustain antibody responses against recurring 
parasitemia waves by depleting transitional B cells, which in turn 
impairs the replenishment of the mature marginal zone and FoB 
populations. Since parasite-specific antibodies are essential for 
parasite control, inhibition of B-cell maturation at the transitional 
stage is an efficient evasive mechanism to prevent the buildup 
of protective “humoral” immunity against successive parasitemia 
waves. In this context, it was recently shown by De Trez et  al. 
(163) that T. brucei infection is impairing the maintenance of the 
antigen-specific plasma B-cell pool.

Trypanosome Infections Induce Early  
IFN-γ-Mediated M1 Polarization that Subsequently 
Contributes to Pathogenicity Development
The parasite-derived components sVSG and CpG DNA that are 
released trigger via specific receptors (SR-A, TLR9) myeloid cell 
activation (121–123, 127, 164). In turn, this triggers T cell activa-
tion and the release of IFN-γ (165), which primes macrophages to 
become fully activated/M1 polarized thereby releasing pro-inflam-
matory molecules (TNF/NO) needed for parasite control (166, 
167). This type 1 cytokine storm can also culminate in pathology 
development if maintained during later stages of infection (166–
172). Yet, only animals able to produce tissue-protective IL-10 can 
exhibit an alleviated pathogenicity (167). Importantly, the balance 
of these different activation/deactivation signals may determine 
the outcome of infection (173, 174). Recently, it was shown that 
different lymphocyte populations play a role in IFN-γ production, 
whereby NK and NKT cells are the earliest IFN-γ producers, fol-
lowed by CD8+ and CD4+ T cells (124). A possible explanation for 
this transition in different IFN-γ-producing T cells during the early 
stages of infection could be that: (i) initially type-I IFN released by 
for instance TLR9-activated myeloid cells can trigger NK/NKT-cell 
activation (175, 176); (ii) subsequently, parasite-derived TLTF will 
trigger IFN-γ production by CD8+ T cells in a non-antigen-specific 
manner (140, 145, 177); and (iii) finally, the increased release and 
subsequent processing of sVSG will lead to MHC-II presentation 
and activation of CD4+ T cells, thereby further fueling IFN-γ 
production and M1 polarization (178).

Whatever the source of IFN-γ may be, research so far indicates 
that early IFN-γ production triggers an acute inflammatory 
reaction resulting in acute anemia development, as witnessed 
by a 50% reduction in circulating red blood cells (RBC) within 
2 days following peak parasitemia. After a short recovery phase, 
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a subsequent gradually increasing loss of RBCs occurs during 
the chronic infection stage (166, 167, 179). Of note, anemia 
development was found to be independent of antibodies and 
the height of the parasitemia peak, whereby the acute nature 
of this phenomenon implies a consumptive etiology (149, 168). 
IFN-γ plays also a crucial role in the recruitment and activation of 
erythrophagocytic myeloid cells. In addition, the work of Cnops 
et  al. (124) indicates that the absence of NK, NKT, and CD8+ 
T cells, but not CD4+ T cells, during the early stage of infection 
results in a reduced  anemic phenotype similar to IFNγR−/− 
mice. In addition, it was recently shown that trypanosomes can 
release extracellular vesicles (EV) that can fuse to mammalian 
erythrocytes thereby changing their physical properties and 
making them more susceptible to erythrophagocytosis (86). 
This in turn leads to acute anemia and could be a means of 
the parasites to acquire essential nutrients [hemoglobin and/
or iron (see before)]. Hence, both host-induced and parasite-
induced factors could account for acute anemia development. 
Subsequently, the hosts’ ability to respond to the acute anemia 
will determine whether anemia persists or not during the chronic 
phase of infection (55, 166, 180–182).

Another pathological feature associated with T. brucei infec-
tions is neuropathology, whereby parasites pass the BBB and 
cause severe neurological complications. Interestingly, the work 
of Amin et al. (183) showed that T. b. brucei parasites penetrate 
the BBB very early during infection (within 2–3 days post infec-
tion), whereby they proposed that TLR9 and MyD88-mediated 
activation of DCs triggers via type-I IFN (IFN-α/β) T-cell acti-
vation. Subsequently, these activated T cells invade the central 
nervous system (CNS) in a IFN-α/β, IFN-γ and TNF-dependent 
manner, whereby TNF can induce the expression of adhesion 
molecules (ICAM-1 and VCAM-1) in brain endothelial cells in 
a TNFR1-dependent manner and contributes to the leakiness 
of inter-endothelial cell tight junctions or stimulation of matrix 
metalloproteases activities that open the parenchymal basement 
membranes (184, 185). Furthermore, the same group showed 
that IFN-γ, as well as the IFN-inducible chemokine CXCL10, 
promotes the penetration of T cells and parasites in the brain 
(186, 187), suggesting that parasites can also follow T cells dur-
ing their brain invasion across the BBB. However, the work of 
Frevert et al. (188) showed, using a murine model and intravital 
brain imaging, that bloodstream forms of T. b. brucei and T. b. 
rhodesiense enter the brain parenchyma within hours post injec-
tion, before a significant level of microvascular inflammation is 
detectable. Yet, there are differences in the trypanosome strain 
used and the infection dose as well as the route of infection that 

could account for the different results. Collectively, it seems that 
whatever mechanism (host-mediated or not) parasites use to 
pass the BBB and infiltrate the brain, extravasations of parasites 
from the blood into the brain might be an alternative evasion 
mechanism to escape humoral responses that predominate in the 
blood circulation and thereby allow future transmission when 
parasites migrate back into the blood.

CONCLUSiON AND PeRSPeCTiveS

Overall, it seems that trypanosomes have evolved efficient immune 
escape mechanisms to sculpture the hosts’ innate/adaptive 
immune response in order to establish an environment suitable 
for parasite survival and transmission. This manipulation of the 
host response has its cost since this undermines the hosts’ capac-
ity to respond/recover following establishment of the parasites. 
Hereby, persistence of inflammation during the chronic stage of 
infection culminates into pathogenicity and subsequent death if 
left untreated. Hence, identification of host-derived factors play-
ing a role in persistence of inflammation could be an alternative 
means to alleviate trypanosomosis-associated pathogenicity. 
In this context, it was recently shown that the pleiotropic host 
molecule macrophage migration inhibitory factor (MIF) plays 
a key role persistence of inflammation and infection-associated 
pathogenicity (180). Hence, future intervention strategies against 
African trypanosomosis might require a dual approach, i.e., 
development of efficient anti-trypanosomal agents combined 
with neutralization of anti-pathogenicity inducing “host” factors, 
which combined might allow reducing the economical losses of 
the affected continents.
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