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A group of pauci-immune vasculitides, characterized by neutrophil-rich necrotizing 
inflammation of small vessels and the presence of antineutrophil cytoplasmic antibodies 
(ANCAs), is referred to as ANCA-associated vasculitis (AAV). ANCAs against proteinase 
3 (PR3) (PR3-ANCA) or myeloperoxidase (MPO) (MPO-ANCA) are found in over 90% 
of patients with active disease, and these ANCAs are implicated in the pathogenesis 
of AAV. Dying neutrophils surrounding the walls of small vessels are a histological hall-
mark of AAV. Traditionally, it has been assumed that these neutrophils die by necrosis, 
but neutrophil extracellular traps (NETs) have recently been visualized at the sites of 
vasculitic lesions. AAV patients also possess elevated levels of NETs in the circulation. 
ANCAs are capable of inducing NETosis in neutrophils, and their potential to do so has 
been shown to be affinity dependent and to correlate with disease activity. Neutrophils 
from AAV patients are also more prone to release NETs spontaneously than neutrophils 
from healthy blood donors. NETs contain proinflammatory proteins and are thought to 
contribute to vessel inflammation directly by damaging endothelial cells and by activat-
ing the complement system and indirectly by acting as a link between the innate and 
adaptive immune system through the generation of PR3- and MPO-ANCA. Injection of 
NET-loaded myeloid dendritic cells into mice results in circulating PR3- and MPO-ANCA 
and the development of AAV-like disease. NETs have also been shown to be essential 
in a rodent model of drug-induced vasculitis. NETs induced by propylthiouracil could 
not be degraded by DNaseI, implying that disordered NETs might be important for the 
generation of ANCAs. NET degradation was also highlighted in another study showing 
that AAV patients have reduced DNaseI activity resulting in less NET degradation. With 
this in mind, it might be that prolonged exposure to proteins in the NETs due to the 
overproduction of NETs and/or reduced clearance of NETs is important in AAV. However, 
not all ANCAs are pathogenic and some might possibly also aid in the clearance of NETs. 
A dual role for ANCAs in relation to circulating NET levels has been proposed because 
a negative correlation was observed between PR3-ANCA and NET remnants in patients 
in remission.

Keywords: neutrophil extracellular traps, ANCA-associated vasculitis, ANCA, NeT, small-vessel vasculitis, 
NeT remnants
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FiguRe 1 | visualization of MPO in NeTs from human neutrophils. Neutrophils isolated from human peripheral whole blood were cultured for 4 h at 37°C with 
25 nM PMA. NETs were then visualized by immunofluorescence microscopy using a 40× objective. (A) DNA, the backbone of NETs, was labeled with DAPI (blue). 
(B) MPO (clone 2B11), a granulae protein within the NETs (17), was labeled with a Dylight 488-conjugated antibody (green). (C) DNA and MPO (merged) co-
localized in the NETs. NETs, neutrophil extracellular traps; PMA, phorbol-12-myristate-13-acetate. Blood samples were collected after obtaining informed consent in 
accordance with the declaration of Helsinki, and the study was approved by the Regional Ethical Review Board in Linköping. This figure is not intended to be 
quantitative, but only to serve as a representative image of common prior knowledge regarding the presence of MPO in NETs (17).
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ANTiNeuTROPHiL CYTOPLASMiC 
ANTiBODY-ASSOCiATeD vASCuLiTiS

Vasculitides are inflammations in the walls of blood vessels, and 
they can affect any organ system in the body. They are divided 
into broad groups based on the size of the vessels predominantly 
being affected. A subgroup of small-vessel vasculitides is char-
acterized by a scarcity of immune depositions (pauci-immune) 
and the presence of antineutrophil cytoplasmic antibodies 
(ANCAs) and is referred to as ANCA-associated vasculitis 
(AAV) (1). AAV comprise three diseases, including granulo-
matosis with polyangiitis [GPA, previously known as Wegener’s 
granulomatosis (2)], microscopic polyangiitis (MPA), and 
eosinophilic granulomatosis with polyangiitis (EGPA, previ-
ously known as Churg–Strauss syndrome) (3). GPA and EGPA 
share the feature of necrotizing granulomatous inflammation 
of the lower respiratory tract, whereas MPA is characterized 
by the absence of this component. Also, GPA often affects 
the upper respiratory tract and can result in rhinitis, otitis, 
and cartilage destruction, while eosinophilia and asthma are 
defining features of EGPA. Renal involvement is observed in as 
many as 90% of the patients with MPA, compared to 80% of the 
patients with GPA and 45% in EGPA. All three diseases affect 
the skin, joints, eyes, and nerves to various extents (1, 4). There 
is also an increased incidence of venous thromboembolism in 
AAV patients, especially during active disease (5, 6). AAVs are 
relapsing–remitting diseases, and 50% of the patients have a 
relapse within 5  years of successful treatment. The mortality 
rate is around 80% at 1 year when left untreated, but with cur-
rent treatments, the mortality rate is reduced to 25% within 
5 years (7).

Autoantibodies specific for proteinase 3 (PR3) (PR3-ANCA) 
or myeloperoxidase (MPO) (MPO-ANCA) are found in over 
90% of patients with active disease (8), and these are important 
as diagnostic tools. The association between PR3- and MPO-
ANCAs and active disease in AAV suggests a pathogenic role for 
the autoantibodies, and such a role is supported by results from 

animal models (9, 10) and in vitro studies showing that PR3- and 
MPO-ANCAs can activate neutrophils to produce reactive oxy-
gen species (ROS) and proteolytic enzymes (11). ANCA-induced 
neutrophil activation also leads to increased adhesion of the 
neutrophils (12) and the activation of the alternative complement 
pathway (13) with the generation of C5a. C5a in turn potentiates 
the inflammatory response by priming neutrophils and acting as 
a chemoattractant to recruit more neutrophils to the inflamma-
tory site (14). However, ANCA levels do not conclusively predict 
relapses (15, 16), and there is an unmet need for biomarkers for 
this purpose.

NeuTROPHiL eXTRACeLLuLAR TRAPS

Neutrophil extracellular traps (NETs) were first described in 2004 
as a means for neutrophils to trap and kill bacteria (17) and are 
released as a result of a programed cell death mechanism referred 
to as NETosis (18, 19). NETs consist of a DNA backbone and 
various proteins with proinflammatory characteristics, such as 
histones, high-mobility group box 1 (HMGB1), LL37, neutrophil 
elastase (NE), calprotectin (S100A8/S100A9, MRP8/14), and, 
interestingly, MPO (Figure  1) and PR3 (20, 21). All described 
ANCA antigens are components of NETs. NETosis depends on a 
cascade of events that lead to the mixing of nuclear, cytoplasmic, 
and granular components before the NETs are released into the 
surrounding matrix (18). NETosis has been shown to depend on 
NADPH oxidase and ROS production as well as on autophagy and 
histone citrullination. Peptidyl arginine deiminase 4 (PAD4), NE, 
and MPO have been shown to play important roles in this signal-
ing pathway (18, 22, 23). More recently, other forms of NETosis 
have also been described, including NETosis with the release of 
mitochondrial DNA (mtDNA ETs) (24) instead of nuclear DNA 
and ROS-independent NETosis (25–27). Interestingly, when 
releasing mtDNA ETs, the neutrophils can also remain viable 
(24). In addition to their role as antimicrobial agents, NETs of 
both nuclear and mitochondrial origin have also been connected 
to various autoinflammatory and autoimmune diseases (28–33).
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TABLe 1 | NeT-associated proteins and structures present in the 
circulation of AAv patients.

Protein/structure Method AAv vs. HC Correlation with 
disease activity

Nucleosome +  
MPO complexes

ELISA + (34, 43, 46) Yes (34, 43, 46)

DNA + MPO or 
citrullinated histone 
3 complexes

ELISA + (45) No (45)

DNA + histone 
complexes

ELISA + (46) No (46)

DNA PicoGreen + (45) No (45)
mtDNA qPCR + (44) Yes (44)
Nuclear DNA qPCR + (44) No (44)
PR3 ELISA/ 

Luminex
+ (46, 49, 52, 53, 55) No (46)

MPO ELISA + (53) Yes (46)
HMGB1 Western  

blot/ELISA
+ (48, 50, 54) Yes (48, 50, 54)

Calprotectin ELISA + (47) Yes (47)
NE ELISA/ 

Luminex
+ (46, 51) Yes (46, 51)

Numbers in parenthesis indicate referenced publication.
AAV ANCA-associated vasculitis; HC, healthy blood donors; +, increased levels; nd, 
not determined; PR3, proteinase 3; HMGB1, high-mobility group box 1 protein; MPO, 
myeloperoxidase; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; NE, neutrophil 
elastase.
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NeTs ARe PReSeNT iN gLOMeRuLi, SKiN 
LeSiONS, AND THROMBi OF AAv 
PATieNTS

Dying neutrophils surrounding the walls of small vessels are a 
histological hallmark of AAV. Traditionally, it has been assumed 
that these neutrophils die by necrosis, but in 2009, Kessenbrock 
et al. showed that NETs were present in the glomeruli in kidney 
biopsies from AAV patients (34). They reported the presence of 
NETs as co-localizations of DNA, histones, and the granule pro-
teins PR3, LL37, NE, and MPO in various combinations (34). This 
phenomenon was later confirmed by others (35–38). Although 
the method for detecting NETs in glomeruli was rather similar in 
these studies, i.e., visualization of DNA and histones (although 
some looked at citrullinated histones) in combination with the 
granule proteins already described – one study also reported the 
presence of PAD4 in the NETs, which is necessary for histone 
citrullination (35), and another study detected LAMP2, which is 
also an ANCA antigen (36, 39).

Neutrophil extracellular traps have also been shown to be 
present in skin lesions (40, 41) and thrombi from AAV patients 
(38, 42). In the studies investigating NETs in skin lesions, the 
presence of NETs was based on extracellular MPO (40, 41) or 
on DNA in combination with MPO (41). The presence of NETs 
in thrombi was defined not only as co-localizations of DNA and 
MPO but also as citrullinated histones alone (38). Another study 
also defined NETs based only on the presence of citrullinated 
histones (42).

iNCReASeD LeveLS OF NeTs AND NeT-
ASSOCiATeD PROTeiNS iN THe 
CiRCuLATiON OF AAv PATieNTS

In addition to the presence of NETs in various lesions from AAV 
patients, it has been shown that these patients also have elevated 
levels of NETs in the circulation (34, 43–46) (Table 1). In these 
studies, NETs were defined as nucleosome/MPO complexes 
(34,  43, 46), total DNA or DNA/MPO or citrullinated histone 
3 (H3) complexes (45), DNA/histone complexes (46), or as 
nuclear DNA or mtDNA (44). There are also several observa-
tions regarding circulating neutrophil components that are the 
main constituents of NETs. Important examples are HMGB1, 
calprotectin (S100A8/S100A9, MRP8/14), PR3, MPO, and NE 
(46–55) (Table 1). The study measuring calprotectin used lon-
gitudinally collected samples from the NORAM trial and found 
that calprotectin levels correlated with disease activity (47), and 
the studies measuring NE observed a correlation between NE 
and Birmingham Vasculitis Activity Score (i.e., disease activity) 
(51). However, the presence of these proteins in the circulation 
does not reveal whether they are released as a result of NETosis 
or by other mechanisms, but it was recently shown that the 
levels of MPO and NE correlate with the levels of DNA/MPO 
complexes in the circulation (46). The capability of using NETs 
as a biomarker to monitor disease activity in AAV has not been 
evident in previous studies. No study has so far measured the 
levels of NETs longitudinally in patients at multiple time points. 

In some cross-sectional studies, the levels of NETs have been 
measured in patients during both remission and active disease, 
but with inconclusive results regarding their correlation with 
disease activity (43, 45).

PROiNFLAMMATORY ASPeCTS  
OF NeTs iN AAv

Neutrophil extracellular traps have previously been described as 
double-edged swords of innate immunity (56), considering that 
they are involved in both fighting pathogens and in contribut-
ing to autoinflammatory and autoimmune conditions. Various 
proinflammatory aspects of NETs in general might also be 
important in the pathogenesis of AAV. For example, NETs can 
cause endothelial damage (57–59) and can activate the alterna-
tive complement pathway (60), which, as already mentioned, 
plays an important role in amplifying the inflammatory process 
in AAV. Further, anti-histone antibodies have been shown to 
ameliorate experimental glomerulonephritis, emphasizing the 
proinflammatory aspect of histones in the NETs (61). It has also 
been shown that the presence of histones in NETs can contribute 
to thrombus formation (62) and that the presence of tissue factor 
(63, 64) in NETs can contribute to the generation of thrombin. 
In turn, it has been demonstrated that activated platelets can 
stimulate neutrophils to release NETs and that platelet-induced 
NETs propagate deep vein thrombosis in mice (65). Others have 
shown that HMGB1 expressed on platelets mediate the formation 
of platelet-induced NETs and that this process is dependent on 
autophagy (66), and in mice, it has been shown that platelet-
derived p-selectin can induce NETosis (67). Increased levels of 
platelet-neutrophil aggregates and soluble P-selectin have been 
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observed in the circulation of AAV patients during active disease 
and to correlate with disease activity (46). Additionally, HMGB1 
has also been shown to potentiate the effect of ANCAs on NET 
formation (68). Oxidized mtDNA ETs released from neutrophils 
in systemic lupus erythematosus (SLE) have been shown to pos-
sess proinflammatory characteristics (33), and the role of mtDNA 
in general as a danger-associated molecular pattern has been 
extensively described (69).

SPONTANeOuS NeT FORMATiON 
IN VITRO

Earlier studies have shown that neutrophils from AAV patients 
are less prone to undergo apoptosis (70), suggesting that these 
neutrophils are more prone to other forms of cell death. Indeed, 
in vitro studies have shown that neutrophils from AAV patients 
are more prone to release NETs spontaneously than neutrophils 
from healthy blood donors (36, 43, 71). A subpopulation of 
neutrophils, referred to as low-density granulocytes (LDGs), 
have been shown to spontaneously release NETs significantly 
more than normal-density neutrophils, and these LDGs haves 
been proposed to be the major source of NETs in AAV (71). 
However, the same study also showed that normal-density neu-
trophils from AAV patients spontaneously released more NETs 
than normal-density neutrophils from healthy blood donors (71). 
More detailed studies of LDGs in SLE have revealed that LDGs 
express increased levels of mRNA of various immunostimulatory 
bactericidal proteins and alarmins compared to normal-density 
neutrophils (59). It is important to note that during the various 
isolation procedures normally used to obtain neutrophils from 
peripheral whole blood, LDGs will not be included because they 
will be found in the fraction of peripheral blood mononuclear 
cells. This is important to consider in future in vitro studies of 
neutrophils and NET formation.

ANCAs AS MeDiATORS OF NeTosis

In addition to the effects already ascribed to PR3- and MPO-
ANCA in terms of neutrophil activation, they are also capable of 
inducing NETosis (Figure 2) (34). Although the exact mechanism 
for neutrophil activation by ANCAs is not clear, full activation 
requires binding of autoantibodies to both Fc-receptors and to 
PR3/MPO on the surface of neutrophils (72). It has been suggested 
that neutrophil activation, in this case evaluated as ROS produc-
tion by MPO-ANCA, is epitope-specific, that epitope specificity 
varies with disease activity and that ANCAs activate neutrophils 
more robustly during active disease (73). Furthermore, in vitro 
studies have shown that neutrophils from patients are more eas-
ily activated (they produce more ROS) by ANCAs (in this case 
PR3-ANCA) than neutrophils from healthy blood donors (74). 
It has previously been shown that neutrophils from AAV patients 
possess increased membrane expression of PR3 (75, 76), which 
could possibly be explained by disrupted epigenetic silencing 
of the PR3 and MPO gene in these patients (77). However, in 
the study by Ohlsson et  al. the results could not be explained 
by increased PR3 expression on the cell surface of neutrophils 

from patients or the ANCA levels (74). Rather, epitope specific-
ity and affinity seemed to be of importance for the antibodies’ 
ability to activate neutrophils (74). It has also been shown that 
MPO-ANCA has higher affinity for MPO during active disease 
and that MPO-ANCA induces more NETs during active disease 
(78), and the observation that the affinity for MPO-ANCA is 
important for the ability to induce NETs was recently confirmed 
by another group (79). In summary, it seems that both epitope 
specificity and affinity are important for neutrophil activation by 
ANCAs and that at least the affinity is important for their ability 
to induce NETs.

NeTs: BRiDgiNg iNNATe AND 
ADAPTive iMMuNiTY

It has been shown using NETotic neutrophils from mice that MPO 
and PR3 can be taken up from the NETs by myeloid dendritic 
cells (mDCs) and that injection of NET-loaded mDCs into mice 
results in circulating MPO- and PR3-ANCA and development 
of AAV-like disease (41). The addition of DNaseI to the in vitro 
cultures prevented PR3 and MPO uptake by the mDCs from 
the NETs, and when mice were injected with those mDCs, the 
mice did not develop disease (41). In the same study, injection 
of mDCs cocultured with apoptotic neutrophils into mice also 
caused autoantibody production, but those mice did not develop 
AAV-like disease. These experiments indicate that NETs show 
higher immunogenicity than apoptotic cells and that the struc-
tural integrity of the NETs is important for transferring NET-
antigens to mDCs and the subsequent production of pathogenic 
autoantibodies. This is in line with a previous study showing that 
rats immunized with apoptotic neutrophils do develop ANCAs, 
but not disease (82). In another study, rats were immunized 
with NETs induced by phorbol-12-myristate-13-acetate (PMA) 
and propylthiouracil (PTU) (which together induced abnormal 
NETs that could not be degraded by DNaseI) or were given PTU 
orally in combination with PMA (intraperitoneal injection), and 
these rats developed MPO-ANCA and pulmonary capillaritis 
or glomerulonephritis and pulmonary capillaritis, respectively 
(80). This resembles the situation in humans, where over 20% of 
patients with Graves’ disease treated with PTU develop MPO-
ANCA and some also AAV-like disease (83, 84).

NeT FORMATiON vS. CLeARANCe: THe 
iMPORTANCe OF BALANCe

The studies described earlier imply that NETs can act as a link 
between the innate and adaptive immune system with the pro-
duction of pathogenic ANCAs. With this in mind, it might be 
that prolonged exposure to the proteins in the NETs due to the 
overproduction of NETs and/or reduced clearance of NETs is 
important in AAV. In line with this, it has been shown that AAV 
patients have reduced capacity to degrade NETs in vitro (78). This 
could possibly be due to the reduced DNaseI activity observed 
in these patients compared to healthy blood donors, although 
DNaseI activity did not correlate with disease activity. Thus, the 
elevated levels of NETs in the circulation of AAV patients might 
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FiguRe 2 | The role of NeTs in AAv and the complex relation between ANCAs and NeTs. (A) Pathogenic ANCAs (red) reacting with PR3 and MPO on the 
surface of neutrophils cause ROS production and the release of NETs through NETosis (34, 78, 79). (B) NETs contain various proinflammatory mediators, such as 
histones, HMGB1, PR3, MPO, and NE (17, 20, 21), and contribute to vessel inflammation by damaging endothelial cells (57–59) and by activating the complement 
system (60). (C) NETs do also promote thrombosis through the expression of histones (62) and tissue factor (63, 64). (D) NETs can also act as a link between the 
innate and adaptive immune system through the generation of ANCAs (41, 80). (e) ANCAs seem to belong to repertoire of “natural” antibodies (81), indicating that 
not all ANCAs are pathogenic, and it has been proposed that ANCAs can aid in clearance of circulating NET remnants (43). (F) However, under unfavorable 
circumstances, pathogenic ANCAs (red) are produced, creating a vicious circle that promotes inflammation. B, B cell; Th, T helper cell; DC, dendritic cell. Modified 
from Ref. (43) with permission from Oxford University Press.
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also be explained by the reduced capacity to clear the NETs from 
the circulation. Interestingly, low levels of both PR3-ANCA 
and MPO-ANCA can be found in the circulation of healthy 
individuals (81), indicating that the presence of ANCAs does not 
necessarily lead to disease development. Rather, ANCAs might 
be part of the repertoire of natural antibodies that are important 
for maintaining homeostasis (85). In line with this, a dual role 
for ANCAs was recently suggested, where the autoantibodies in 
addition to inducing NET formation can also aid in the clearance 
of NETs (Figure 2) (43), possibly through opsonization and the 
formation of immune complexes. This hypothesis was proposed 
because a negative correlation was observed between PR3-ANCA 
and circulating NET remnants in AAV patients in remission (43). 
As others have shown that the pathogenicity of ANCAs seems 
to vary with both epitope specificity (73) and affinity (78) and 

that these parameters change with disease activity, it appears 
that ANCAs might play different roles at different stages of AAV. 
Together, these studies might suggest how and why all individuals 
can possess ANCAs but only some develop AAV.

iNFeCTiONS AND ANCAs

Antineutrophil cytoplasmic antibodies are common in chronic 
infections, such as Pseudomonas aeruginosa infections, in patients 
with cystic fibrosis, tuberculosis, HIV, and infective endocarditis 
(86–89). Infections are also implicated in the pathogenesis of 
AAV and as a trigger of relapses. Molecular mimicry, either 
directly (90) or indirectly through autoantigen complementarity 
(91), is the traditional way to explain the relationship between 
AAV and infection. However, infections lead to neutrophil 
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activation, which triggers NETosis. Lipopolysaccharide-activated 
platelets can also activate neutrophils to release NETs (92), and 
this suggests an indirect way in which bacteria can contribute 
to NETosis as well as to the coagulation cascade and thrombosis 
formation discussed earlier. In sepsis, the liver sinusoids are filled 
with neutrophils undergoing NETosis (93), and in infective endo-
carditis, a role for NETs has also been described (94). ANCAs are 
found in up to 20% of patients with endocarditis (95), and many 
of these patients have symptoms resembling vasculitis, such as 
fever, increased CRP, weight loss, malaise, multiform skin lesions, 
and renal involvement (1, 96–98).

CONCLuDiNg ReMARKS/DiSCuSSiON

This review has outlined the role of NETs in the pathogenesis 
of AAV. There is compelling evidence that NETs contribute to 
vessel inflammation directly by damaging endothelial cells and 
by activating the complement system and indirectly by acting as 
a link between the innate and adaptive immune system through 
the generation of PR3-ANCA and MPO-ANCA. This can lead 
to a vicious circle because ANCAs can activate neutrophils. 
However, ANCA pathogenicity is dependent on both affinity 

and epitope specificity, and there also seem to be ANCAs that 
are non-pathogenic and even beneficial. NETs are most prob-
ably formed at a constant rate in healthy individuals, but NET 
formation can become highly elevated by infections, certain 
drugs, and possibly by epigenetic changes as one age. Increased 
NET formation must be balanced by clearance mechanisms, 
which seem to include DNaseI and possibly autoantibodies 
with ANCA specificity. We hypothesize that under unfavorable 
circumstances some individuals (partly depending on genetics) 
develop pathogenic autoantibodies that can activate neutrophils 
thus creating a vicious circle resulting in widespread vessel wall 
inflammation.
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