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Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. 
However, only 30% of those infected develop symptoms of Chagas’ disease, a chronic, 
neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to 
resist the host immune response. Studies, performed 80 years ago in the Soviet Union, 
proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target 
tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi 
infection and cancer development was also proposed, but the molecular mechanisms 
involved have remained largely unknown. Probably, a variety of T. cruzi molecules is 
involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from 
the endoplasmic reticulum, targets the first classical complement component C1 and 
negatively regulates the classical complement activation cascade, promoting parasite 
infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to 
explain, at least an important part, of the parasite capacity to inhibit tumor development. 
We will discuss how TcCRT, by directly interacting with venous and arterial endothelial 
cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only 
illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate 
a possible co-evolutionary adaptation to privilege a prolonged interaction with its host.

Keywords: calreticulin, Trypanosoma cruzi, trypomastigotes, complement system, C1q, cC1qR, tumor growth, 
immune response

iNTRODUCTiON

Trypanosoma cruzi (the protozoan agent of Chagas’ disease) cell infection is preceded by a variety 
of molecular interactions (1). Of relevance is the generation of a synapsis involving parasite endo-
plasmic reticulum (ER)-resident T. cruzi calreticulin (TcCRT) that, after translocation, interacts with 
complement component C1. C1 is then inactivated and recognized by cC1qR (a membrane form 
of mammalian CRT). The complement system, an important arm of innate and adaptive immune 
responses, is thus inhibited and parasite infectivity increased.

A significant decrease in experimental tumor growth is observed in experimental animals treated 
with recombinant TcCRT (rTcCRT) or infected with T. cruzi. A unifying molecular basis for these 
apparently unrelated phenomena is proposed herein. These molecular interactions do provide 
benefits for both the host and the parasite.

Through evolution, microbial agents have developed different mechanisms to resist the host 
immune response. In apparently unrelated strategies, some infectious agents elicit antitumor 
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FiGURe 1 | The antitumor effect of T. cruzi infection may be explained by TcCRT. TcCRT is exposed on the parasite surface (A) and secreted (B). TcCRT 
inhibits angiogenesis (C) and the activation of the classical pathway of the complement system through C1 inactivation (D). TcCRT, present on the parasite surface, 
recruits C1. On the EC membrane, a trimolecular synapse is formed by HuCRT/C1q/TcCRT. This interaction increases the infectivity process (e). TcCRT is also 
recognized by SRs on ECs, promoting infectivity (F). The HuCRT/C1q/TcCRT interaction can also promote T. cruzi infectivity in TCs (G). Moreover, TcCRT could 
mediate induction of an anamnestic antitumor immune response. Parasite could translocate TcCRT bound to the tumor cell with subsequent capture of host C1 
(H). This C1 will be recognized by HuCRT present on an antigen-presenting cell (APC), followed by internalization of this complex. Among many other possibilities, 
APCs will cross-process TcCRT, and specific peptides from this parasite protein will be loaded onto MHC I molecules. APCs will enter the regional lymph node and 
present these nTcCRT-specific peptides to cytotoxic T lymphocytes, thus leading to their activation. These CD8+ cytotoxic T lymphocytes will leave the lymph node 
and kill tumor cells that also present TcCRT-derived peptides (i).
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immune responses, leading to inhibition of cancer progression 
(2). Although these antitumor effects have been reported for 
several decades now, for a variety of infections, information on 
pathogen molecules involved is scarce (3).

Eight to 10 million people in 21 endemic countries are infected 
with T. cruzi. In about 30% of those infected, manifests, Chagas’ 
disease, a worldwide neglected tropical chronic illness (4, 5). 
The disease, originally endemic in Latin America, is now global, 
mainly because of migrations to USA, Canada, Europe, Oceania, 
and Asia (6), where transmission is mainly through blood trans-
fusions, organ transplants, or congenital (7).

Eighty years ago, it was proposed that T. cruzi possesses an 
anticancer activity. Several T. cruzi strains displayed growth 
inhibitory effects over multiple transplanted or spontaneous 
tumors, in animal experimental models and humans (8, 9). 
This property was attributed to a “toxic substance” secreted by 
the parasite (10, 11). This “toxin” reduced pain, tumor growth, 
bleeding, and local inflammation in humans affected by a variety 
of tumors (12).

Chronically infected rats are more resistant to a carcinoma 
induced by 1,2-dimethylhidrazyne (9), and T. cruzi has a tro-
pism for tumor cells, suggesting an antagonistic relationship 
between Chagas’ disease and cancer development (8). Elemental 
Darwinian reasoning allows us to propose that, if host sur-
vival is favored, chances for improved parasite persistence are 
evident.

Some authors have proposed that tumor and parasites com-
pete for nutrients with consequent inhibition of tumor growth 
(13). However, this hypothesis is not entirely satisfactory since 
tumor growth is a multistep and complex process involving 
development of new blood vessels (angiogenesis) that provide 
the tumor with the necessary nutrients, oxygen, and means for 
waste removal (14). Other investigators have demonstrated, using 
a recombinant non-pathogenic T. cruzi clone as vector of a testis 
tumor antigen, the activation of T cell-mediated immunity. This 
specific cell immunity could delay tumor development in infected 
mice (15). In this work, it would have been important to define 
whether the non-pathogenic T. cruzi clone used translocates-
externalizes its CRT. Non-infective epimastigotes are strongly 
impaired in their capacity to translocate this chaperone (16). 
Moreover, hemiallelic TcCRT KO, wild type, and transgenic 
parasites, respectively carrying one, two, and three TcCRT gene 
copies, express increased levels of the protein, in vitro resistance 
to human complement, and higher infectivity (16, 17).

Most likely, multiple parasite molecules and mechanisms are 
involved in the tumor resistance mediated by T. cruzi infection. 
Understanding these mechanisms may contribute to identify new 
therapeutic targets against cancer and Chagas’ disease.

Our laboratory has been working for more than 20  years 
now with TcCRT, a multifunctional ER-resident protein that 
the parasite translocates to the external milieu (as depicted 
in Figures  1A,B). TcCRT is involved in a multiplicity of 
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host– pathogen interactions. Thus, TcCRT is a potent virulence 
factor that inhibits the angiogenesis and a likely responsible, for 
at least in important part, of the antitumor effects of T.  cruzi 
infection.

iN eUKARYOTeS, CALReTiCULiN, AN 
eR-ReSiDeNT CHAPeRONe PROTeiN, 
MeDiATeS ANTiTUMOR PROPeRTieS

Calreticulin (CRT) is a 45  kDa protein, mainly residing in the 
ER (18). CRT participates in a variety of physiological and 
pathological processes in different cellular types (19). Thus, 
CRT contributes in multiple physiological processes such as 
control of glycoprotein folding quality system and binding to 
monoglucosylated high mannose glycans (20). Moreover, CRT 
is involved in quality control process during protein synthesis, 
including integrins, surface receptors, and transporters (21), and 
it is considered as an intracellular Ca2+ regulator (22).

Calreticulin is also found in the cytosol, nucleus, secretory 
granules, on the plasma membrane, and free in the extracellular 
milieu (18), accelerating cutaneous wound healing (23–25) and 
regulating cell adhesion by interacting with the cytosolic tail of 
the integrin alpha subunit (18); nuclear export of some steroid 
hormone receptors (26–28) and the stability or translation of a 
variety of RNAs (29–33). CRT is an mRNA binding protein that 
regulates mRNA stability (19).

Calreticulin also participates in the immune response against 
apoptotic cancer cells (34–38), and surface exposure of CRT par-
ticipates as an “eat me” signal required for phagocytosis on dying 
tumor cells (39). Tumor tissues express significant higher levels 
of CRT compared to normal tissues (40). Indeed, its expression is 
related to the clinical stage and lymph node metastasis in several 
types of cancer (41, 42).

Over 40 functions have been described for human CRT 
(HuCRT) (43). These functions reside in three different domains: 
globular N-terminal (N), proline-rich (P), and acidic C-terminus 
(18). HuCRT and its N-terminal fragment bind laminin (44) 
with antiangiogenic properties in vitro and in vivo (45, 46) and 
inhibit the growth in several tumor models (47–49).

Vasostatin, a CRT 180 amino acid N-terminal fragment, is 
an endogenous inhibitor of angiogenesis and suppressor of 
tumor growth. It inhibits vascular endothelial growth factor 
(VEGF)-induced endothelial cell (EC) proliferation and tube 
formation in Matrigel and induces cell apoptosis under oxygen 
deprivation (50).

Calreticulin is present in humans (51), insects (52, 53), 
nematodes (54–57), protozoans (58–61), and plants (62). A high 
identity is shared among CRTs from different species. Thus, 
Onchocerca volvulus, Schistosoma mansoni, and Leishmania 
donovani share 50% of the identity in amino acid sequence with 
HuCRT.

Examples of important evasive strategies performed by CRTs 
from different parasite species are Amblyomma americanum 
[secretes CRT during the feeding process (63)] and Schistosoma 
cercariae [uses CRT in the penetration of gland cells or skin and 
parasite migration (54)].

HOw DOeS T. CRUZI CALReTiCULiN 
PARTiCiPATe iN THe HOST–PARASiTe 
iNTeRPLAY?

Given the important pleiotropic HuCRT behavior, the CRT model 
opens interesting research opportunities on how this protein, 
alone or interacting with others, intervenes in the host–parasite 
interactions.

For 25  years now, our laboratory has worked with TcCRT. 
This protein is coded by only one gene with a variable number of 
copies whose involvement in TcCRT expression will depend on 
the T. cruzi clone and strain studied (unpublished data). A TcCRT 
gene was cloned, sequenced, and expressed in our laboratory in 
1991 (58). We identified variable low plasma levels of anti-native 
TcCRT antibodies in T. cruzi-infected humans (64), thus reveal-
ing the immunogenic capacity of the native protein.

Trypanosoma cruzi calreticulin also binds monoglucosylated 
glycans (60) and participates in the maturation of cruzipain, a 
lysosomal protease (65) present in T. cruzi. Although TcCRT 
locates mainly in the ER, it is also found in the Golgi complex, 
reservosomes, flagellar pocket, cell surface, cytosol, nucleus, and 
kinetoplast (66, 67). However, the mechanisms involved in these 
diverse TcCRT localizations are unknown. Thus, TcCRT, in spite 
of its KEDL-ER retention sequence [KDEL in mammal CRTs 
(18)], translocates from the ER to the extracellular environment 
(Figures 1A,B) where, besides inhibiting complement (66) and 
acting as a virulence factor (68), it mediates antitumor effects.

In spite of the long evolutionary distance, TcCRT still shares 
50% of overall sequence homology with HuCRT, reaching up 
to 80% in critical functional domains. Moreover, the general 
globular N-domain, responsible of antiangiogenic properties 
and the structural features of the extended arm P-domain also 
share structure homologies, thus announcing the possibility of 
functional similarities (69).

Two important TcCRT functions may explain the relationship 
between T. cruzi infection and cancer. First, TcCRT is an impor-
tant complement inhibitor (Figure  1D) and virulence factor 
(Figure 1E). Second, TcCRT inhibits angiogenesis (Figure 1C). 
Both functions are central to inhibit tumor growth.

TcCRT iS AN iMPORTANT viRULeNCe 
FACTOR iN T. CRUZI

Similar to HuCRT (70, 71), TcCRT inhibits the complement 
system by interacting with C1 (Figure 1D), the first component 
of its classical pathway (66, 72–74). TcCRT is translocated from 
the ER to the area of flagellum emergence (Figure  1A) (66), 
where C1 is recruited by parasite-bound TcCRT and inhibited 
at the earliest complement activation step (C4b generation) 
(Figure  1D). TcCRT also affects the ability of C1s to activate 
C4, in a calcium-independent manner (74). Inhibition of C1 is 
a significant complement evasion strategy, with consequences in 
the host–parasite relationships. Although HuCRT and TcCRT 
prevent binding of the serine proteases to C1q, they do not 
displace the serine proteases from the preformed stabilized C1 
(C1q, r2, and s2) complex (74). TcCRT also binds to MBL and 
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Ficolins (75). C1, MBL, and Ficolins are three complement 
“danger signal” recognition macromolecular modules present 
in plasma. These molecular complexes are genetically, structur-
ally, and functionally related, but they differ in the nature of the 
recognized danger signals (76). More recently, we have proposed 
that L-Ficolin binds TcCRT, inhibiting the lectin pathway. This 
inhibition may represent other T. cruzi strategy to inhibit the 
host  immune response (75). In agreement with these findings, 
TcCRT is present on the parasite surface co-localizing with 
C1q (66).

Human CRT is also a membrane receptor for C1q [cC1qR 
(77)], and it may bridge TcCRT on the parasite surface with 
HuCRT present on the host cell (Figure 1E) (78). The TcCRT/
C1q/HuCRT synapsis represents the culmination of an important 
molecular mimicry strategy. Apoptotic cells to be phagocytized 
use a similar mechanism (34, 36, 37). The CRT/C1q complex is 
recognized as an “eat me” signal by cC1qR on phagocytes. This 
signal is also used by T. cruzi as an “apoptotic mimicry” strategy 
(i.e., by capturing C1 in the area of flagellum emergence), thus 
facilitating the invasion/infectivity of host cells (79). This TcCRT-
C1q-mediated parasite infectivity correlates with significant 
increases in TcCRT mRNA levels during early (cell contact and 
penetration) infection stages (36, 66, 68, 69, 72, 79). The TcCRT–
C1q interaction can be prevented with anti-TcCRT F(ab′)2 
fragments (devoid of the C1-binding Fc domains) (80). Indeed, 
passive immunization of mice with these fragments decreases 
infectivity (68). Congenital transmission is an important T. cruzi 
transmission pathway. Human pregnancy is a condition of 
elevated circulating CRT (81, 82). Moreover, human placenta 
expresses high CRT levels (83). We have recently proposed that 
the TcCRT/C1q/HuCRT interaction is very important in an ex 
vivo model of infection of human placenta (84), indicating a 
possible mechanism to explain the congenital transmission.

TcCRT PARTiCiPATeS iN THe 
iNHiBiTiON OF TUMOR GROwTH

Cancer is omnipresent in human history, and it also affects most 
of the living animal species, as a natural phenomenon of sporadic 
cellular dysfunction. Mammary, prostate, lung, cervix/uterine are 
just a few examples of cancer that, taken together, have epidemic 
proportions.

Interestingly, in patients infected with T. cruzi, cancer is 
rare (10, 12). About 80 years ago, Roskin, Ekzempliarskaia, and 
Klyuyeva, researchers from the former Soviet Union, postulated 
an experimental anticancer toxic activity derived from this 
infection. When they inoculated T. cruzi extracts, directly in 
a peritumoral area, in different tumors, both in experimental 
animals and in humans, similar results related to reduction of 
tumor size were obtained (10–13, 85, 86). More recently, the 
parasite capacity to infect preferentially tumor cells, as compared 
to normal host cells, was described (8). Although, in general, 
these data suggest an antagonism between T. cruzi infection 
and tumor growth (8), and research progress in these areas 
was seriously hampered by the intense international political 
problems of those years (i.e., the Cold War) (11). Although 
several publications on these issues have appeared during the last 

decades, the molecular basis of this phenomenon has remained 
elusive.

We propose that TcCRT is an important mediator of the anti-
tumor effects of T. cruzi infection. Similar to HuCRT, TcCRT is 
antiangiogenic in in vitro, ex vivo, and in vivo models (Figure 1C) 
(3, 87, 88). Moreover, TcCRT inhibits the growth of a mammary 
adenocarcinoma and a melanoma in different experimental ani-
mal models (3, 87–89). The inhibition of tumor angiogenesis was 
proposed as a cancer therapy almost 40 years ago (90). For this 
reason, molecules or drugs with capacity to inhibit angiogenesis 
are currently applicable to a wide variety of tumors, often as a 
complement to other therapies (91).

Trypanosoma cruzi calreticulin and its N-terminal domain 
(N-TcCRT) were studied in different experimental set ups in 
mammals, Homo sapiens included (3). Thus, rTcCRT and its 
N-TcCRT inhibit capillary growth ex vivo in Rattus rattus aortic 
rings, morphogenesis, proliferation, and chemotaxis in human 
umbilical cord endothelial cells (HUVECs) (3) and in vivo angio-
genesis in the Gallus gallus chorioallantoid membrane (CAM) 
assay (87). TcCRT was overall more effective, in molar terms, than 
HuCRT (3). Interestingly, in the CAM assay, the antiangiogenic 
TcCRT effect was fully reverted by polyclonal antibodies against 
rTcCRT (88).

In agreement with the previously described facts, the in vivo 
antitumor capacity of T. cruzi infection is paralleled by the 
inoculation of rTcCRT, with inhibits by 60–70% the time-course 
development of a murine mammary methotrexate multiresistant 
adenocarcinoma (TA3-MTX-R) (7).

T. CRUZI iNFeCTS NeOPLASTiC CeLLS 
AND PROMOTeS AN iMMUNe ReSPONSe

Native TcCRT (nTcCRT) on the parasite contacts ECs, mediat-
ing internalization of T. cruzi and inhibition of tumor growth. 
This nTcCRT/EC contact may be indirect, mediated by C1q 
(Figure  1E) or by direct binding to scavenger receptors (SRs) 
(Figure 1F). TcCRT has affinity for collagenous structures, a pos-
sible explanation for its binding to human C1 and to SRs (66, 68). 
Fluid-phase Fucoidan, bearing extensive collagen-like sequences, 
inhibits the binding of CRT to SR-A present on both phagocytic 
cells (92) and the internalization of TcCRT by ECs (3).

iS NATive TcCRT ReSPONSiBLe 
FOR THe ANTiTUMOR eFFeCT 
OF T. CRUZI iNFeCTiON?

Recombinant TcCRT has important in vivo antiangiogenic and 
antitumor activities (3, 88). The antitumor effect of T. cruzi 
extract has been recently reproduced in a rat model. Experimental 
animals showed a strong cytotoxic response against tumor, with 
activation of CD4+ and CD8+ T cells and splenocytes. Moreover, 
a humoral adaptive immune response is generated. These anti-
T. cruzi antibodies cross-reacted with tumor cells, inducing an 
antibody-dependent cellular toxicity in  vitro (93). In a mouse 
model, we have reverted the antitumor effect of a T. cruzi epimas-
tigote extract with specific antibodies against rTcCRT. Moreover, 
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anti-rTcCRT F(ab′)2 antibodies (devoid of their capacity to 
interact with C1) neutralize the antitumor activity of T. cruzi 
infection, thus identifying nTcCRT as a mediator of this effect 
(unpublished data).

HOw DOeS TcCRT iNHiBiT TUMOR 
GROwTH iN iNDiviDUALS iNFeCTeD 
wiTH T. CRUZI?

We propose that, during T. cruzi infection, nTcCRT mediates key 
alterations in the tumor cell microenvironment leading to an adap-
tive immune response, with significant antitumor effects. Once in 
the circulation, T. cruzi must swiftly invade ECs (Figures 1E,F). 
Translocated-exteriorized TcCRT (Figures 1A,B) (92) will recruit 
and inactivate plasma complement C1 (Figure 1D) and inhibits 
angiogenesis (Figure 1C). This will allow the parasite to contact 
ECs via cC1qR (Figure 1E) (77, 94). Otherwise, the chaperone 
protein could interact directly with SR-A1 on ECs (Figure 1F) 
(95–97). Both pathways may lead to antiangiogenesis and gener-
ate a stressful environment where tumor cells will externalize 
their CRT, as previously shown with other stressing agents, such 
as Antracyclins (37). C1 recruitment and increased tumor cell 
phagocytosis by dendritic cells will follow (Figure 1H).

On the other hand, an adaptive immune response may be 
invoked by inoculated TcCRT or by its native counterpart 
timely externalized by infecting trypomastigotes (66) or 
present in epimastigote extracts (75). The chaperone protein 
should reach the surface of tumor cells (or ECs), thus generat-
ing a site for C1 binding (Figure 1G), followed by phagocytosis 
of these complexes by dendritic cells (Figure  1H). Targeting 
these activities on tumor cells should be favored by the para-
site tropism for these tissues. The relevant novelty of parasite 
TcCRT is its difference in amino acidic sequence with the 
mammal (murine, in this case) counterpart. This difference 
may reach 50%, while mammal CRTs differ among them by no 
more than 10% (73). Upon arrival to the regional lymph nodes, 
these dendritic cells will present antigenic peptides derived 
from TcCRT, thus activating cytotoxic T lymphocytes, among 
other possibilities. Whether tumor cells can cross-present 
peptides derived from endocytosed TcCRT to cytotoxic T cells 
(Figure 1I) is a matter of current research in our laboratory. 
Activated cytotoxic T cells should then return to the tumor 
site and act against neoplastic tumor cells. Activation of CD4+ 
T cells via MHC II presentation, with stimulation of B cells and 
resulting ADCC against tumor cells, is a possibility that should 
also be entertained.

In our murine models, these antitumor effects are better per-
formed by TcCRT, as compared to HuCRT. Among mammals, 
CRTs are at least 95% homologous in amino acidic differences. 
CRT immunogenicity across mammal species is thus restricted. 
On the other hand, because of extensive evolutionary distances, 
TcCRT amino acidic sequence differs by 50% with its mammal 
counterparts. Thus, TcCRT is more capable of generating immu-
nogenic epitopes on the surface of mammal tumors. Recently, the 
expression of CRT has been correlated with a favorable prognosis 
of cancer. The high expression of CRT on tumor cells has been 
associated with a high density of infiltrating mature dendritic cells 
and effector memory T-cell subsets, suggesting that CRT triggers 
the activation of an adaptive immune response in the tumor 
microenvironment (98). Thus, TcCRT expressed and secreted by 
the parasite may be also important in this regard.

CONCLUDiNG ReMARKS

Infection with T. cruzi correlates with increased resistant to 
tumors. Since, during infection, nTcCRT is translocated to the 
parasite exterior and experimental parenteral administration of 
rTcCRT mimics the antitumor effects of the infection, nTcCRT is 
the most likely responsible molecule for these effects. Moreover, the 
antitumor effects of parasite infection can be specifically reverted 
by anti-rTcCRT antibodies. Since, in a large set of experimental 
animals treated with rTcCRT, no clinical deleterious effects have 
been detected by standard clinical veterinary criteria, we can now 
propose that rTcCRT or derived domains are interesting immu-
nological tools to be considered in more advanced preclinical 
trials (e.g., rTcCRT capacity to bind to human mammary tumor 
cell lines in vitro, to subsequently incorporate C1, with increased 
capacity to induce phagocytosis).
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