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Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from 
the circulation to sites of infection where they are responsible for antimicrobial func-
tions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular 
traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, 
and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate 
(PMA), are efficient inducers of NETs. Antigen–antibody complexes are also capable of 
inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced 
NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins 
did not promote NET formation. FcγRIIIb-induced NET formation presented different 
kinetics from PMA-induced NET formation, suggesting differences in signaling. Because 
FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) 
and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) 
has recently been implicated in ERK signaling, in the present report, we explored the 
role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. 
FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was 
evaluated in the presence or absence of pharmacological inhibitors. The antibiotic 
LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-
induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation 
of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, 
only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. 
A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced 
by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking 
activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling 
pathway to NETosis.
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inTrODUcTiOn

Neutrophils are innate immune cells that migrate from the 
circulation to sites of inflammation or infection. Classically, 
neutrophils are considered the first line of defense since they 
are the first cells to appear at the affected site, and they display 
important antimicrobial functions (1). Neutrophils use phago-
cytosis, degranulation, and formation of neutrophil extracellular 
traps (NETs) to kill microbes (2, 3). NETs are formed through a 
unique cell death program named “NETosis” that involves first 
degradation of the nuclear membrane and chromatin expansion 
into the cytosol, while the cell membrane remains intact. Later, 
3 or 4  h after stimulation, the cell membrane breaks, and the 
chromatin fibers get expelled outside the cell, creating a net-
like structure. NET fibers are composed of chromatin covered 
with histones (4) and antimicrobial proteins derived from the 
neutrophil granules, such as the bactericidal/permeability-
increasing protein (BPI), elastase, myeloperoxidase, lactoferrin, 
and metalloprotease 9 (2, 5). NETs prevent further spread of 
pathogens because they function as a physical barrier where 
microorganisms get trapped and because they bring antimi-
crobial proteins in close proximity of pathogens. Thus, NETs 
can kill microorganisms extracellularly and independently of 
phagocytosis (6).

Human neutrophils express constitutively two IgG antibody 
receptors: FcγRIIa (CD32a) and FcγRIIIb (CD16b) (7). FcγRIIa 
consists of a single polypeptide chain bearing an ITAM on its 
cytoplasmic domain (8). This ITAM confers on FcγRIIa the abil-
ity to initiate signaling events that regulate cell responses, includ-
ing phagocytosis, cytokine production, and antibody-dependent 
cell-mediated cytotoxicity (9). FcγRIIIb is present exclusively on 
neutrophils, and it is a glycophosphatidylinositol (GPI)-linked 
receptor, lacking transmembrane and cytoplasmic domains (10). 
The signaling mechanism for this receptor is still unknown, since 
possible signaling molecules directly associated with it remain 
unidentified. However, several reports show that FcγRIIIb can 
initiate signaling events leading to various cell responses includ-
ing increase in calcium concentration (11), activation of integrins 
(12), and activation of NF-κB (13, 14).

FcγRIIIb cross-linking induced efficient NET formation 
similarly to Phorbol 12-myristate 13-acetate (PMA) stimulation 
(15). This NET formation was dependent on NADPH-oxidase 
and extracellular signal-regulated kinase (ERK) activation (15). 
But, the mechanism linking FcγRIIIb to ERK is not known. 
Previously, we reported that FcγRIIIb cross-linking led to activa-
tion of NF-κB (13); while others have reported that transforming 
growth factor-β-activated kinase 1 (TAK1) was associated to the 
IκB kinase complex, both in the nucleus and cytoplasm of human 
neutrophils favoring NF-κB activation (16). More recently, we 
also found that FcγRIIIb induced a robust activation of ERK and 
also of the transcription factor Elk-1 (17), but we could not iden-
tify the molecule responsible for ERK activation. Similarly, others 
have reported that, in human neutrophils, TAK1 acted upstream 
of MEK (ERK kinase) and ERK signaling pathway (18, 19). Thus, 
in this report, we explored the possibility that TAK1 is function-
ally coupled to FcγRIIIb leading to NETosis via ERK activation. 
FcγRIIIb was stimulated by specific monoclonal antibodies, and 

the NET formation was evaluated in the presence or absence of 
pharmacological inhibitors. The antibiotic LL Z1640-2, a selective 
inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-
induced NET formation. Both PMA and FcγRIIIb cross-linking 
induced phosphorylation of ERK. But, LL Z1640-2 only inhibited 
the FcγRIIIb-mediated activation of ERK. Also, a MEK-specific 
inhibitor was able to prevent ERK phosphorylation induced by 
both PMA and FcγRIIIb. These data show for the first time that 
FcγRIIIb cross-linking activates TAK1, and that, this kinase is 
required for triggering the MEK/ERK signaling pathway to 
NETosis.

MaTerials anD MeThODs

neutrophils
Neutrophils were isolated from the peripheral blood collected from 
adult healthy volunteers following a protocol that was approved 
by the Bioethics Committee at Instituto de Investigaciones 
Biomédicas – UNAM. All volunteers provided a written informed 
consent for their blood donation. The procedure for neutrophil 
isolation was exactly as previously described (14).

reagents
Bovine serum albumin (BSA) was from F. Hoffmann-La Roche 
Ltd. (Mannheim, Germany). Piceatannol, a spleen tyrosine kinase 
(Syk) inhibitor was from Acros Organics (NJ, USA). PD98059 
and U0126, MEK (ERK kinase) inhibitors were obtained from 
New England Biolabs (Beverly, MA, USA) and from Promega 
(Madison, WI, USA), respectively. The antibiotic LL Z1640-2 
[also known as (5Z)-7-Oxozeaenol; cas 66018-38-0] (catalog 
no. sc-202055) was from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). GÖ6983, a protein kinase C (PKC) inhibitor, SB 
203580, a p38 MAP kinase inhibitor (catalog number 559389), 
and 3-(1-methyl-1H-indol-3-yl-methylene)-2-oxo-2,3-dihydro-
1H-indole-5-sulfonamide (iSyk), another Syk inhibitor (catalog 
no. 574711) were from Calbiochem/EMD Millipore (Billerica, 
MA, USA). Recombinant Human TGF-β1 (catalog No. 100-21) 
was from Peprotech (Rocky Hill, NJ, USA). The cOmplete™ pro-
tease inhibitor cocktail (catalog No. 11697498001) and PhosSTOP™ 
phosphatase inhibitor cocktail (catalog No. 04906845001) 
were from Roche Diagnostics (Basel, Switzerland). PMA and 
all other chemicals were from Sigma Aldrich (St. Louis, MO, 
USA). The following antibodies were used: anti-human FcγRI 
(CD64) mAb 32.2 (ATCC® HB-946™) and anti-human FcγRIIa 
(CD32a) mAb IV.3 (20) (ATCC® HB-217™) were from American 
Type Culture Collection (Manassas, VA, USA). The anti-human 
FcγRIIIb (CD16b) mAb 3G8 (21) was donated by Dr. Eric J. 
Brown (University of California in San Francisco, San Francisco, 
CA, USA). The anti-β1 integrin mAb TS2/16 was donated by 
Martin Hemler (Dana Farber Cancer Research Institute, Boston, 
MA, USA). Monoclonal antibodies were purified as previously 
described (15). Rabbit polyclonal anti-ERK 1 (catalog no. sc-94), 
rabbit polyclonal anti-phospho-ERK 1/2 (pTyr204) (catalog no. 
sc-101761), and rabbit polyclonal anti-glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) (catalog no. sc-25778) were 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). F(ab′)2 
fragment goat anti-mouse IgG (catalog No. 115-006-072) was 
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FigUre 1 | Fcγriiib induces neT formation faster than PMa. Human 
neutrophils were left untreated (---), or were stimulated with 20 nM phorbol 
12-myristate 13-acetate (PMA), or by cross-linking FcγRIIIb with mAb 3G8, or 
by cross-linking FcγRIIa with mAb IV.3, or by cross-linking β1 integrins with 
mAb TS2/16, and then incubated for 4 h. The relative amount of NETs was 
estimated from SYTOX® Green fluorescence in relative fluorescent units (RFU) 
every 5 min. Data are mean ± SEM of three experiments done in 
tetraplicates.
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from Jackson Immuno Research Laboratories Inc. (West Grove, 
PA, USA). HRP-conjugated F(ab′)2 goat anti-mouse IgG (catalog 
No. 0855572) and HRP-conjugated F(ab′)2 goat anti-rabbit IgG 
(catalog No. 0855686) were from MP Biomedicals (Santa Ana, 
CA, USA). Rabbit polyclonal anti-phospho-TAK1 (T187) (cata-
log No. ab192443) was from Abcam plc. (Cambridge, UK).

neT Formation Kinetics
Neutrophil extracellular trap formation was quantified by detect-
ing DNA release spectrophotometrically with the DNA-binding 
dye SYTOX® Green (22–24). For PMA stimulation, neutrophils 
were resuspended at 1  ×  106  cell/ml in RPMI-1640 medium 
(Gibco®; Grand Island, NY, USA) containing 500  nM SYTOX® 
Green (Molecular Probes, Inc.; Eugene, OR, USA), and 100 μl of 
this cell suspension (1 × 105 PMN) were added to each well of the 
96-well plate. The plate was then incubated at 35°C for 20 min in 
a microplate reader model Synergy HT from BioTek Instruments 
(Winooski, VT, USA). Next, 20 μl of 120 nM PMA dissolved in 
the same RPMI/SYTOX medium were added to each well for a 
final concentration of 20 nM. After that, the plate was incubated 
for up to 4 h, reading the fluorescence from the bottom of the 
plate, using the 485 nm excitation and 528 emission filters, every 
5  min. For FcγR stimulation, neutrophils were resuspended at 
0.5 × 107 cell/ml in RPMI/SYTOX medium containing 10 μg/ml 
of the corresponding anti-FcγR antibody and incubated in ice 
for 20  min. After one wash in PBS, cells were resuspended in 
the same volume of RPMI/SYTOX medium, and 20  μl of this 
cell suspension (1 × 105 PMN) were added to each well of the 
96-well plate. The plate was then incubated at 35°C for 20 min 
in a microplate reader. Next, 100 μl of 45 μg/ml goat anti-mouse 
IgG in RPMI/SYTOX medium were added to each well (final 
concentration 37.5 μg/ml). Finally, the plate was incubated for 
up to 4 h, reading the fluorescence every 5 min. For TAK1 inhibi-
tion, cells were treated with 10 nM LL Z1640-2 for 30 min before 
stimulation.

neutrophil stimulation
PMNs were stimulated by cross-linking Fc receptors with specific 
mAbs as follows: PMN were resuspended in PBS at 1 × 107 cells/
ml, and 200 μl of the cell suspension were placed in Eppendorf 
tubes. The corresponding mAb was then added at 10  μg/ml, 
and the cells were incubated on ice for 30 min. Next, cells were 
washed twice with 500 μl of PBS. Receptor cross-linking was then 
induced by resuspending the cells in 100 μl of PBS containing 
37  μg/ml of F(ab′)2 goat anti-mouse IgG and incubating them 
at 37°C for 15 min. For PMN stimulation with PMA or TGF-β, 
PMN were incubated at 37°C for 15 min with 20 nM PMA or 
5 ng/ml TGF-β. In assays where pharmacological inhibitors were 
used, PMN were pretreated with 10 nM LLZ 640-2 or only with 
the solvent dimethyl sulfoxide (DMSO) on ice for 30 min before 
adding the first mAb.

Protein extraction and Western Blotting
Total protein extracts were obtained by lysing the cells in cold RIPA 
lysis buffer (150 mM NaCl, 5 mM EDTA, 50 mM Hepes, 0.5% 
sodium deoxycholate, 1% Non-idet P-40, 50 mM NaF, and 1 mM 
sodium orthovanadate, pH 7.5) supplemented with 1× protease 

inhibitor cocktail and 1× phosphatase inhibitor cocktail, which 
were added just before lysing the cells. Cell lysates were incubated 
on ice for 20 min, then cleared by centrifugation, and proteins 
resolved on SDS 10% PAGE. Proteins were then electrotransfered 
onto polyvinylidine fluoride (PVDF) membranes (Immobilon-P; 
Millipore, Bedford, MA, USA). Membranes were incubated 
in blocking buffer (1% BSA, 5% non-fat dry milk) (Carnation; 
Nestle, Glendale, CA, USA) and 0.1% Tween 20 in Tris-buffered 
saline (TBS: 50 mM Tris-HCl, 150 mM NaCl, pH = 7.5) overnight 
at 4°C. Membranes were subsequently probed with the corre-
sponding antibody in blocking buffer for 1 h at room temperature. 
Anti-phospho-ERK 1 (1/1000 dilution) or anti-phospho TAK1 
(1/2000 dilution). Membranes were washed with TBS-Tween six 
times and incubated with a 1/3000 dilution of HRP-conjugated 
F(ab′)2 goat anti-rabbit IgG o for 1  h at room temperature. 
After washing six more times, the membrane was developed 
with Immobilon Western chemiluminescent HRP substrate 
(catalog No. WBKLS0100) from EMD Millipore (Billerica, MA, 
USA) according to the manufacturer’s instructions. Afterward, 
membranes were stripped with 0.2 M NaOH and reprobed with 
anti-ERK 1 (1/2000 dilution) or anti-GAPDH (1/1000 dilution) 
to assess protein loading in PAGE gels.

statistical analysis
Quantitative data were expressed as mean ± SEM. Single variable 
data were compared by paired-sample Student’s t-tests using the 
computer program KaleidaGraph® version 3.6.2 for Mac (Synergy 
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A B

FigUre 2 | TaK1 is required for Fcγriiib-induced neT formation. (a) human neutrophils were stimulated with 20 nM phorbol 12-myristate 13-acetate (PMA), 
or by cross-linking FcγRIIIb with mAb 3G8, and then incubated for 4 h. Some neutrophils were previously treated with 10 nM LL Z1640-2 (LLZ), a selective inhibitor 
of TAK1 (white symbols), or with only the solvent (DMSO) (black symbols). The relative amount of NETs was estimated from SYTOX® Green fluorescence in relative 
fluorescent units (RFU) every 5 min. Data are mean ± SEM of three experiments done in tetraplicates. (B) human neutrophils were previously treated with solvent 
alone (---) or with the 10 nM LL Z1640-2 (LLZ), before stimulating with nothing (medium), 20 nM PMA, or by cross-linking FcγRIIIb, and then incubated for 4 h. The 
relative amount of NETs was estimated from SYTOX® Green fluorescence in relative fluorescent units (RFU) at 4 h after stimulation. Data are mean ± SEM of three 
experiments done in tetraplicates. Asterisks denote conditions that are statistically different from control (p < 0.0003).

4

Alemán et al. TAK1 in FcγR-Induced NETosis

Frontiers in Immunology | www.frontiersin.org July 2016 | Volume 7 | Article 277

Software; Reading, PA, USA). Differences were considered statis-
tically different at a value p < 0.05.

resUlTs

Fcγriiib-Mediated neTosis Presents a 
Different Kinetics from PMa-induced 
neTosis
Most studies on NETs have used PMA, a potent activator of 
PKC, to induce the formation of NETs (2). Direct cross-linking 
of FcγRIIIb also leads to a robust activation of NET forma-
tion (15). However, the kinetics of these responses is different. 
When human neutrophils were stimulated by PMA, NETosis 
(5) is observed as a late event with NETs (extracellular DNA 
fibers) detected after 2.5 h of stimulation (Figure 1). Complete 
NET formation was seen, as previously described, by 4 h after 
stimulation (Figure  1). In contrast, stimulation of FcγRIIIb 
with mAb 3G8, induced NETosis with a much faster kinetics. 
By 30 min after receptor cross-linking, NETs could already be 
detected (Figure  1). By 2  h, about half of the total amount of 
NETs had already been formed, and by 4  h, NETs reached a 
level similar to that induced by PMA (Figure  1). In order to 
confirm that the mAb 3G8 (IgG1) was specifically targeting 
(cross-linking) FcγRIIIb, neutrophils were also stimulated by 

the isotypic control antibody TS2/16 (IgG1) that binds to β1 
integrins, and by the mAb IV.3 (IgG2b) that binds FcγRIIa. 
Neither mAb IV.3 nor mAb TS2/16 induced NET formation 
(Figure 1), strengthening the point that FcγRIIIb is the receptor 
responsible for induction of NETosis. These data indicated that 
cross-linking FcγRIIIb is an efficient stimulus for NET forma-
tion with a faster response than the one induced by PMA. This 
difference in response kinetics led us to explore the signaling 
pathway from FcγRIIIb to NETosis.

TaK1 is involved in Fcγriiib-Mediated 
neTosis
Others and we have seen that the MEK/ERK signaling pathway 
is required for both PMA- (25) and FcγRIIIb-induced NETosis 
(15, 23). Because the transforming growth factor-β-activated 
kinase 1 (TAK1) is a known activator of MAP kinase signaling 
pathways in various immune cells (26), and in human neutro-
phils, TAK1 was also reported to act upstream of ERK (18), 
we explored the possibility that TAK1 is involved in FcγRIIIb-
mediated NETosis. The antibiotic LL Z1640-2, a selective 
inhibitor of TAK1 prevented FcγRIIIb-induced NET formation 
(Figure 2A), but not PMA-induced NET formation (Figure 2A). 
The inhibitory effect was maximum at 4 h after stimulation when 
the amount of NETs from FcγRIIIb-stimulated neutrophils was 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


A B

FigUre 3 | TgF-β does not affect Fcγriiib-induced neT formation. (a) human neutrophils were left untreated (---), or were stimulated with 20 nM phorbol 
12-myristate 13-acetate (PMA), or by cross-linking FcγRIIIb, and then incubated for 4 h. Some neutrophils were previously treated with 5 ng/ml transforming growth 
factor-β (TGF-β) (white symbols) or with only the solvent (DMSO) (black symbols). The relative amount of NETs was estimated from SYTOX® Green fluorescence in 
relative fluorescent units (RFU) every 5 min. Data are mean ± SEM of three experiments done in tetraplicates. (B) human neutrophils were previously treated with 
solvent alone (---) or with 5 ng/ml TGF-β, before stimulating with nothing (Medium), 20 nM PMA, or by cross-linking FcγRIIIb, and then incubated for 4 h. The relative 
amount of NETs was estimated from SYTOX® Green fluorescence in relative fluorescent units (RFU) at 4 h after stimulation. Data are mean ± SEM of three 
experiments done in tetraplicates.
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reduced by half (Figure 2B). This result indicated for the first 
time that indeed TAK1 is involved in NET formation after cross-
linking FcγRIIIb.

Transforming growth factor-β-activated kinase 1 was initially 
identified as a regulator of MAPK in response to TGF-β (27), thus, 
we explored whether TGF-β could have an effect on NETosis. 
Treatment of neutrophils with TGF-β did not change the kinetics 
nor the amount of NET formation induced either by FcγRIIIb 
cross-linking or PMA stimulation (Figure 3). This lack of effect 
on NETosis was not due to failure of TGF-β to activate TAK1. 
Neutrophils treated with TGF-β presented a robust phosphoryla-
tion of TAK1 (Figure 4A) indicating that the axis TGF-β/TAK1 
was functional in these cells. Moreover, cross-linking of FcγRIIIb 
also led to phosphorylation of TAK1 (Figure 4A). This phospho-
rylation in Thr-187 is indicative of activation of TAK1 (28). The 
FcγRIIIb-mediated phosphorylation of TAK1 was detectable at 
5 min, reached a maximum at 15 min, and was almost gone by 
30 min after receptor cross-linking (Figure 4B). Thus, this time 
was used in all other experiments to detect TAK1 phosphoryla-
tion. Opposite to this result, treatment with PMA did not induce 
any phosphorylation of TAK1 (Figure 4B).

Human neutrophil expresses constitutively two low-affinity 
Fcγ receptors, FcγRIIa and FcγRIIIb, and after interferon-γ, 

they can upregulate FcγRI. Previously, it has been reported that 
FcγRIIIb is the receptor responsible for NET formation (15, 23). 
Therefore, we explored the possibility that each of these Fc recep-
tors could activate TAK1 after cross-linking each receptor with 
the corresponding specific monoclonal antibody. Treating the 
cells with monoclonal antibody 32.2 (anti-FcγRI) did not induce 
TAK1 phosphorylation (Figure 4C). This was an expected result 
since FcγRI is not expressed in resting neutrophils. Similarly, 
cross-linking with monoclonal antibody IV.3 (anti-FcγRIIa) 
also did not cause any TAK1 phosphorylation (Figure  4C). In 
contrast, cross-linking of FcγRIIIb with the monoclonal anti-
body 3G8 efficiently induced TAK1 phosphorylation (Figure 4). 
Together, these data suggested that, indeed, FcγRIIIb signaling 
in human neutrophils requires TAK1 activation for induction of 
NET formation.

syk is required for Fcγriiib-Mediated 
TaK1 activation
After establishing a role for TAK1 in FcγRIIIb-mediated NET 
formation, we explored a possible connection from FcγRIIIb to 
TAK1. Neutrophils were stimulated by FcγRIIIb cross-linking in 
the presence or absence of two Syk inhibitors. FcγRIIIb-induced 
TAK1 phosphorylation and also ERK 1 phosphorylation were 
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FigUre 5 | syk is required for Fcγriiib-mediated TaK1 activation. 
Human neutrophils were left untreated (---), or were stimulated by cross-
linking FcγRIIIb for 15 min in the absence or presence of 50 μM Piceatannol 
(Pic) or 40 nM iSyk, both selective inhibitors of Syk. Cell lysates were 
prepared after stimulation. Proteins were resolved by SDS-PAGE and then 
Western blotted for phosphorylated-TAK1 (pTAK1) (upper panel), or for 
phosphorylated ERK (pERK) (middle panel), and for total glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) (lower panel). Data are representative 
of three separate experiments.

A

C

B

FigUre 4 | Fcγr-cross-linking induces activation of TaK1. Human neutrophils were left untreated (---), or (a) were stimulated with 5 ng/ml transforming 
growth factor-β (TGF-β), or by cross-linking FcγRIIIb for 15 min. (B) neutrophils were also stimulated with 20 nM phorbol 12-myristate 13-acetate (PMA), or by 
cross-linking FcγRIIIb (FcR) for 5, 15, and 30 min. (c) neutrophils were also stimulated by cross-linking FcγRI with mAb 32.2, by cross-linking FcγRIIa with mAb IV.3, 
or by cross-linking FcγRIIIb with mAb 3G8 for 15 min. Cell lysates were prepared after stimulation. Proteins were resolved by SDS-PAGE, and then Western blotted 
for phosphorylated-TAK1 (pTAK1) (upper panel) or for total ERK (lower panel). Data are representative of three separate experiments.
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efficiently blocked by both Syk inhibitors (Figure 5). This result 
suggested that FcγRIIIb connects to TAK1 activation via Syk.

TaK1 is required for Fcγriiib-Mediated 
erK activation
Next, we explored the signaling pathway from TAK1 to ERK. 
Neutrophils were stimulated by PMA or FcγRIIIb cross-linking 

in the presence or absence of the TAK1 inhibitor, and ERK 
1 activation was detected by Western blotting. First, we con-
firmed that LL Z1640-2 was inhibiting TAK1 phosphorylation 
(Figure  6A). Under the same conditions, PMA induced ERK 
phosphorylation (Figure 6B) as previously reported (15). This 
ERK phosphorylation was not affected by the TAK1 inhibitor 
(Figure  6B). In contrast, FcγRIIIb cross-linking also induced 
ERK phosphorylation, but this ERK phosphorylation was 
efficiently blocked by the TAK1 inhibitor (Figure  6B). This 
result strongly indicated that TAK1 activation is required for 
ERK activation after FcγRIIIb cross-linking, but not after PMA 
stimulation.

In most situations, MEK activation leads to ERK activation, 
as the former phosphorylates the latter. In order to confirm that 
this is also the case in the case of FcγRIIIb- or PMA-induced 
NETosis, neutrophils were treated with the MEK inhibitor 
PD98059 prior to stimulation. As shown before, cross-linking 
of FcγRIIIb clearly activated ERK, and this activation was com-
pletely blocked by the MEK inhibitor (Figure  7A). Similarly, 
this MEK inhibitor also blocked ERK activation induced by 
PMA (Figure  7B). Neither PD98059 nor UO126, another 
potent MEK inhibitor, was able to block TAK1 activation 
induced by FcγRIIIb (Figure 7C). This last result confirms that 
TAK1 is upstream of MEK/ERK signaling module in the case 
of FcγRIIIb signaling. These data also suggest that the signaling 
pathways initiated by both FcγRIIIb and PMA converge at the 
level of PKC or MEK to activate ERK leading to downstream 
NETosis.
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FigUre 7 | MeK1 is required for Fcγriiib-mediated erK activation. Human neutrophils were left untreated (---), or were stimulated by cross-linking FcγRIIIb 
for 15 min, or by 20 nM phorbol 12-myristate 13-acetate (PMA). Some neutrophils were previously treated with 50 μM PD98059 (PD) or with 50 μM UO126 (UO), 
both selective inhibitors of MEK. Cell lysates were prepared after stimulation. Proteins were resolved by SDS-PAGE, and then Western blotted for (a,B) 
phosphorylated ERK (pERK) (upper panel) and for total ERK (lower panel); or for (c) phosphorylated-TAK1 (pTAK1) and for total ERK (lower panel). Data are 
representative of three separate experiments.

A B

FigUre 6 | TaK1 is required for Fcγriiib-mediated erK activation. Human neutrophils were left untreated (---), or were stimulated by cross-linking FcγRIIIb 
for 15 min, or by 20 nM phorbol 12-myristate 13-acetate (PMA). Some neutrophils were previously treated with 10 nM LL Z1640-2 (LLZ), a selective inhibitor of 
TAK1. Cell lysates were prepared after stimulation. Proteins were resolved by SDS-PAGE, and then, Western blotted for (a) phosphorylated-TAK1 (pTAK1) (upper 
panel) and for total glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (lower panel); or for (B) phosphorylated ERK (pERK) and total GAPDH (lower panel). Data 
are representative of three separate experiments.
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p38 MaPK is not required for  
Fcγriiib-Mediated neT Formation
Because it is well known that TAK1 functions upstream of p38 
MAPK pathway rather than ERK (26, 29) in many cell types, we 
examined whether blockade of p38 MAPK affected FcγRIIIb-
induced NET formation. The specific p38 MAPK inhibitor 
SB203580 blocked phosphorylation of p38 MAPK induced by 
TGF-β (Figure 8A). As expected, neutrophils treated with PMA 
in the presence of SB203580 produced NETs as efficiently as 
the neutrophils with no inhibition of p38 MAPK (Figure  8B). 
Similarly, inhibition of p38 MAPK did not affect NET formation 

induced by cross-linking FcγRIIIb (Figure  8B). These data 
strongly suggest that FcγRIIIb activates TAK1 to connect with 
the MEK/ERK pathway in order to activate NET formation.

DiscUssiOn

The MAP3K, TAK1, is activated by different stimuli including 
cytokines such as tumor necrosis factor (TNF), interleukin 
(IL)-1, and IL-18, or TLR ligands such as LPS in various cell 
types (26, 30–34) and participates in activating several signaling 
pathways. In this study, we report for the first time that, in human 
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FigUre 8 | p38 MaPK is not required for Fcγriiib-mediated neT formation. (a) Human neutrophils were left untreated (---) or were stimulated with 5 ng/ml 
transforming growth factor-β (TGF-β). Some neutrophils were previously treated with 100 nM SB 203580, a selective inhibitor of p38 MAPK. Cell lysates were 
prepared after stimulation. Proteins were resolved by SDS-PAGE, and then Western blotted for phosphorylated-p38 (p-p38) (upper panel) and for total ERK (lower 
panel). Data are representative of three separate experiments. (B) human neutrophils were left untreated (---), or were stimulated with 20 nm phorbol 12-myristate 
13-acetate (PMA), or by cross-linking FcγRIIIb with mAb 3G8, and then incubated for 4 h. Some neutrophils were previously treated with 100 nM SB 203580 (SB) 
(open symbols). The relative amount of NETs was estimated from SYTOX® Green fluorescence in relative fluorescent units (RFU) every 5 min. Data are mean ± SEM 
of three experiments done in tetraplicates.
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neutrophils, TAK1 can also be activated in response to stimula-
tion of antibody receptor FcγRIIIb. We also show that TAK1 is 
required for induction of NETosis by this receptor via the MEK/
ERK signaling cascade.

Neutrophil activation is required for the initiation of the 
several defense mechanisms, including phagocytosis, respiratory 
burst, release of various microbicidal molecules by degranulation 
(35), and the formation of NETs (3). Many pathogens, including 
virus, bacteria, fungi, and parasites are known to induce NET 
formation (6). These microorganisms must be recognized by pat-
tern recognition receptors (PRRs) such as TLRs. In fact, TLR-4 
has been identified as an important receptor for NET formation 
(36–38). In addition, receptors for the Fc portion of antibody 
molecules have recently been identified as potent inducers of 
NET formation. In particular, the receptor for IgA FcαRI (CD89) 
(39) and the receptor for IgG FcγRIIIb (CD16b) (15, 23) are the 
only Fc receptors known to induce NETosis.

FcγRIIIb is present exclusively on human neutrophils, and 
it is a GPI-linked receptor, lacking transmembrane and cyto-
plasmic domains (10). Despite the fact that the initial signaling 
mechanism for this receptor remains to be described, it is clear 
that it can activate several signaling pathways leading to various 
cell responses including increase in calcium concentration (11), 
activation of integrins (12), activation of the transcription factors 
NF-κB (13) and Elk-1 (17), and induction of NET formation (15, 
23). In our previous publication, we described that FcγRIIIb can 
activate ERK, and this activation is important for NET formation 
(15). However, we could not identify how the MEK/ERK signal-
ing cascade was engaged. Here, we now report for the first time, as 
far as we know, that the transforming growth factor-β-activated 
kinase 1 (TAK1) is activated upon FcγRIIIb engagement, and 

that this kinase is required both for NET formation and MEK/
ERK activation. Our findings are similar to those reported for 
chemoattractant and growth factor stimulation of neutrophils 
where TAK1 is also activated and acts upstream of the MEK/
ERK pathway (19). Still, the manner in which FcRIIIb activates 
TAK1 remains elusive. Possible activators include Syk or TRAF6. 
We addressed the involvement of Syk by blocking its activity 
with two different specific inhibitors. Both Piceatannol and iSyk 
prevented activation (phosphorylation) of both TAK1 and ERK. 
These data clearly indicate that Syk functions upstream of TAK1 
after FcγRIIIb engagement. However, how this receptor lacking 
a cytoplasmic tail can connect with Syk remains an unsolved 
problem for future studies.

Although, both stimuli PMA and FcγRIIIb cross-linking 
initiate signaling that seems to converge at the level of MEK 
(Figure 9), an important difference in NETosis induced by PMA 
or by FcγRIIIb was found in this study. PMA release of DNA fibers 
was detected at later times just as described before (2, 40), more 
than 2½  h after stimulation, and reached a maximum around 
4 h (Figure 1). In contrast, FcγRIIIb-induced NETosis liberated 
DNA fibers rapidly in less than 1 h (Figure 1). Mechanistically, 
we do not know the reason for this difference, but it is possible 
that another pathway in addition to the ERK pathway is involved. 
Previously, Syk was also found to participate in NET formation 
induced by insoluble immune complexes (23) and by PMA (23). 
We also found that inhibition of Syk by Piceatannol blocked the 
release of NETs induced either by PMA or by FcγRIIIb (15). In 
addition, we have observed inhibition of FcγRIIIb-mediated 
TAK1 phosphorylation by Piceatannol and by iSyk (Figure  5). 
This suggests as mentioned above that Syk is required for TAK1 
activation to deliver a signal for NET formation after FcγRIIIb 
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engagement. Yet, activation of Syk by PMA has also been previ-
ously described in neutrophils. PMA induced PKC-dependent 
phosphorylation of Syk (41). However, we do not think that 
this pathway is involved in this case because inhibition of PKC 
did not prevent FcγRIIIb-induced TAK1 phosphorylation (our 
unpublished data). Thus, TAK1 acts downstream of FcγRIIIb 
and upstream (or independently) of PKC (Figure 9). In contrast, 
inhibition of PKC leads to reduced FcγRIIIb-induced NET for-
mation (15). Hence, it would seem that TAK1 connects to PKC 
for activation of the MEK/ERK signaling cascade. In support of 
this idea, another receptor has been recently reported to activate 
Syk and TAK1 together with PKC. The innate decoy receptor 
CEACAM3, also exclusively expressed by human neutrophils, 
triggers a Syk-, PKCδ-, and TAK1-dependent signaling cascade 
that results in activation of NF-κB (42). In another even more 
recent report, TAK1 was clearly shown to activate the MEK/ERK 
pathway (19). Unfortunately, in this study, the involvement of PKC 
was not investigated. Whether TAK1 connects to MEK directly 
of via PKC remains unsolved (Figure 9). Also, the difference in 

kinetics for NET formation might be due, at least in part, to the 
selective activation of TAK1 by FcγRIIIb (Figure 9). This idea is 
attractive, since, when neutrophils were treated with TGF-β, a 
stronger phosphorylation of TAK1 was detected (Figure 4A). Yet, 
no difference in NET formation was observed in cells pretreated 
with TGF-β. The mechanism responsible for the faster kinetics 
in FcγRIIIb-mediated NET formation remains to be elucidated.

In several cell types, TAK1 functions upstream of p38 MAPK 
pathway rather than ERK (26, 29). In contrast, in human neutro-
phils, it has been reported that chemotactic and growth factors 
induce TAK1 activation leading to the MEK/ERK pathway inde-
pendently of p38 MAPK (19). In the case of FcγRIIIb-induced 
NET formation, we also found that inhibition of p38 MAPK with 
the inhibitor SB203580 did not affect NETosis (Figure 8B). Thus, 
our data also support the hypothesis that, in human neutrophils, 
TAK1 connects to MEK/ERK and not to p38 MAPK or JNK.

In conclusion, to our knowledge, this is the first demonstration 
that TAK1 can be activated by FcγRIIIb in human neutrophils, 
and that this kinase is required for triggering the MEK/ERK 
signaling pathway to NETosis.
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