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Approximately 1.2 billion people suffer from fungal diseases worldwide. Arguably, the 
most serious manifestation occurs when pathogenic fungi infect the brain, often causing 
fatal meningoencephalitis. For most fungi, infection occurs via the vascular route. The 
organism must first be arrested in the brain microvasculature and transmigrate into the 
brain parenchyma across the blood–brain barrier. As a result, host immune cells are 
recruited into the brain to contain the fungi. However, it remains poorly understood how 
fungi traffic to, and migrate into the brain and how immune cells interact with invading 
fungi in the brain. A new era of intravital fluorescence microscopy has begun to provide 
insights. We are able to employ this powerful approach to study dynamic interactions of 
disseminating fungi with brain endothelial cells as well as resident and recruited immune 
cells during the brain infection. In this review, with a focus on Cryptococcus neoformans, 
we will provide an overview of the application of intravital imaging in fungal infections in 
the brain, discuss recent findings and speculate on possible future research directions.
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iNTRODUCTiON

Infectious meningitis and encephalitis are a major threat to human health, causing high mortality 
and morbidity throughout the world (1). Following infections, microbes including viruses, bacteria, 
fungi, and parasites can disseminate from sites of initial infection to the bloodstream. The circulat-
ing pathogens become arrested in the brain vasculature, followed by transmigration into the brain 
parenchyma across the blood–brain barrier (BBB). The BBB is a structural and functional barrier, 
which maintains the neural microenvironment by regulating the passage of molecules and cells 
into the brain (2). To date, three mechanisms have been proposed for pathogens to cross the BBB: 
transcellular migration, paracellular migration, and the Trojan horse mechanism (1). Once patho-
gens have translocated to the brain parenchyma, they proliferate and cause brain inflammation, 
often with devastating consequences. There are three fundamental questions in the field (Figure 1): 
(1) How are pathogens arrested in the brain vasculature? (2) How do pathogens migrate into the 
brain across the BBB? and (3) How do immune cells respond to the brain infection and do they 
clear the pathogen or cause inflammation in a constrained intracranial compartment that is highly 
susceptible to cellular dysfunction and increased pressure?

Modern advances in technology have provided opportunities to better understand host– 
pathogen interactions. Among them, imaging of organs in living animals, using high-resolution 
intravital microscopy (IVM), represents a major advance in the field. Using this technique, 
interactions of pathogens with brain endothelial cells, and their transmigration across the BBB can 
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FiGURe 1 | Possible mechanisms of arrest, transmigration, and 
resultant host response. The BBB is formed by brain endothelial cells, 
which are connected by tight junctions, and astrocyte foot processes that 
surround the endothelial cells and maintain the integrity of the BBB (2, 3).  
(A) Fungal cells are trapped by vascular constriction with possible sensing 
and signaling of both cell types (4, 5). This is followed by transmigration that 
could be by a trans- or paracellular mechanism (paracellular is shown in this 
panel). Immune and inflammatory cells are recruited to the vascular or 
extracellular compartment to generate host defense and inflammation.  
(B) Fungal cells adhere directly to the endothelium with possible sensing and  
 

signaling of both cell types (6–10). This is followed by transmigration that  
could be by a trans- or paracellular mechanism (transcellular is shown in this 
panel). Immune and inflammatory cells are recruited to the vascular or 
extracellular compartment to generate host defense and inflammation.  
(C) Fungal cells are internalized within a host cell (Trojan Horse) that makes 
contact with the endothelium, arrests, and generates sensing and signaling 
of all three cell types (11, 12). This is followed by transmigration that could 
be by a trans- or paracellular mechanism. Immune and inflammatory cells 
are recruited to the vascular or extracellular compartment to generate host 
defense and inflammation.

(Continued)

FiGURe 1 | Continued
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be directly assessed under flow conditions in real time. In addi-
tion, the dynamic interactions of leukocytes with pathogens 
and their behavior in the brain vasculature and parenchyma 
can be evaluated in living animals. This is of particular impor-
tance, because the extravascular migration of pathogens and 
their interactions with immune cells are transient and highly 
dynamic, and investigation of these processes by direct observa-
tion using IVM provides insights that cannot be obtained using 
other techniques.

Of the approximately 300 fungal species that have been 
reported to be pathogenic to humans (13), Cryptococcus neofor-
mans, Candida albicans, Histoplasma capsulatum, Coccidioides 
immitis, Paracoccidioides brasiliensis, Aspergillus spp., and 
zygomycetes are among the most common causes of brain 
or meningeal infections (14–21). In particular, cryptococcal 
meningoencephalitis is one of the most common infections 
of the central nervous system and a leading course of HIV-
associated mortality globally (16, 18, 22). In recent years, much 
progress has been made to understand migration of pathogens 
and immune responses induced by the invading pathogens in 
the brain using IVM. This review will discuss recent studies that 
used IVM to address brain infections by a very limited subset of 
pathogenic fungi (Table 1).

iNTRAviTAL MiCROSCOPY

Intravital microscopy was first employed by Julius Cohnheim in 
the nineteenth century to visualize leukocyte trafficking in the 
tongue and mesentery of a frog (27). In the last decade, significant 
progress has been made in imaging of live animals due to break-
throughs in microscopy. Wide-field microscopy, multiphoton 
confocal, spinning disk confocal, and multiphoton resonant 
scanning confocal microscopy have been used to image fungal 
infection in the brain. Each imaging system has its advantages 
or disadvantages depending on whether speed of image acquisi-
tion, depth into the tissue, image resolution, photobleaching and 
phototoxicity, and price are considerations (28–32).

ivM PROCeDURe

There are two major surgical methods to make the brain vascu-
lature visible under fluorescent microscopy, i.e., a thinned-skull 
cranial window and an open-skull cranial window (33). Both 
techniques have advantages and limitations. During imaging 
through the thinned-skull cranial window, the brain does not 
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TABLe 1 | Application of intravital imaging to brain infection by fungi.

Fungi Animals Nature of the work Reference

C. neoformans Mouse The fungal cell is mechanically 
trapped in the brain capillary 
and transmigrates to the brain 
parenchyma with contributions 
from urease

Shi et al. (5)

C. neoformans Mouse Neutrophils internalize the 
intravascular fungal cell that 
had been arrested in the brain 
microvasculature and return to 
the blood stream in a “vacuum-
cleaner” type of behavior

Zhang 
et al. (23)

C. neoformans Zebrafish The fungal cell was observed to 
proliferate within macrophages; 
capsule size determines early 
macrophage control of infection

Bojarczuk 
et al. (24)

C. neoformans Zebrafish The fungal cell can cross the 
zebrafish blood–brain barrier, 
which is dependent on the FNX1 
virulence gene

Tenor et al. 
(25)

C. albicans Mouse Accumulation of both yeast and 
filamentous forms of the fungal 
cells were observed in the brain 
meninges and parenchyma

Navarathna 
et al. (26)

P. brasiliensis Mouse Enhanced leukocyte recruitment 
to the brain following the fungal 
infection is associated with CXCL9

Pedroso 
et al. (20)
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need to be superfused with artificial cerebrospinal fluids because 
the brain tissue is still covered with the skull. It is well suited for 
observations over long periods of time. However, the skull thick-
ness affects the image quality and achieving optimal and uniform 
skull thickness requires a high level of surgical proficiency. By 
contrast, in an open-skull window, a portion of the skull and 
dura is removed, and the cortical surface is directly exposed to 
microscopy. Thus, a better quality of images is usually achieved 
compared with a thinned-skull window. However, it is essential 
to superfuse the brain with artificial cerebrospinal fluid during 
the period of observation, and great care must be taken to avoid 
surgical trauma and hemorrhage (33).

To facilitate intravital imaging, the organisms, brain micro-
vasculature, and leukocytes can be labeled with fluorochromes. 
For example, we labeled C. neoformans with fluorescent iso-
thiocyanate (FITC) or tetramethylrhodamine isothiocyanate 
(TRITC) to visualize the arrest and migration of the yeast 
cell into the brain (4, 5). Two colors allow comparison of two 
different virulence characteristics or wild-type and mutant 
strains. However, the yeast cell loses the fluorescent label if it 
proliferates. This disadvantage might be overcome by using 
fungi expressing green or red fluorescent proteins if sufficient 
fluorescent intensity can be achieved (26, 34, 35). To label the 
microvasculature, rat-anti-mouse PECAM-1 [CD31, a molecule 
expressed on endothelial cells (36)] can be injected intravenously 
(37, 38). Since the tight junctions of endothelial cells express 
high PECAM-1, this labeling can be used to study interactions 
of fungi or leukocytes with endothelial tight junctions (36). 
Alternatively, the vascular compartment can be illuminated by 

intravenous injection with fluorochrome-conjugated bovine 
serum albumin or dextran (39). In addition, transgenic mice 
that express fluorescent proteins in endothelial cells [for example, 
Tie-2 green fluorescent protein (GFP) mice (40)] can be used.

An expanding number of tools are becoming available to study 
the interactions of fungi with immune and inflammatory cells. 
To determine the trafficking of leukocytes in the brain, mice can 
be injected intravenously with rhodamine 6G, which is a cell-
permeant dye that is sequestered by active mitochondria (41, 42). 
However, to identify the functions of subsets of leukocytes, mAb 
or transgenic mice can be used. For example, anti-CD45 can be 
injected intravenously, which labels all leukocytes. Neutrophils 
can be labeled in vivo by intravenous injection of anti-Ly6G (23). 
Alternatively, neutrophils can be visualized in mice expressing 
enhanced GFP under the control of the endogenous lysozyme 
promoter (LysM-eGFP) (39, 43). To image monocytes, mice can 
be intravenously injected with fluorochrome-labeled anti-CCR2 
(labels proinflammatory monocytes) or anti-CX3CR1 antibody 
(labels patrolling monocytes) (44). Alternately, CX3CR1gfp/+ mice 
can be used to achieve this goal. In CX3CR1gfp/+ mice, one allele 
for the gene encoding CX3CR1, the receptor for chemokine 
CX3CL1, has been replaced with a gene encoding GFP, result-
ing in GFP expression of all circulating CD11b+F4/80+ cells. 
CX3CR1gfp/+ mice express GFP in monocytes, but not in neutro-
phils (45, 46). With time, many more mouse strains are becoming 
available that have fluorescent reporters linked to other genes that 
define different subsets of cells and allow us to study the role of 
those cells in the pathogenesis of infection.

BRAiN iNFeCTiON wiTH  
C. NEOFORMANS

Cryptococcus neoformans is an encapsulated budding yeast that 
causes a life-threatening illness in immunocompromised indi-
viduals, especially in AIDS patients. It is estimated that there are 
one million cases of cryptococcosis per year and 600,000 of these 
patients will die within 3 months of diagnosis (22). Cryptococcus 
is found in the environment and enters the body through the 
respiratory tract. Immunocompetent individuals are usually 
able to contain C. neoformans in the lung (47). In the case of an 
immunocompromised host, the yeast cells cannot be successfully 
contained and disseminate into the brain via the bloodstream, 
causing meningoencephalitis (16, 47).

Hematogenous dissemination of C. neoformans is one of the 
most critical steps in the development of meningoencephalitis. 
Prior to transmigration into the brain parenchyma, circulating  
C. neoformans must be arrested in the brain vasculature. We 
became interested in a number of questions related to the 
pathogenesis of cryptococcal meningoencephalitis. (1)  Was 
C. neoformans arrested in the brain vasculature prior to trans-
migration and did the arrest occur in venules or capillaries? 
(2) How did C. neoformans behave during arrest? and (3) What 
was the mechanism(s) underlying the arrest of C. neoformans. 
As arrest of C. neoformans is a transient and dynamic process, 
we developed an in vivo model system based on IVM to study 
these questions (4, 5). We demonstrated that C. neoformans 
appeared in the mouse brain microvasculature within a few 
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seconds after injection into the tail vein. When first seen, 
C. neoformans was moving with the same velocity as the blood, 
and no interaction of circulating C. neoformans with venular 
endothelial cells was observed. The number of yeast cells pass-
ing through postcapillary venules was greatest immediately 
after injection and gradually decreased over time. However, 
even after 18  h, rare yeast cells could still be seen moving in 
the brain venules. C. neoformans appeared to move at the same 
speed as the blood and came to a sudden stop in the capillaries 
of the brain without rolling and tethering to the endothelial 
surface. Interestingly, the yeast cells were arrested in capillar-
ies that appeared to be of the same or smaller diameter than 
the organism, often at branch points. Differences in viability, 
polysaccharide capsule (the major virulence factor), and strain 
failed to affect the deposition of the yeast cells. In particular, 
there was no significant difference in the behavior and the arrest 
of polystyrene microspheres of similar size in the brain capillary 
bed when compared with C. neoformans. These results suggest 
that C. neoformans is mechanically trapped in the brain, which 
raises novel challenges for therapies to avoid arrest.

Cryptococcus neoformans transmigrates into the brain 
parenchyma across the BBB after arrest in the brain capillaries. 
Previous studies, using in vitro techniques, have shown that C. 
neoformans can cross the endothelium of the brain via direct 
transcytosis (6, 48, 49). It was further demonstrated that trans-
cytosis is mediated by interactions between CD44 expressed on 
endothelium and cryptococcal hyaluronic acids (7, 8). A secreted 
fungal metalloprotease (9), an extracellular phospholipase B1 
(10), and brain inositol (50) are critically involved in transcytosis 
of C. neoformans. In addition, it was also reported that C. neofor-
mans invaded the brain via a “Trojan horse” mechanism with the 
help of phagocytes (11, 12). However, these studies have failed to 
determine the dynamics of BBB penetration by C. neoformans 
in the brain vasculature in  vivo. Using IVM, we have recently 
characterized the transmigration of C. neoformans in  vivo (5). 
Following arrest in the brain, C. neoformans was directly seen to 
cross the capillary wall of living animals in real time. In contrast 
to trapping, viability, but not replication, was required for C. 
neoformans to cross the BBB. Urease is critically involved in brain 
transmigration of the organism. Accordingly, a urease inhibi-
tor could ameliorate infection of the mouse brain by reducing 
transmigration of C. neoformans into the brain, suggesting that 
a therapeutic strategy aimed at inhibiting this enzyme might be 
beneficial in cryptococcal meningitis and encephalitis.

Arrest of C. neoformans in the brain vasculature led to 
questions about recognition of the organism by circulating 
leukocytes. Recently, we addressed this question with the 
use of IVM (23). Among all subsets of leukocytes in the 
circulation, neutrophils are the most abundant phagocytes 
and are usually the first immune cells to be recruited to a 
site of infection to eliminate pathogens (51). Early work had 
suggested that human neutrophils kill C. neoformans in vitro 
via an intracellular (52, 53) or extracellular killing mechanism 
(54). In particular, the capability of human neutrophils to 
kill the organism was reported to be even greater than that 
of monocytes (52, 55). In  vitro, mouse neutrophils appear to 
move toward C. neoformans and then rapidly internalize the 

yeast (56). Complement C5a–C5aR signaling was essential for 
phagocytosis of C. neoformans by neutrophils by guiding their 
migration to neutrophils and enhancing surface expression of 
CD11b (56). Furthermore, the p38 MAPK pathway, but not the 
Erk pathway, was critically involved in C5a–C5aR-mediated 
chemotaxis of neutrophils during their killing of C. neoformans 
(56). These in vitro observations encouraged us to address how 
neutrophils dynamically interact with C. neoformans which 
were arrested in the brain vasculature (23). With the use of 
IVM, we demonstrated that neutrophils crawled to the yeast 
cells that had been arrested in the brain microvasculature. 
Interestingly, crawling neutrophils recognized and interacted 
with the yeast, resulting in internalization of C. neoformans. 
During the interactions of neutrophils with the yeast, mor-
phologic alterations of neutrophils, including deploying 
pseudopodia, were observed. Internalization of C. neoformans 
by neutrophils in the brain vasculature could be completed 
within a few minutes. Following ingestion of C.  neoformans, 
neutrophils were seen to crawl again along the vessel wall and 
eventually to be released into the blood flow, resulting in a 
direct removal of the arrested C. neoformans from the brain 
vasculature. Depletion of neutrophils enhanced brain fungal 
burden (23), while enhancing the recruitment of neutrophils 
improved intravascular clearance of C. neoformans in the 
brain (57). Further studies demonstrated that C. neoformans 
infection led to enhanced expression of the adhesion molecule, 
Mac-1, on neutrophils, and ICAM-1 on brain endothelial cells. 
Complement C3 was critically involved in the recognition 
of C. neoformans by neutrophils and subsequent clearance 
of the organism from the brain (23). These results revealed 
that neutrophils are able to remove C. neoformans that had 
been arrested in the brain microvasculature in a “vacuum-
cleaner” type of behavior. Given that neutrophils are usually 
considered to kill microorganisms at the infection site, the 
finding of the direct removal of C. neoformans by neutrophils 
from its arrested site may represent a novel mechanism of host 
defense in the brain (23). In this respect, neutrophils have been 
recently shown to “sweep up” bacteria arrested on the walls of 
an infected body cavity or blood vessel, but not fluid-borne 
bacteria in a zebrafish model (58).

Recently, a live-imaging model based on zebrafish larvae 
has been established to study the interactions of C. neoformans 
with innate immune cells and its migration to the brain (24, 25). 
The zebrafish C. neoformans platform provides a visually and 
genetically accessible vertebrate model system for infection 
of C. neoformans. It was shown that zebrafish macrophages 
rapidly phagocytosed the majority of C. neoformans cells fol-
lowing injection of the yeast via the caudal vein (25). Depletion 
of macrophages significantly enhanced the fungal burden in 
zebrafish, demonstrating that macrophages are essential to 
protect zebrafish from disease progression (24, 25). However, 
macrophages preferentially ingested C. neoformans with 
smaller polysaccharide capsules, and since the capsule size 
greatly increased over 24 h of infection, this markedly limited 
further phagocytosis (24). In addition, proliferation of C. neo-
formans within macrophages and non-lytic exocytosis of the 
yeast from macrophages were observed in zebrafish (24). Live 
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imaging demonstrated that C. neoformans is able to penetrate 
the zebrafish brain. There was a positive correlation between the 
burden of organisms in cranial vessels versus invasion into the 
brain parenchyma (25). The C. neoformans fnx1Δ mutant, which 
is deficient in a multidrug resistance-like protein, was shown 
to have a deficiency in transmigration across the mouse BBB 
and reduced microvascular entrapment and transcytosis across 
immortalized human brain capillary endothelial cells in  vitro 
(59). Interestingly, the fnx1Δ mutant also demonstrated defec-
tive invasion of brain parenchyma of zebrafish (25). Using IVM, 
these studies are just beginning to enhance our understanding 
of the spacial and temporal aspects and the role of different cell 
types in pathogenesis and host defense to C. neoformans.

BRAiN iNFeCTiON wiTH C. ALBICANS

Candida albicans is a commensal organism and a common 
constituent of the normal mucosal flora. As the most common 
fungal pathogen of humans, overgrowth causes thrush. However, 
translocation of the yeast cells from the mucosal surface into the 
systemic circulation causes potentially life-threatening disease, 
particularly in post-surgical and critically ill patients, which is 
associated with approximately 35% death rate (60, 61). During 
this disease, the bloodborne organisms can spread to virtually all 
organs of the body. Although the kidney is the primary target of 
this organism during disseminated candidiasis, brain infection 
is found in approximately one-half of patients with systemic 
candidiasis at autopsy (62–64). In addition, C. albicans has also 
been reported to cause meningoencephalitis without systemic 
infection in healthy individuals (65).

To invade the brain parenchyma, circulating C. albicans cells 
must adhere and cross the BBB. Early work had shown that 
C.  albicans is able to penetrate a monolayer of human brain 
endothelial cells cultured in  vitro via a transcellular pathway 
(66). It was later demonstrated that C. albicans invasion of brain 
endothelial cells is mediated by the fungal invasins Als3 and Ssa1 
(67). Als3 binds to the gp96 heat shock protein, a unique receptor 
that is expressed specifically on brain endothelium, promoting 
endothelial transcytosis by the fungus (67).

Recently, Navarathna et  al. studied brain infection by 
C.   albicans  in a mouse model using IVM (26). They observed 
sporadic entry of C. albicans into the brain parenchyma as early as 
30 min after intravenous inoculation. In this model, the authors 
did not observe leak of gadolinium diethylenetriaminepentaacetic 
acid (Gd-DTPA) into the brain 30 min after intravenous admin-
istration as examined by MRI, suggesting that brain invasion 
by C. albicans initially occurs without gross disruption of the 
BBB. However, IVM performed 3  days post-infection revealed 
significant accumulation of both yeast and filamentous forms of 
C. albicans in the meninges and parenchyma. At that time, leak 
of Gd-DTPA was observed, indicating damage of the BBB. The 
brain became heavily inflamed at sites of C. albicans invasion. 
Thus, it is conceivable that permeability of the BBB was caused by 
leukocyte infiltration. In addition, Candida filament elongation 
was observed in the brain. Interestingly, most of the yeast cells 
outside of the vasculature showed highly dynamic movement that 
could be explained by the movement of phagocytosed organisms 

within motile phagocytic cells. By contrast, hyphal cells showed 
only slow invasion based on hyphal extension.

BRAiN iNFeCTiON wiTH P. BRASILIENSIS

Paracoccidioides brasiliensis is an etiologic agent of paracoccidi-
oidomycosis, an important systemic mycosis in Latin America, 
with the greatest number of patients in Brazil, Venezuela, and 
Argentina (68). The infection is usually acquired by the respiratory 
system probably by inhalation of airborne conidia of P. brasiliensis 
(69, 70). Following infection, the conidia transform into yeast in 
the lungs. P. brasiliensis can cause disease in immunocompetent 
hosts, although immunosuppression increases the severity of 
infection. The yeast cells can be disseminated from the infected 
lung into other organs such as adrenal glands and brain (70, 71). 
In the last decade, brain infection has been reported more com-
monly, affecting approximately 12.5% of cases (70). However, it 
is unknown how the fungus arrests and migrates into the brain 
parenchyma across the BBB.

Recently, Pedroso et  al. used IVM to examine trafficking of 
leukocytes in the brain in a murine model of neuroparacoc-
cidioidomycosis (20). Following infection with P. brasiliensis by 
the intracranial route, mice showed clinical signs of progressive 
infection starting on day 7 post-inoculation. IVM of the brain 
pial microvasculature revealed a significant increase in leukocyte 
rolling 2 and 4 weeks post-infection and in adhesion 1, 2, and 
4 weeks post-infection. The enhanced recruitment of leukocytes 
was associated with a significant increase in the brain concen-
tration of chemokines, particularly CXCL9, suggesting a role 
for these molecules in the inflammatory and immune response 
against the fungi. The lesions were not restricted to the site of 
inoculation and disseminated to other sites of the brain including 
the cerebellum. Neutrophils and macrophages were increased in 
the brain as determined by the myeloperoxidase and N-acetyl-b-
d-glucosaminidase activity in the brain tissues.

CONCLUDiNG ReMARKS

Fungal meningoencephalitis is a grave illness associated with 
high mortality, even with the best available antifungal treatment. 
Understanding the mechanisms involved in arrest and invasion 
of the brain by fungi and the interactions with immune cells is 
fundamental to our knowledge of the pathogenesis of the dis-
ease. With the use of IVM, brain infections by fungi, including 
C. neoformans (5, 23), C. albicans (26), and P. brasiliensis (20), 
have been recently investigated in real time. In particular, we have 
shown that C. neoformans is mechanically trapped in the brain 
vasculature (5). IVM may provide a powerful tool to determine 
whether in vitro findings implicating interactions between CD44 
and hyaluronic acid (7, 8), or adherence of phagocytosed cells 
(Trojan Horse) also occur (11, 12) through the use of transgenic 
mice. Although neutrophils are able to recognize and remove 
the arrested C. neoformans from the brain vasculature (23), 
organisms were seen to cross the vessel wall with contribution 
of cryptococcal urease (5). IVM may provide a powerful tool to 
investigate the role of metalloprotease (9), and phospholipase (10) 
in brain invasion via transcytosis through the use of deletion 
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