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iCOS Co-Stimulation: Friend or Foe?
Daniel J. Wikenheiser and Jason S. Stumhofer*

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Over the last 15 years, the inducible T cell co-stimulator (ICOS) has been implicated 
in various immune outcomes, including the induction and regulation of Th1, Th2, and 
Th17 immunity. In addition to its role in directing effector T cell differentiation, ICOS 
has also been consistently linked with the induction of thymus-dependent (TD) antibody 
(Ab) responses and the germinal center (GC) reaction. ICOS co-stimulation, therefore, 
appears to play a complex role in dictating the course of adaptive immunity. In this 
article, we summarize the initial characterization of ICOS and its relationship with the 
related co-stimulatory molecule CD28. We then address the contribution of ICOS in 
directing an effector T cell response, and ultimately disease outcome, against various 
bacterial, viral, and parasitic infections. Next, we assess ICOS in the context of TD Ab 
responses, connecting ICOS signaling to follicular helper T cell differentiation and its role 
in the GC reaction. Finally, we address the link between ICOS and human autoimmune 
disorders and evaluate potential therapies aiming to mitigate disease progression by 
modulating ICOS signaling.
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iNTRODUCTiON

During conventional T cell activation, interaction of the T cell receptor (TCR) with MHC class 
I or class II-peptide complexes initiates the cascade of T cell activation. However, an important 
secondary co-stimulatory signal must be delivered in concert with TCR stimulation in order to 
facilitate proper T cell activation (1). Previously, CD28 ligation had been shown to play a critical role 
in providing the “second signal” necessary to promote cellular proliferation and survival following  
T cell activation (2, 3), while CTLA-4 ligation served to mitigate this process (4), as recently reviewed 
elsewhere (5–7). The identification of the inducible T cell co-stimulator (ICOS) (8, 9) as a new 
member of the immunoglobulin (Ig) family of co-receptor molecules (8) led to a flurry of research 
regarding its role in adaptive immune responses.

First identified in humans (8) and shortly thereafter in mice (9), ICOS has significant homology 
to the co-stimulatory molecule CD28 and the immune-attenuator CTLA-4 (8, 10). Appropriately 
termed the inducible co-stimulator, ICOS is not constitutively expressed on resting T cells, but is 
instead rapidly induced following TCR cross-linking and/or CD28 co-stimulation (8, 11, 12). Along 
with CD28 and CTLA-4, ICOS is expressed on activated CD4 and CD8 T cells (13), suggesting 
that ICOS – analogous to CD28 and CTLA-4 activity – also regulates the adaptive T cell response. 
Thus, due to the large degree of homology between ICOS and other Ig family co-stimulatory mol-
ecules, in addition to T cell expression of ICOS, early research questioned whether ICOS played 
a homologous role to CD28 in the process of T cell activation and the initiation of cell-mediated 
adaptive immunity.

While a number of early studies evaluated the function of ICOS in T cell activation, 
proliferation, and differentiation, the predominant phenotype that emerged from the initial 
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FiGURe 1 | Differential CD28 and iCOS signal transduction. ICOS:ICOSL interaction induces PI3K p50α regulatory subunit recruitment via its YMFM signaling 
motif, resulting in strong PIP3 production and enhanced Akt phosphorylation. CD80/CD86:CD28 interaction induces less PIP3 production and weaker Akt 
phosphorylation. ICOS:ICOSL interaction induces less c-Jun N-terminal kinase (JNK) p46 phosphorylation relative to CD80/86:CD28 ligation.
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characterization of ICOS and ICOS ligand (ICOSL)-deficient 
mice revealed that this co-stimulatory molecule played a 
significant role in the generation of class-switched antibodies 
(Abs) against thymus-dependent (TD) antigens, which was 
attributed to a reduction in the number and size of germinal 
centers (GCs) in the spleen in the absence of ICOS signaling. 
Long-lived plasma cells (LLPCs) and memory B cells (MBCs) 
that have undergone class-switching and somatic hypermuta-
tion to increase Ab affinity are products of GC reactions; as 
these cell types and the Abs they produce are thought to be 
absolutely critical for maintaining life-long protection against 
pathogens following exposure or vaccination, or for contribut-
ing to the development of a number of autoimmune diseases, 
the most recent developments regarding the function of ICOS 
have focused on how ICOS–ICOSL interactions contribute to 
GC-derived Ab production.

Herein, we assess the relationship between CD28 and ICOS 
in regard to intracellular signaling events, and evaluate how 
these co-stimulatory molecules serve different roles in CD4+  
T cell activation and proliferation. We then evaluate the influ-
ence of ICOS on the development of Th1 and Th2 type immunity 
in response to various bacterial, viral, and parasitic infections. 
Next, we discuss the early findings in Icos−/− and Icosl−/− mice that 
implicated ICOS in promoting TD antibody responses. We will 
then discuss more recent findings that suggest a role for ICOS 
signaling in the differentiation and maintenance of follicular 
helper T (Tfh) cells. To connect the function of ICOS during 
Tfh cell development with the humoral response as a whole, we 
will also assess how ICOS–ICOSL interactions modulate the GC 
reaction. Finally, a survey of potential therapeutic interventions 
regarding attenuation of ICOS signaling, and potential human 
considerations, is evaluated.

iCOS AND CD28

Although similar in structure, ICOS and CD28 appear to play 
non-redundant roles in modulating the activation of T cells 
(14,  15). Accordingly, in contrast to CD80 and CD86, which 
interact with CD28 and CTLA-4 (4), ICOSL binds ICOS exclu-
sively (12, 16, 17). Interestingly, ICOS lacks the specific MYPPPY 
motif present in CD28 and CTLA-4 that has been shown to be 
necessary for interaction with CD80 and CD86 (8, 18). These 
data suggest the single receptor–ligand pair ICOS:ICOSL is likely 
regulated in a fashion distinct from CTLA-4 and CD28, as ICOSL 
expression itself has been shown to be downregulated following 
interaction with ICOS (19). ICOSL expression is largely restricted 
to professional antigen-presenting cells (APCs), including B cells 
[in which ICOSL is regulated by BAFFR and non-canonical NFκB 
signaling (20)], macrophages, and dendritic cells (DCs) (12, 17, 
21, 22), but is also expressed by certain endothelial cells (23) and 
lung epithelium (24).

Early research indicated that although ICOS and CD28 
downstream signaling events were related, they were not identi-
cal (25) (Figure 1). For example, both ICOS and CD28 ligation 
induce the recruitment of class IA phosphatidylinositol 3-kinase 
(PI3K) (26, 27), a signaling molecule that leads to the production 
of membrane-bound phosphatidylinositol 3,4,5-trisphosphate 
(PIP3), culminating in the activation of Akt – a kinase known 
to promote cellular proliferation and survival (28). Similar to 
CD28 cross-linking, ICOS ligation can yield the recruitment 
of p50α (27) and p85α (29) regulatory subunits of PI3K, in 
conjunction with recruitment of the p110δ catalytic subunit 
(27, 29). However, ICOS ligation of activated CD4+ T cells was 
demonstrated to enhance production of PIP3 (27, 30) and induce 
stronger Akt phosphorylation than CD28 cross-linking (14, 27). 
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Interestingly, the particular YxxM signaling motif YMFM found 
in the cytoplasmic tail of ICOS (YMNM in the case of CD28) (31) 
was responsible for preferential recruitment of the p50α subunit 
of PI3K (27), a regulatory subunit with inherently greater lipid 
kinase activity relative to p85α (32). Although ICOS signaling 
serves to specifically promote p50α recruitment and subsequent 
AKT activity, ICOS-mediated p85α recruitment has recently 
been shown to play a critical CD28-independent role in directing 
T helper cell effector fate by promoting the Tfh cell phenotype (29).

Although slight differences in PI3K signaling can explain 
some of the differences between CD28 and ICOS signaling, it 
cannot fully account for the specific activity of ICOS signaling 
itself, as disruption of the ICOS–PI3K interaction or deletion 
of PI3K components from T cells does not result in a complete 
phenocopy of Icos−/− mice (15, 33, 34). Interestingly, differences 
in the pattern of MAPK activation between CD28 and ICOS 
have been reported, and ICOS co-stimulation has been shown to 
induce weaker phosphorylation of p46 c-Jun N-terminal kinase 
than CD28 (14). Furthermore, an additional intracellular signal-
ing motif was recently identified in the cytoplasmic tail of ICOS 
that is not present in CD28. In response to simultaneous ICOS 
and CD3ε ligation, this cell-membrane proximal motif, termed 
IProx, was shown to recruit TBK1 (35), a member of the inhibitor 
of NF-κB kinase (IKK) family (36). While recruitment of TBK1 
to the related co-stimulatory molecules CD28 and CTLA-4 was 
not observed following ligation with their respective ligands, 
ICOS:ICOSL-mediated recruitment of TBK1 was found to play 
an essential role in promoting the transition from an early Tfh 
cell to a GC-resident Tfh cell (35). As a whole, these data suggest 
that, although a commonality exists between CD28 and ICOS-
mediated signal transduction, differences in downstream PI3K 
and MAPK signaling, as well as ICOS-specific TBK1 recruitment, 
likely contribute to their functional diversity.

iCOS AND T CeLL PROLiFeRATiON

Due to the shared homology between the co-stimulatory mol-
ecules CD28 and ICOS, early research sought to characterize the 
role of ICOS in T cell activation and proliferation. Interestingly, 
ICOS-deficient T cells exhibited a proliferation defect in  vitro  
when compared with wild-type CD4+ T cells (37, 38). Further-
more, when immunized with keyhole limpet hemocyanin (KLH) 
adsorbed to alum, lymph nodes from Icos−/− mice were found to 
be smaller in size when compared with wild-type mice, suggest-
ing a similar proliferation defect in vivo (37). Similarly, during 
Trichuris muris and Toxoplasma gondii infection, CD4+ T cells 
isolated from Icos−/− mice exhibited defects in activation and pro-
liferation, but not differentiation (39). Additionally, when TCR 
transgenic T cells specific for ovalbumin (OVA) were polarized 
under Th1 or Th2 conditions in vitro and then transferred into 
naive recipients, ICOS was found to be necessary for expansion 
of both subsets (40). However, when ICOS-deficient mice were 
immunized with KLH in complete Freund’s adjuvant (CFA), no 
defect in cellular activation or proliferation was observed (37). 
These conflicting results led researchers to assess IL-2 produc-
tion, an important step in promoting T cell clonal expansion (41).  
In contrast to CD28 ligation, multiple research groups discovered 

ICOS cross-linking did not induce IL-2 expression (8, 11, 14, 
25, 26, 37), and instead induced the production of the anti-
inflammatory cytokine IL-10 in  vitro (8, 42). Thus, the role of 
ICOS in promoting CD4+ T cell proliferation is likely independ-
ent of IL-2 signaling, and the molecular basis for the role of this 
co-stimulatory molecule in promoting T cell expansion remains 
unclear. It is quite possible that ICOS signaling delivers a unique 
pro-survival or expansion signal not provided by CD28, but this 
remains to be determined. Furthermore, as differences in CD4+ 
T cell expansion have not been reported in every immunization 
or infectious disease model, the nature of the adjuvant or patho-
gen, as well as the degree of inflammation induced, may dictate 
the necessity of ICOS in T cell activation and clonal expansion – a 
topic we will touch upon further in the next section.

iCOS AND iNFeCTiON

To better characterize the in  vivo role of ICOS in the process 
of T  cell differentiation during conditions relevant to human 
disease, a multitude of murine infection models, as well as strate-
gies designed to disrupt ICOS signaling, have been investigated. 
As a whole, ICOS has been shown to regulate various T helper cell 
subsets during different infection scenarios, largely by promoting 
or inhibiting Th1 and Th2 immune responses (Table 1).

Th1 iMMUNiTY

In the context of Mycobacterium tuberculosis infection, for 
example, mice lacking expression of ICOS exhibited evidence 
of enhanced Th1 immunity, producing a significantly greater 
number of CD4+IFN-γ+ T cells in the spleen and lungs during 
later stages of infection. Concomitantly, regulatory T cell (Treg) 
frequency was significantly reduced in ICOS-deficient mice in 
this infection model. In the end, ICOS deficiency led to enhanced 
control of M. tuberculosis infection in the spleen, but not the 
lungs (43).

ICOS ligand-deficient mice infected with Chlamydia 
muridarum also produced a significantly stronger Th1 response, 
with enhanced production of IFN-γ, IL-6, and TNF-α. 
Furthermore, the authors observed lower production of the anti-
inflammatory cytokines IL-10 and TGF-β in ICOSL-deficient 
mice. Similar to M. tuberculosis infection, Icosl−/− mice infected 
with C. muridarum exhibited higher bacterial lung burden and 
showed greater evidence of lung pathology, as well as losing 
more body weight than wild-type control mice (44). Additional 
research has also linked ICOS-mediated PI3K signaling with the 
induction of Th17 responses during C. muridarum infection. In 
this study, transgenic mice harboring an ICOS signaling mutation 
(preventing PI3K from interacting with ICOS) mounted a defec-
tive Th17 response compared with wild-type mice, culminating 
in decreased control of bacterial burden in the lungs (45).

On the other hand, during Chlamydia trachomatis genital tract 
infection, Icos−/− mice controlled primary infection similarly to 
wild-type mice. However, following resolution of acute infection, 
ICOS-deficient mice exhibited increased cellular infiltrate and 
inflammation within the uterine horns. Surprisingly, Icos−/− 
mice showed enhanced protection to secondary C. trachomatis 
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TABLe 1 | Summary of Th impact and disease outcome in various infection models when iCOS signaling is disrupted.

Mouse  
strain

Genotype/
treatment

infection model Th impact Disease outcome

C57BL/6 Icos−/− M. tuberculosis Enhanced Th1 Accelerated control of splenic bacterial burden (43)
C57BL/6 Icosl−/− C. muridarum Enhanced Th1 Increased bacterial lung burden; increased lung pathology and weight 

loss (44)
C57BL/6 Icos−/− C. trachomatis No impact Th1 (primary) Enhanced protection to secondary challenge; increased uterine 

inflammation (46)Enhanced Th1 (challenge)
C57BL/6 α-ICOS Ab S. mansoni Enhanced Th1 Increased egg granuloma size; greater hepatic immunopathology (47)
C57BL/6 Icos−/− S. mansoni Decreased Treg No impact on parasite burden or egg granuloma formation (59)
C57BL/6 Icos−/− P. c. chabaudi Enhanced Th1 Accelerated control of acute parasitemia (48)

No Impact Treg
C57BL/6 Icos−/− S. enterica  

(Typhimurium)
Decreased Th1 Increased liver and splenic bacterial burden; unable to resolve 

infection (49)
BALB/c ICOS–Ig L. monocytogenes Decreased Th1 Increased splenic bacterial burden; lethality (50)
BALB/c Icos−/− T. gondii Decreased Th1 Decreased brain inflammation (39)
C57BL/6 α-ICOSL Ab T. gondii Decreased Th1 Increased parasite burden (51)
C57BL/6 ICOS–Ig LCMV Decreased Th1 Not determined (52)
C57BL/6 Icos−/− H. polygyrus Decreased Treg No impact on parasite burden or egg production (59)
129S4/SvJae Icos−/− L. mexicana Decreased Th1 and Th2 Decreased immunopathology (53)
BALB/c α-ICOS Ab T. spiralis Enhanced Th1 Lower muscle larvae burden; reduced intestinal immunopathology (67)

Decreased Th2
BALB/c α-ICOSL Ab L. major Decreased Th2 Delayed footpad swelling (68)
BALB/c Icos−/− N. brasiliensis Decreased Th2 Enhanced parasite egg production (68)
BALB/c Icos−/− T. muris Decreased Th2 Delayed worm expulsion (39)
C57BL/6 Icos−/− B. malayi No impact Th2 (chronic inf.) Not determined (69)

Decreased Th2 (immunized)
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challenge, with a greater frequency of IFN-γ+ T cells observed in 
the uterus of Icos−/− mice (46).

In the case of Schistosoma mansoni infection, wild-type mice 
treated with α-ICOS neutralizing Abs developed larger egg 
granulomas and displayed evidence of enhanced hepatic immu-
nopathology. Increased production of IFN-γ concomitant with 
decreased IL-10 secretion in α-ICOS Ab-treated mice suggests 
an enhanced Th1 response likely mediated the associated hepatic 
pathology (47).

In agreement with evidence of enhanced Th1 immunity in 
Icos−/− mice, during Plasmodium chabaudi chabaudi AS infec-
tion, ICOS served to dampen the Th1 response, as Icos−/− mice 
produced more IFN-γ secreting CD4+ and CD8+ T cells and had 
higher serum IFN-γ than wild-type mice. Additionally, enhanced 
expansion of CD25+T-bet+ effector CD4+ T cells was observed in 
ICOS-deficient mice. The augmented Th1 response observed in 
Icos−/− mice led to lower peak parasitemia and accelerated control 
of acute P. c. chabaudi AS infection relative to wild-type mice (48).

There are, however, examples in which ICOS appears to 
promote Th1 immunity, such as systemic Salmonella enterica 
(serovar Typhimurium) infection. In this model, ICOS-deficient 
mice were defective in CD4+ T cell IFN-γ production, despite 
having no defect in total CD4+ T cell activation. Accordingly, 
Icos−/− mice had substantially increased bacterial burden in the 
liver and spleen at days 14 and 21 post-infection compared with 
wild-type mice. In the end, Icos−/− mice were unable to fully 
resolve S. enterica infection, and continued to harbor bacteria in 
the spleen at day 36 post-infection (49).

In the same manner, disruption of ICOS signaling during 
oral Listeria monocytogenes infection via ICOS–Ig treatment led 
to decreased Th1 immunity and significantly increased splenic 

bacterial burden and lethality. Interestingly, in ICOS–Ig treated 
mice, CD4+ T cells were unable to produce IFN-γ in response 
to ex vivo stimulation with heat-killed Listeria, contrary to 
control-Ig treated mice. These data suggest the magnitude 
of the Th1 response was blunted when ICOS signaling was 
impaired (50).

In the context of a strong Th1-inducing parasite, such as 
T.  gondii, ICOS and CD28 appear to play a redundant role in 
the induction of Th1 immunity. In the absence of CD28, mice 
were still capable of producing IFN-γ. However, disruption of 
ICOS signaling via α-ICOSL Ab treatment significantly reduced 
production of IFN-γ while simultaneously increasing parasite 
burden (51). In T. gondii-infected Icos−/− mice (with intact CD28 
signaling), no defect in T cell-derived IFN-γ was observed. 
Instead, the absence of ICOS signaling decreased CD4+ T cell 
expansion during acute and chronic infection leading to reduced 
inflammation, but did not impact parasite burden, suggesting a 
redundant role concerning IFN-γ production but a unique role 
for ICOS in promoting T cell expansion (39). In contrast, disrup-
tion of ICOS signaling via ICOS–Ig fusion protein during LCMV 
infection diminished IFN-γ production, and this phenotype was 
potentiated in ICOS–Ig-treated Cd28−/− mice (52). These data 
suggest that, in response to LCMV infection, ICOS and CD28 
may synergistically promote Th1 immunity.

Additionally, ICOS may simultaneously promote ongoing 
Th1 and Th2 immune responses. During cutaneous Leishmania 
mexicana infection, for example, researchers observed a slight 
reduction in IFN-γ and IL-4 production in Icos−/− mice at 
week 6 post-infection, while the production of both cytokines 
was substantially reduced in ICOS-deficient mice by week 12 
post-infection. This reduced inflammation did not lead to an 
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increase in parasite burden; in fact, lesions were initially slower 
to develop in Icos−/− mice, but by week 12 post-infection, lesions 
were similar to those observed in wild-type mice. Despite nor-
mal lesion formation, however, tissue damage was less severe in 
Icos−/− mice at week 12 post-infection compared with wild-type 
mice (53), suggesting that, in the case of chronic L. mexicana 
infection, ICOS signaling served to enhance immune-mediated 
pathology.

Although ICOS is seemingly capable of alternatively pro-
moting or repressing Th1 responses under different infection 
conditions, these divergent phenotypes may in part be explained 
by ICOS-dependent Treg induction (54, 55). For instance, it is 
well established that CD4+ T cells from naive mice that express 
high levels of ICOS also produce the greatest amount of IL-10 
(56), a cytokine often produced by Tregs. In a different study, 
administration of a toll-like receptor (TLR) 4 ligand enhanced 
the frequency of IL-10-producing ICOS+CD4+Foxp3+ Tregs in 
lung draining lymph nodes following birch pollen allergen nasal 
challenge, ameliorating the development of severe disease (57). 
Similarly, Icos−/− mice tolerized with intranasal OVA developed 
significantly fewer splenic and lung-resident CD4+Foxp3+ Tregs 
at day 6 post-challenge relative to wild-type mice (58). Together, 
these data connect ICOS expression with Treg functionality in 
models of allergic challenge, as well as during naive conditions. 
Additionally, ICOS has been directly linked with Treg induction 
during infection. Icos−/− mice infected with Heligmosomoides 
polygyrus or S. mansoni, for instance, exhibited delayed expan-
sion and significantly fewer total CD4+Foxp3+ Tregs in the 
mediastinal lymph node and spleen, respectively, when compared 
with wild-type mice (59). Thus, the ability of ICOS to influence 
Treg induction further complicates its role in regulating CD4+ 
T cell differentiation, and suggests ICOS signaling may be mutu-
ally important in preventing immune-mediated pathology, as 
well as inducing pro-inflammatory CD4+ T cells. However, the 
regulatory function of ICOS is not limited to Treg cell induction 
and IL-10 production, as Icos−/− mice display an enhanced Th1 
response after infection with P. c. chabaudi AS, despite similar 
numbers of splenic Tregs and IL-10 secreting CD4+ T cells as 
wild-type mice (48).

Altogether, these data strongly implicate ICOS in modulating 
Th1 immune responses. It is, however, difficult to isolate the 
precise contribution of ICOS in promoting or regulating Th1 
immunity, as ICOS signaling likely influences T cell proliferation, 
as well as effector cell fate decisions, including Treg induction, 
simultaneously. As there is a degree of redundancy between 
CD28 and ICOS signaling, perhaps the integration of ICOS and 
CD28 co-stimulatory signals, as well as signals from other surface 
proteins, such as the TCR, cytokine receptors, and other co-
stimulatory molecules, dictate the significance of ICOS:ICOSL 
signals in promoting or regulating T helper cell differentiation. 
As various pathogens are capable of influencing APC activation 
status by modulating CD80 (60), CD86, and ICOSL (61–64) 
surface expression, it is not unreasonable to suggest the relative 
ratio of ICOS:CD28 co-stimulation a CD4+ T cell receives var-
ies greatly based on the infectious agent. The relevance of ICOS 
signaling in CD4+ helper T cell differentiation, therefore, may 
also be connected to the innate signaling events responsible for 

promoting APC maturation and subsequent upregulation of 
CD28 co-stimulatory ligands and ICOSL.

Th2 iMMUNiTY

One of the original hypotheses for the function of ICOS sug-
gested that it played an important role in driving Th2 immunity, 
as ICOS expression is preferentially sustained on Th2 immune 
cell subsets (11, 26, 39), while in vitro disruption of ICOS signal-
ing yields decreased IL-4 production (37–39, 65, 66). Likewise, 
in the context of Trichinella spiralis (67) and Leishmania major 
(68) infection, treatment of wild-type mice with anti-ICOS or 
anti-ICOSL Abs served to diminish the Th2 immune response, 
reducing the production of IL-4, IL-5, and IgE. However, during 
T. spiralis infection, anti-ICOS Ab treatment also simultaneously 
promoted TNF-α, IFN-γ, and IL-10 production. While disrup-
tion of ICOS signaling did not impact worm load in the intestine, 
it did substantially reduce immunopathology within the intestine 
itself. Interestingly, anti-ICOS Ab-treated mice showed signifi-
cantly lower larvae burden in striated muscle, a site of secondary 
colonization, when compared with control mice (67).

Blunted Th2 immunity was also observed in Nippostrongylus 
brasiliensis-infected Icos−/− mice, in which parasite egg produc-
tion was enhanced in the absence of ICOS (68). Similarly, disrup-
tion of ICOS signaling in Cd28−/− mice via ICOS–Ig treatment 
diminished IL-4 and IL-5, as well as IFN-γ and IL-10 production 
in N. brasiliensis-infected mice, but surprisingly did not hinder or 
delay worm expulsion (52).

Although ICOS appears to play an important role in promot-
ing Th2 immunity, in the case of chronic Brugia malayi infection, 
Icos−/− mice were not defective in their ability to produce IL-4 
or IgE compared with wild-type mice. Furthermore, eosinophil 
recruitment to the peritoneal cavity was not defective in the 
absence of ICOS. However, during primary immunization with 
B. malayi antigen, fewer IL-4 producing Th2 cells were identified 
in Icos−/− mice at day 10 post-immunization (69), suggesting that 
ICOS may be more important during the priming phase of Th2 
immune responses.

In a similar fashion, although defective Th2 immunity was 
observed during acute Trichuris muris infection, Icos−/− mice 
produced more IL-13 and IL-5 at day 35 post-infection compared 
with wild-type mice, suggesting that Th2 immunity was slower to 
develop in the absence of ICOS. Worm burden data corroborate 
this idea, as Icos−/− mice continued to harbor worms at day 18 
post-infection – a time-point at which wild-type mice had elimi-
nated the parasite. However, by day 54 post-infection, Icos−/− mice 
had largely controlled worm burden, suggesting that the onset 
of Th2 immunity was delayed, but not absent, in Icos−/− mice 
(39). Similar to the studies with T. gondii-infected Icos−/− mice, 
the delayed Th2 response was attributed to reduced expansion of 
Th2 polarized CD4+ T cells.

Collectively, the development of Th2 immunity appears to 
be more critically reliant on ICOS signaling than Th1 immune 
responses. In all infection models reviewed herein, disruption 
of ICOS signaling led to poor CD4+ T cell Th2 polarization and 
diminished IL-4 production, which may or may not have been 
due to reduced expansion of CD4+ T cells in all cases. Similar to 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Wikenheiser and Stumhofer ICOS Co-Stimulation

Frontiers in Immunology | www.frontiersin.org August 2016 | Volume 7 | Article 304

the results seen with infection models that induce a Th1 response, 
the absence of ICOS signaling did not completely suppress the 
development of Th2 immunity. In a number of circumstances, 
anti-worm Th2 immunity in Icos−/− mice was acutely defective, 
but ultimately played an important, albeit delayed, role in control-
ling worm burden. In the case of the worm infections described 
above, the late enhancement of the Th2 response coincided 
with the development of the larvae into adult worms, indicating 
changes in antigen or persistence of antigen may allow for the 
late expansion of the Th2 response in these models. Similarly, 
variation in antigen or antigen load may also account for the 
variable requirement of ICOS signaling in Th1 cell induction 
in previously discussed Th1 infection models. Nevertheless, the 
studies presented here indicate that ICOS co-stimulation plays an 
important role in either enhancing or regulating Th cell expan-
sion and/or differentiation after infection.

iCOS PROMOTeS TD ANTiBODY 
ReSPONSeS

Although ICOS can modulate Th1/Th2 differentiation during 
infection, early observations connected ICOS co-stimulation 
with Ab production. During the initial phenotypic characteriza-
tion of ICOS, for instance, researchers noted that, within second-
ary lymphoid tissue, ICOS expression was largely restricted to 
GC light zones (8), an area within B cell follicles known to be 
populated by CD4+ T cells (70). To address the contribution of 
ICOS to Ab production, Icos−/− or Icosl−/− mice were immunized 
with a number of thymus-independent (TI) and TD antigens.

When Icosl−/− mice were immunized with the TI type I (TI-I) 
antigen nitrophenol (NP)-conjugated LPS no defect in the pro-
duction of NP-specific IgM or IgG3 Abs was noted (66). Although 
a number of TLR agonists, including LPS, are capable of upregu-
lating ICOSL expression on splenic B cells (64), the absence of 
ICOSL expression did not affect B cell activation in response to 
NP-LPS immunization. Likewise, immunization of Icosl−/− mice 
with the TI type II (TI-II) antigen NP-Ficoll yielded no defect in 
NP-specific IgM or IgG3 Abs relative to wild-type control mice. 
However, while immunization of Icosl−/− mice with the TD anti-
gen NP21-conjugated chicken globulin (CG) adsorbed to alum led 
to no defect in NP-specific IgM Abs, a substantial decline in IgG1 
and IgG2a production was observed (66). Similarly, following 
immunization with the TD antigen sheep red blood cells (SRBC), 
treatment of mice with α-ICOSL Abs did not impact production 
of SRBC-specific IgM, but significantly diminished IgG1, IgG2a, 
and IgG2b-specific Abs (71). Ultimately, SRBC-boosted Icos−/− 
mice (72) and NP21-CGG boosted Icosl−/− mice (66) failed to form 
secondary GCs when compared with wild-type mice.

In the case of the TI anti-polysaccharide response to whole 
Streptococcus pneumoniae immunization, no defect in IgG 
Ab production was observed in Icos−/− mice (73). Perhaps not 
surprisingly, given that TI antigens often induce abortive GCs 
and instead promote isotype-switched Ab production through 
an extrafollicular response (74, 75), this class-switched Ab was 
determined to be largely extrafollicular in nature. However, 
immunization of Icos−/− mice with S. pneumoniae cell-wall poly-
saccharide conjugated to PspA (an S. pneumoniae surface protein) 

yielded defective anti-polysaccharide IgG production relative to 
wild-type mice, indicating that direct conjugation of a TI antigen 
to protein results in a dependency on a GC reaction and ICOS 
signaling to generate isotype-switched Abs (73). Collectively, 
although ICOS did not appear to play an essential role in TI Ab 
production or IgM-specific Ab formation against protein or a 
haptenated protein antigen, production of TD class-switched Abs 
appeared to require intact ICOS signaling. Furthermore, ICOS 
performed an important function in mediating the secondary 
humoral response to previously encountered TD antigens.

To further interrogate the role of ICOS in TD humoral immu-
nity, the Ab response to various model Ag-adjuvant combinations 
was assessed in ICOS-deficient mice. In the presence of either 
alum or CFA, for example, Icos−/− and Icosl−/− mice exhibited 
a profound defect in the IgG1-specific Ab response to KLH 
when compared with wild-type mice (37, 38, 65), with a similar 
reduction in GC formation (38, 65). In agreement with these 
data, immunization of Icos−/− mice with 2,4,6-trinitrophenol 
(TNP)-conjugated KLH in incomplete Freund’s adjuvant (lack-
ing Mycobacterium cell-wall components) or alum yielded gross 
defects in the production of IgG2a and IgG1-specific TNP Abs, 
but did not diminish TNP-specific IgM production. Accordingly, 
GCs were smaller in size and number in Icos−/− mice compared 
with wild-type mice. However, when immunized with TNP–KLH 
in CFA, ICOS-deficient mice were not defective in the production 
of TNP-specific IgG isotype Abs, and subsequent GC size was 
not impaired, although a defect in the total number of GCs was 
observed in Icos−/− mice relative to wild-type mice (76).

Collectively, these data provide seemingly conflicting results 
concerning the necessity of ICOS in TD Ab responses. While 
the use of a strong inflammatory adjuvant, such as CFA, which 
contains components that can serve as TLR agonists, could 
explain why TNP-KLH can elicit a class-switched Ab response in 
the absence of ICOS, it does not explain why immunization with 
un-conjugated KLH in CFA cannot. Interestingly, only the IgG1, 
but not IgG2a, response against KLH was significantly reduced 
in Icos−/− and Icosl−/− mice after immunization with KLH in CFA 
(38, 65). These data suggest that, similar to the result of TNP-
KLH in CFA immunization, the inclusion of CFA can result in 
the production of class-switched Abs of certain isotypes in the 
absence of ICOS signaling. As the Th2-associated cytokine IL-4 
is required for isotype switching to IgG1, and ICOS signaling has 
been implicated in Th2 differentiation (37–39, 65, 66), the failure 
to induce a strong IgG1 response against KLH in CFA may be 
partially due to impaired Th2 development. In support of this 
idea, Icos−/− and Icosl−/− mice have been shown to have lower 
serum baseline concentrations of IgG1 (38, 65). Also, differences 
in the Ab response against KLH and TNP-KLH in CFA could be 
explained by the nature of the antigen itself (protein alone versus 
hapten–protein complex, respectively). As only the antibody 
response against the hapten was measured in the TNP-KLH in 
CFA immunization studies, the KLH-specific Ab response could 
be defective in the Icos−/− mice as well. Also, as IgG production 
was only assessed in the short-term for these particular stud-
ies (between days 7 and 14 post-immunization), it is possible 
extrafollicular isotype-switched Ab production could account 
for the TNP-specific IgG1 produced in Icos−/− mice immunized 
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with TNP-KLH in CFA. In future studies, long-term maintenance 
of isotype-switched Ab titers, perhaps, may prove a more useful 
metric for assessing the role of ICOS in TD Ab production.

In connection to its role in promoting TD Ab responses, ICOS 
may also regulate Ab affinity maturation – an important function 
of the GC reaction. In addition to producing significantly lower 
amounts of NP-specific IgG1 Abs than wild-type mice following 
NP-conjugated OVA immunization, the NP4/NP23 IgG1 ratio was 
significantly lower in Icosl−/− mice at 6 weeks post-immunization, 
indicating a defect in Ab affinity maturation occurred in the 
absence of ICOS signaling. However, the NP4/NP23 IgG1 ratio 
did not differ significantly at 10 weeks post-immunization rela-
tive to wild-type mice, suggesting that between weeks 6 and 10 
post-NP-OVA immunization affinity maturation proceeded in an 
ICOS-independent manner (65). As the absence of ICOS signal-
ing does not completely prevent GC formation but rather reduces 
the size and number of GCs (77), perhaps the few GCs present 
in Icosl−/− mice are capable of slowly producing affinity-matured 
NP-specific IgG1, such that by 10 weeks post-immunization the 
NP4/NP23 IgG1 ratio is similar between wild-type and Icosl−/− 
mice. In contrast to this result, P. c. chabaudi AS-infected 
Icos−/− mice exhibited a profound defect in parasite-specific IgG 
affinity maturation at weeks 3 and 9 post-infection, suggesting 
that affinity maturation during murine Plasmodium infection is 
critically dependent on continuous ICOS signaling (48).

While these data provide conflicting results concerning 
the role of ICOS in promoting TD Ab responses, it ultimately 
indicates that ICOS is a critical component in the production of 
isotype-switched Abs, particularly affinity-matured ones. Because 
the nature of the adjuvant or immunogen – hapten, protein, or 
whole pathogen – vary widely across experiments, the precise 
role of ICOS in promoting these Ab responses is not immediately 
clear. Nonetheless, the presence of ICOS+ CD4+ T cells within 
GCs suggests an important role for this molecule in supporting 
the GC reaction. Subsequent research, therefore, has explored the 
link between ICOS and CD4+ T cells in the larger context of TD 
Ab responses.

iCOS AND Tfh CeLL DiFFeReNTiATiON

Recently, ICOS has been directly implicated in the induction of a 
specific CD4+ T cell effector subset known as Tfh cells (15, 29, 71, 
78–81). Within the GC, Tfh cells play a critical role in promoting 
the selection and survival of B cells expressing high-affinity B 
cell receptors, a process that ensures only B cells with the highest 
affinity for a given antigen differentiate into plasma cells and 
MBCs (70). The Tfh cell program of differentiation is critically 
reliant on Bcl6 expression (82, 83), a transcriptional co-repressor 
that antagonizes Blimp-1 – a transcription factor responsible 
for dictating non-Tfh CD4+ T cell effector programs. Successful 
repression of Blimp-1 by Bcl6 promotes the Tfh cell phenotype, 
and allows a pre-Tfh cell to upregulate additional molecules 
required for Tfh cell differentiation (84).

A critical component of the Tfh cell phenotype is expression 
of the chemokine homing receptor CXCR5, which binds CXCL13 
produced by follicular DCs to promote the migration of Tfh 
cells to the B cell follicle. In addition to CXCR5, Tfh cells also 

express the co-inhibitory receptor PD-1, which serves to prevent 
excessive, unchecked proliferation. Tfh cells that have established 
residence within the GC light zone itself (GC Tfh cells) adopt 
a PD-1highCXCR5high phenotype, and are phenotypically distinct 
from non-GC-resident Tfh cells. Additionally, Tfh cell produc-
tion of the cytokine IL-21 is a key component in promoting the 
GC reaction, as well as reinforcing the Tfh cell phenotype itself in 
an autocrine manner (84).

Although Tfh cells have been published on extensively in the 
last several years, the link between ICOS and CXCR5+ CD4+ 
T cells had been the subject of earlier research. For example, it 
had been previously demonstrated that following immunization 
with SRBCs (71) or type II collagen (78), treatment of mice with 
α-ICOSL Abs abrogated expression of CXCR5+ on CD4+ T cells. 
Additionally, during secondary SRBC immunization, α-ICOSL 
Ab treatment similarly prevented induction of CXCR5+ on CD4+ 
T cells when compared with control mice, suggesting that ICOS 
supports T cell CXCR5 expression during primary and secondary 
GC responses (71).

While these studies highlighted the importance of ICOS 
signaling in promoting CXCR5 expression and possibly the gen-
eration of Tfh cells, the source and timing requirements of ICOSL 
co-stimulation were not fully understood. Continued efforts to 
better understand how ICOS influences the Tfh cell program 
have yielded novel insights into the process of Tfh cell differen-
tiation. For instance, a recent report demonstrated CD8α− DCs 
upregulate ICOSL expression following stimulation with polyI:C 
or LPS. This CD8α− DC subset was subsequently shown to be 
important for induction of Tfh cells in  vitro and in  vivo (85). 
Previous research had also investigated the role of ICOS in 
the early stages of Tfh cell induction during DC:T cell  interac-
tions  following lymphocytic choriomeningitis virus (LCMV) 
infection. Transfer of Icos−/− LCMV-specific SMARTA CD4+ 
T cells into wild-type mice followed by LCMV infection resulted 
in a marked defect in Bcl6 and CXCR5 expression at days 3 and 4 
post-infection relative to wild-type SMARTA T cells, suggesting 
that ICOS plays an essential role in the induction of Tfh cells. 
Furthermore, B cell-deficient μMT mice infected with LCMV 
were shown to have no defect in CD4+ T cell expression of Bcl6 
or CXCR5 at day 3 post-infection, suggesting that B cells are not 
exclusively responsible for promoting early Tfh cell induction. 
However, by day 4 post-infection, Tfh cell frequency in μMT mice 
had declined significantly relative to wild-type mice, suggesting 
that interaction with B cells is necessary for maintenance of Tfh 
cells. Collectively, the authors concluded that ICOSL signaling 
from DCs is initially required for early Tfh cell priming, while 
cognate B cells provide a secondary source of ICOSL to reinforce 
the GC Tfh cell phenotype (79).

In agreement with a role for B cells in Tfh cell maintenance, 
B cell ICOSL expression was found to be essential for sustained 
Tfh cell:B cell engagement within the GC itself (86), suggesting 
that ICOS:ICOSL interactions increase the duration of T:B cell 
contact, consequently impacting affinity maturation, B cell sur-
vival, and plasma cell differentiation. In a different study, despite 
no defect in generating Bcl6+ pre-Tfh cells (early Tfh cells that 
have not yet entered the B cell follicle), when MHC-II expres-
sion was restricted to CD11chigh DCs, PD-1++ GC Tfh cells were 
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unable to form following NP-OVA-alum immunization (87). 
Together, these data indicate that B cells deliver a critical ICOSL 
signal necessary to promote full GC Tfh cell maturation. Indeed, 
Tfh cells polarized in vitro in the presence of B cells produced 
substantially more IL-21, a cytokine linked to the GC reaction, 
than Tfh cells co-cultured with DCs alone (87). Furthermore, co-
culture of wild-type or Icos−/− α-CD3ε-stimulated memory CD4+ 
T cells with ICOSL-expressing B cells revealed enhanced IL-21 
mRNA synthesis in the presence of ICOS signaling (88), indicat-
ing that B cells support the production of IL-21 via ICOS:ICOSL 
interactions. Interestingly, while transfer of T cells alone into 
immunodeficient SCID mice was not sufficient for proper Tfh cell 
development following SRBC immunization, co-transfer of T and 
B cells yielded Tfh cell differentiation; administration of α-ICOSL 
Abs disrupted Tfh cell differentiation under these conditions (71). 
As a whole, these data suggest that cooperative DC and B cell 
ICOSL co-stimulation serves a central role in the process of Tfh 
cell induction and maintenance, respectively. Whether ICOSL 
signaling from other cell types within the GC, such as DCs or 
follicular DCs, is also necessary to maintain or promote Tfh cell 
polarization during the GC reaction is still unknown.

Inducible T cell co-stimulator signaling, however, may not be 
critical for initial Tfh cell differentiation under all circumstances. 
For instance, Icos−/− OT-II cells co-transferred with NP-specific 
B cells were not defective in Bcl6, c-Maf, or IL-21 expression 
following NP-OVA immunization. Nonetheless, Icos−/− T cells 
were unable to fully downregulate CCR7 – an essential step in 
assuming the GC Tfh cell phenotype – and upregulate CXCR5, 
resulting in an inability of ICOS-deficient T cells to migrate into 
the B cell follicle. Furthermore, ICOS signaling was required to 
maintain the GC reaction, as α-ICOSL Ab treatment on day 6 
post-NP-OVA immunization led to a loss of Tfh cells and the GC 
itself (80).

Indeed, in the context of murine Plasmodium infection, 
ICOS appears to play a more substantial role in promoting Ab 
production late in the infection, suggesting that B cells may 
be the most important source of ICOSL stimulation for Tfh 
cell maintenance. Prior to day 6 post-infection, for example, 
Icos−/− CD4+ T cells were not defective in their ability to express 
the canonical Tfh cell markers Bcl6, PD-1, CXCR5, or IL-21. 
However, by week 3 post-infection, there was a substantial 
reduction in CD4+ T cells expressing these Tfh cell markers in 
Icos−/− mice, and the remaining Tfh cells were unable to form 
PD-1++CXCR5++ GC Tfh cells. The end result was a drastic 
decrease in the total number of splenic GCs in ICOS-deficient 
mice relative to wild-type mice. Quite surprisingly, Icos−/− mice 
were not defective in production of merozoite surface protein-1 
42 kDa fragment (MSP-142)-specific IgM or IgG isotype Abs at 
week 3 post-infection. However, the GC defect in Icos−/− mice 
resulted in a significant decrease in both quantity and quality of 
parasite-specific Abs by week 6 post-infection (48). As a whole, 
the complexity of the Ab response to Plasmodium (89), coupled 
with the parasite’s ability to induce a strong extrafollicular Ab 
response, may help explain why ICOS is less critical in promot-
ing early isotype-switched Ab production during P. c. chabaudi 
AS infection. Although initial Tfh cell induction was not 
impaired in Icos−/− mice, proper GC Tfh cell differentiation and 

Ab affinity maturation required intact ICOS signaling (48), pro-
viding further evidence that GC Tfh cell formation necessitates 
B cell-specific ICOSL co-stimulation.

There are additional circumstances in which ICOS:ICOSL 
signaling is not required for differentiation of Tfh cells or the 
establishment of GCs. For instance, in response to NP-OVA 
immunization in alum, when antigen is abundant and 
antigen-specific B cells are present in high frequency, Tfh cell 
differentiation, GC formation, and production of class-switched, 
affinity-matured NP-specific IgG1 Abs is not impaired when 
cognate B cells are deficient in ICOSL expression (90). These data 
suggest ICOS co-stimulation by cognate B cells is only required 
under conditions when antigen is limiting. This idea is supported 
by additional findings indicating that DCs can support Tfh cell 
differentiation in the presence of excess antigen, even when B 
cell antigen presentation is abolished, indicating that a unique B 
cell-specific signal is not required for Tfh cell development under 
all conditions. However, this study further demonstrated that 
Tfh cells needed to interact with cognate B cells to form GCs, 
as DC-Tfh cell interactions could not promote GC formation on 
their own (91). Interestingly, not only the interaction of T cells 
with APCs but also the duration of these interactions has been 
shown to influence differentiation of Tfh cells, recruitment of Tfh 
cells into GCs, and subsequent function of Tfh cells within the GC 
(77). As such, ICOS:ICOSL interactions may help facilitate and 
extend the length of these interactions, particularly with cognate 
B cells, when antigen is limiting.

While ICOS:ICOSL signaling between cognate T and B cells 
is critical for progression to and maintenance of the GC Tfh cell 
phenotype, B cells may also play a more unconventional role in 
promoting Tfh cell differentiation – potentially in the form of 
non-cognate help. After noting that Icos−/− OT-II CD4+ T cells 
expressed less CXCR5 and failed to migrate beyond the T:B cell 
border, researchers sought to determine if the lack of CXCR5 
impacted follicular homing of Icos−/− pre-Tfh cells. However, 
forced CXCR5 or Bcl6 expression by Icos−/− OT-II cells did not 
enhance their ability to migrate beyond the T:B cell border 
into the B cell follicle. Strikingly, neither ICOSL expression by 
DCs or cognate B cells was found to facilitate proper follicular 
recruitment of early Tfh cells. Instead, ICOS:ICOSL interactions 
between T cells and non-cognate B cells facilitated migration of 
T cells into the GC. In the end, non-cognate B cells at the T:B cell 
border were found to provide an important ICOSL signal that 
led to T cell-intrinsic PI3K signaling, ultimately promoting T cell 
motility (92).

Relative to model antigen:adjuvant-based immunization 
strategies, the presence of an actively replicating pathogen 
dynamically alters the distribution and abundance of antigen 
available to the immune system. As such, infectious conditions 
add additional layers of complexity to the interpretation of data. 
While under certain circumstances, ICOS plays a critical role in 
priming Tfh cell induction, different inflammatory conditions 
and/or model systems appear to preclude the necessity of ICOS 
in promoting Tfh cell formation. However, as a whole, ICOS 
signaling critically supports GC Tfh cell functionality. Altogether, 
although ICOS clearly regulates the processes of Tfh cell differ-
entiation, maintenance, and function, the particular timing of 
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requisite ICOSL signal delivery appears to vary widely based on 
the model system employed.

iCOS SiGNALiNG AND Tfh CeLLS

Mechanistically, the signals underlying Tfh cell differentiation are 
not yet fully understood. However, the specific contribution of 
ICOS to the process of Tfh cell induction has recently come under 
greater scrutiny (Figure 2). The significance of ICOS-mediated 
PI3K signaling, for example, had been well characterized and 
described previously (14, 27). A specific role for PI3K recruit-
ment in the context of Tfh cell development was demonstrated 
by generating knock-in mice expressing a mutant ICOS receptor 
harboring a cytoplasmic tail incapable of recruiting PI3K while 
retaining the ability to promote Ca2+ mobilization in concert 
with TCR signaling. ICOS–PI3K-signaling mutant mice pro-
duced fewer splenic Tfh cells in response to NP-CGG plus alum 
immunization, and were unable to promote affinity maturation of 
NP-specific IgG following a secondary immunization when com-
pared with wild-type mice. Furthermore, it was demonstrated 
that PI3K activity was required for promoting IL-21 and IL-4 
production during in vitro T cell stimulation (15).

In addition to the previously characterized roles of catalytic 
PI3K p110δ subunit recruitment to ICOS, the regulatory p85α 
subunit of PI3K plays additional roles in driving Tfh cell differ-
entiation. Following ICOS ligation, p85α promotes translocation 
of osteopontin (OPN) (29), a regulatory protein expressed by 
activated T cells (93), to the cell nucleus. Within the nucleus, 

OPN promotes Bcl6 stability by disrupting Bcl6 ubiquitination, 
thereby reinforcing the Tfh phenotype (29).

Although ICOS-mediated PI3K activity plays an essential 
role in the process of Tfh cell differentiation, the newly identi-
fied ICOS signaling motif IProx has recently been linked to GC 
Tfh cell commitment. Using TCR Tg SMARTA CD4+ T cells 
expressing a mutant IProx motif within ICOS, Pedros and col-
leagues demonstrated that these Tg T cells were not defective in 
early Tfh cell differentiation at day 3 post-LCMV glycoprotein 
61-conjugated KLH immunization. However, significant defects 
in PC, GC B cell, and gp61-KLH-specific isotype-switched Ab 
production were observed at day 10 post-immunization in mice 
receiving mutant SMARTA T cells. This IProx motif was further 
demonstrated to bind the serine–threonine kinase TBK1, and 
facilitate GC Tfh cell differentiation in concert with conventional 
ICOS–PI3K signaling. Interestingly, in vitro ligation of ICOS alone 
was insufficient to recruit TBK1 to the IProx motif. Successful 
ICOS–TBK1 interaction required simultaneous CD3ε and ICOS 
ligation, suggesting that both TCR and ICOS engagement are 
necessary for adoption of the GC Tfh phenotype (35). While 
TBK1 has been shown to be important for induction of type I 
interferon in innate immune cells (94, 95), its precise role and the 
additional members of the signaling pathway that promote GC 
Tfh cell differentiation remain to be defined.

Recently, following a transcriptome analysis designed to 
identify genes differentially regulated by ICOS, the expres-
sion of transcription factor Klf2 was found to be dramatically 
upregulated after disrupting ICOS signaling. In the absence of 
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ICOS signaling, Klf2 served to decrease CXCR5 expression 
while increasing CCR7 expression, thereby reversing the Tfh cell 
phenotype. Ultimately, the decreased expression of Klf2 in Tfh 
cells was linked to ICOS-mediated repression of Foxo1 (80), a 
member of the FOXO family of transcription factors responsible 
for regulating T cell differentiation, as well as numerous other 
cellular processes (96). In agreement with initiation of the Tfh 
phenotype via Foxo1 repression, in  vitro ICOS ligation medi-
ated the nuclear to cytoplasmic translocation of Foxo1. Relief 
of Foxo1-mediated Bcl6 repression was subsequently shown to 
consequently promote Tfh cell differentiation. However, Foxo1-
deficient CD4+ T cells were impaired in their ability to progress 
to a GC Tfh cell phenotype (81), indicating that ICOS signaling 
transiently inactivates Foxo1 to allow for initiation of Tfh cell 
differentiation, but that progression of Tfh cells to a GC Tfh cell 
phenotype is completed in a Foxo1-dependent manner.

iCOS AND THe GeRMiNAL CeNTeR 
ReACTiON

As ICOS co-stimulation plays a critical role in Tfh cell induc-
tion and adoption of the GC Tfh cell phenotype, research has 
also questioned the necessity of ICOS in the production of 
key GC products, such as MBCs and LLPCs. However, as the 
absence of ICOS or ICOSL in mice affects multiple steps in the 
development of T and B cell responses, these mutations cannot 
be assumed to only influence the GC itself (77). The impact 
of ICOS on the products of GC reactions, therefore, must be 
interpreted cautiously. Once thought to be derived solely from 
the GC reaction, recent evidence indicates that MBC produc-
tion may not always require GC formation. For instance, early 
IgM+ MBC differentiation in response to TD antigens is largely 
GC independent (97). While there is evidence that some class-
switched MBCs can be produced in the absence of a GC (98), 
the majority of class-switched MBC formation requires an active 
GC (99), indicating that ICOS could play an influential role in 
the production of isotype-switched MBCs. However, while 
inhibition of ICOS signaling in wild-type mice via α-ICOS Ab 
administration following NP-CG-alum immunization disrupted 
early GC formation, it did not impede generation or mainte-
nance of NP-specific IgG1+ MBCs between days 10 and 70 
post-immunization. However, NIP-binding MBCs from α-ICOS 
Ab-treated mice accumulated significantly fewer VH186.2 gene 
mutations relative to control mice between days 30 and 70 post-
immunization (98). These studies provided three key insights 
into MBC production: first, they suggest that isotype-switched 
MBCs present in α-ICOS-treated mice were mostly likely 
derived independently of the GC. Second, that over time these 
early class-switched MBCs are replaced by MBCs derived from 
a GC reaction that have higher affinity for binding antigen. 
Finally, despite the lack of somatic hypermutation, the presence 
of IgG1+ NP-specific MBCs in the absence of ICOS signaling 
suggests that production of class-switched MBCs is not critically 
reliant on ICOS:ICOSL interactions.

Interestingly, in response to P. c. chabaudi AS infection, 
although Icos−/− mice produced fewer IgM− MBCs at week 9 
post-infection relative to wild-type mice, class-switched MBC 

production was not fully abrogated in the absence of ICOS 
signaling (48). However, the source of these MBCs is still 
questionable. While the extrafollicular Ab response dominates 
the humoral response in P. c. chabaudi AS-infected Icos−/− mice, 
there is evidence that a small number of GCs are neverthe-
less formed in the absence of ICOS signaling. Therefore, the 
isotype-switched MBCs found in Icos−/− mice may have a GC 
origin. Meanwhile, during human systemic lupus erythematosus, 
ICOS:ICOSL interactions have been linked with aberrant, over-
production of class-switched MBCs (100). Also, human patients 
with deficiencies in ICOS have significantly reduced numbers 
of isotype-switched MBCs, but often have normal or slightly 
reduced numbers of mutated IgM+ MBCs (101). Together, these 
data indicate that early signaling events outside of ICOS:ICOSL 
interactions are sufficient to promote formation of both IgM+ 
and class-switched MBCs. Nevertheless, without ICOS signaling 
the number of MBCs generated is reduced, and the production 
of high-affinity isotype-switched MBCs is impaired, presumably 
due to disruption of the GC microenvironment.

By facilitating the process of Tfh cell development and 
promoting the subsequent GC reaction, ICOS:ICOSL signaling 
may also facilitate production of LLPCs. Interestingly, following 
DNP-KLH in alum immunization, Icos−/− mice were not defective 
in production of switched DNP-specific IgG or IgG1+ splenic and 
bone marrow-resident LLPCs at week 3 post-immunization when 
compared with wild-type mice. When re-challenged with DNP-
KLH-alum at week 5 post-immunization, however, significantly 
fewer class-switched antibody-secreting cells (ASCs) were identi-
fied in the bone marrow of Icos−/− mice at day 5 post-secondary 
challenge (102), suggesting that secondary PC production is more 
reliant on ICOS:ICOSL signaling than primary ASC formation.

In the context of P. c. chabaudi AS infection, Icos−/− mice 
were not defective in the production of bone marrow-resident, 
isotype-switched parasite-specific (MSP-119) LLPCs at week 9 
p.i., despite a decrease in the quantity and quality of serum MSP-
119–IgG relative to wild-type mice at this time point. As Icos−/− 
mice developed dramatically fewer GCs throughout the course 
of P. c.  chabaudi AS infection, it is striking that the number of 
bone marrow-resident ASCs was not significantly impaired (48), 
as LLPC production is thought to occur relatively late during the 
GC reaction (99). As an overall decrease in Ab avidity was noted 
in this study, it is quite possible that a large proportion of the 
parasite-specific LLPCs seen in the bone marrow of Icos−/− mice 
were derived from the extrafollicular response rather than the 
GC response, and had homed to the bone marrow relatively early 
after infection. It is also possible bone marrow-resident ASCs 
found in Icos−/− mice are not long-lived, and are instead continu-
ally replaced by splenic plasmablasts as the result of a perpetual 
extrafollicular response in the absence of GC formation.

Research has also questioned the role of ICOS in the second-
ary response to previously encountered antigens. Interestingly, 
disruption of ICOS signaling in wild-type mice via anti-ICOSL 
Ab during secondary (but not primary) challenge with heat-
killed S. pneumoniae did not impact boosted PspA-specific IgG 
Ab titers, suggesting that ICOS is not critical for MBC activation 
(73). Similarly, following secondary influenza A infection, Icos−/− 
mice were defective in virus-specific IgG2a Ab production but 
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were unimpaired in IgG1 production, harboring only a slight 
defect in total virus-neutralizing Ab at day 7 post-challenge 
relative to wild-type mice. Furthermore, splenocytes transferred 
from wild-type or Icos−/− mice previously infected with vesicular 
stomatitis virus (VSV) induced similar levels of virus-specific 
IgG in sub-lethally irradiated wild-type recipient mice at day 6 
post-VSV infection (103).

However, wild-type mice immunized with phycoerythrin (PE) 
in alum produced more PE-specific B cells relative to Icos−/− mice 
following secondary PE challenge (102). Similarly, re-challenge of 
wild-type and Icosl−/− mice with NP-CG in alum resulted in higher 
antigen-specific IgM but lower IgG1 and IgG2a Ab production 
in Icosl−/− mice compared with wild-type mice (66). Although, 
when NP-primed B cells were isolated from mice treated with or 
without α-ICOS Ab at the onset of GC formation, no difference 
in reconstitution of the bone marrow anti-NP IgG1 response was 
seen upon re-challenge when these B cells were transferred into 
Rag-1−/− mice. However, the ratio of high-affinity NP-specific 
IgG1 ASCs in the bone marrow was significantly reduced in mice 
receiving NP-primed B cells from α-ICOS-treated mice (98). 
These results suggest that ICOS signaling can contribute to the 
secondary expansion of antigen-specific B cells, particularly by 
promoting production of isotype-switched high-affinity Abs. The 
divergent results reported here concerning the necessity of ICOS 
for MBC activation likely stem from dramatic differences in the 
source of antigen (i.e., active viral infection versus protein:adjuvant 
immunization). As alluded to previously, strong inflammatory 
stimuli, or in this case active viral infection, may overcome a 
necessity for ICOS signaling in secondary Ab responses.

Although certain aspects of the GC response may be more or 
less reliant on ICOS signaling depending upon the immuniza-
tion or infection model in question, these data provide evidence 
of dysregulated GCs in the absence of ICOS signaling. These 
defective GC responses may stem from inadequate Tfh cell dif-
ferentiation, as previously discussed, but could also arise from 
larger problems in GC architecture. For example, GC B cells iso-
lated from Icos−/− mice immunized with NP-CGG exhibit lower 
expression of lymphotoxin αβ (LTαβ), a molecule upregulated on 
GC B cells and important in the regulation of the GC microenvi-
ronment (104). As LTαβ expression helps maintain a functional 
FDC network (in part by promoting FDC activation) (105), it 
is not surprising that impaired LTαβ expression was associated 
with diminished GC responses (104). Collectively, ICOS:ICOSL 
signaling promotes critical cellular processes necessary for the 
production of affinity-matured, class-switched MBCs and LLPCs, 
but may be less critically important for the initial generation of 
these cells per se.

iCOS AND MeMORY T CeLLS

Inducible T cell co-stimulator–ICOSL interactions are important 
in determining the effector fate decisions of CD4+ T cells; how-
ever, defective ICOS signaling can also influence the production 
of memory CD4+ T cells. For instance, following priming of mice 
with Moloney murine leukemia virus envelope protein (H19-
env)-pulsed DCs, Icos−/− CD4+ memory T cells did not expand as 
abundantly as wild-type memory T cells, despite being retained 

at similar numbers prior to H19-env immunization (102). 
Meanwhile, fewer central and effector CD4+ memory T cells were 
observed in Icosl−/− or α-ICOS Ab treated wild-type mice 4 weeks 
after Lm-2W1S infection (106) [attenuated L. monocytogenes 
secreting a chicken OVA-2W1S fusion protein (107)]. Similarly, 
long-term maintenance of M. tuberculosis-specific memory-like 
CD4+ T cells required ICOS expression (108). In a different study, 
mixed bone marrow chimeras revealed dramatically fewer Icos−/− 
LLOp:I-Ab-binding T cells (listeriolysin O-specific CD4+ T cells) 
adopted a central memory phenotype at day 20 post-Lm-2W 
(L. monocytogenes producing the 2W peptide and a fragment of 
listeriolysin O) infection relative to wild-type LLOp:I-Ab-binding 
T cells (109). Furthermore, human ICOS deficiency is associated 
with fewer circulating CD4+ memory T cells relative to healthy 
controls (110). Together, these data suggest ICOS promotes for-
mation and maintenance of a stable population of CD4+ memory 
T cells, and in certain cases may influence their re-activation. 
However, whether memory CD4+ T cell ICOS expression has a 
direct effect on the ability of MBCs to differentiate into antibody-
producing cells or participate in secondary GC reactions during 
a recall response remains to be determined.

CONCLUSiON AND iMPLiCATiONS/
THeRAPeUTiCS

On the whole, ICOS co-stimulation supports a remarkable 
number of distinct processes during adaptive immune responses. 
By promoting the induction (15, 29, 71, 78–81), maintenance 
(29, 48, 79, 80, 87), and follicular homing of Tfh cells (86, 92), 
ICOS promotes TD Ab responses (37, 38, 65, 66, 71, 72, 76) and 
drives Ab affinity maturation in the GC reaction (15, 48, 65). 
Additionally, ICOS serves to enhance or dampen Th1 and Th2 
inflammatory responses, depending on the given pathogen. Thus, 
because impaired ICOS signaling can yield such dramatically dif-
ferent disease outcomes in mice, the role of ICOS in regulating 
human disease states is of great importance.

In humans, homozygous ICOS deficiency results in common 
variable immunodeficiency (CVID) (111), a condition character-
ized by aberrantly low serum gammaglobulin concentration. As 
such, CVID typically results in frequent bacterial infections of the 
respiratory and digestive tracts (112). Perhaps not surprisingly, 
in cases of human ICOS deficiency, there is a dramatic reduction 
in the frequency of circulating CXCR5+ CD4+ T cells (113), the 
presence of which have been linked to active GCs in humans 
(114–116) and mice (114, 116). Collectively, defects in human 
ICOS expression correlate with defects in TD Ab production 
(111), circulating Tfh cells, and GC formation (113), thereby 
supporting a role for ICOS in human Tfh cell differentiation.

Although human Tfh cells express ICOS (84), a greater 
frequency of circulating Tfh cells isolated from systemic lupus 
erythematous (SLE) patients – a disease characterized by 
autoantibody production (117) – were found to express ICOS 
relative to healthy controls (116, 118). Interestingly, in vitro ICOS 
 co-stimulation of peripheral T cells from patients with active SLE 
resulted in greatly enhanced IFN-γ production relative to nor-
mal controls, and ICOS ligation preferentially induced produc-
tion of isotype-switched α-double-stranded DNA (α-dsDNA) 
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Abs during co-culture with autologous B cells (118). Similarly, 
in the murine BXSB-Yaa model of SLE, splenic ICOS+ CD4+ 
T cell production of IL-21 was linked to renal disease and early 
mortality (119). In a different study, DC ICOSL expression was 
correlated with kidney nephritis and proteinuria, as well as kidney-
infiltrating T cells, in MRL.Faslpr (lupus-prone) mice (120), fur-
ther implicating ICOS in promoting tissue inflammation during 
active SLE. In fact, mutation of roquin – a ubiquitin ligase (121) 
responsible for post-transcriptionally regulating ICOS mRNA 
(122, 123) – results in ICOS over-expression on CD4+ T cells, 
thereby promoting spontaneous Tfh cell induction, GC forma-
tion, and autoantibody production. Interestingly, unimmunized 
sanroque roquin-mutant mice (Rc3h1san/san) develop an SLE-like 
disease, characterized by hypergammaglobulinemia and aberrant 
IL-21 production (121). As a whole, by way of enhancing autoan-
tibody formation and promoting organ inflammation, these data 
strongly suggest that ICOS plays a direct role in promoting SLE 
disease progression in mice and humans.

Not surprisingly, therapeutic interventions designed to disrupt 
ICOS:ICOSL signaling have been evaluated in mice and humans. 
The human α-ICOSL antibody AMG 557, for example, proved 
efficacious in diminishing isotype-switched Ab production, but 
not IgM production, in SLE patients challenged nasally with KLH 
in a phase I clinical trial (124). AMG 557 was similarly effective 
in reducing the production of KLH-specific IgG Abs following 
intra-dermal immunization with KLH (followed by boost 4 weeks 
later) in patients diagnosed with mild SLE (125). The results of 
these studies are promising, and similar success has been achieved 
in murine model systems. For instance, treatment with α-ICOSL 
Ab minimized disease symptoms and decreased α-dsDNA Ab 
production in the NZB/NZW F1 model of SLE. Furthermore, in a 
model of rheumatoid arthritis, α-ICOSL Ab administration sup-
pressed the production of collagen-specific isotype-switched Abs 
(78). Although these studies indicate neutralization of ICOSL can 
help ameliorate symptoms associated with SLE, the therapeutic 
potential of disrupting ICOS signaling may extend beyond TD 
humoral responses.

Recently, characterization of type 2 innate lymphoid cells 
(ILC2s), an innate immune cell capable of secreting Th2 type 
cytokines (126), has revealed that ILC2s express ICOS and 
ICOSL. Researchers identified a critical role for ICOS:ICOSL 

signaling in the induction of ILC2-mediated cytokine produc-
tion that led to airway hyperreactivity (AHR), an indicator of 
asthma. Interestingly, transfer of human ILC2s into humanized 
Rag-deficient mice followed by disruption of ICOS signaling 
via α-ICOSL Ab treatment yielded decreased evidence of IL-33-
induced AHR relative to mice receiving isotype control Ab (127). 
In part, this study suggests novel therapeutic options for AHR 
could be pioneered with α-ICOS or α-ICOSL Ab treatment.

Along a similar line, α-ICOS Ab therapy has been shown to 
improve cardiac allograft survival in rats (128–130). However, 
disruption of ICOS signaling following kidney transplantation 
in non-human primates was not efficacious in preventing graft 
rejection (131). Together, these data suggest that ICOS blockade 
may be more beneficial in combination with traditional drugs 
(i.e., cyclosporine) used to ameliorate graft-versus-host disease 
(GVHD). Future studies seeking to gain additional insight 
regarding the role of ICOS in GVHD could provide efficacious 
tools to treat chronic graft rejection in humans.

Modulation of ICOS signaling has the potential to mitigate 
disease severity for a number of human autoimmune disorders. 
Beyond its key role in isotype-switched Ab production, ICOS can 
also promote GVHD and potentiate symptoms associated with 
AHR. Although monoclonal Ab therapy designed to disrupt 
ICOS:ICOSL interactions appears to be a promising, efficacious 
treatment, the potential for unintended side effects related to 
global disruption of TD Ab responses may be unavoidable. Thus, 
future research concerning how ICOS:ICOSL signals alterna-
tively facilitate Ab production, on the one hand, and T helper 
cell polarization, on the other, may allow tailoring of treatment 
options to target a specific disease modality with minimal off-
target complications.
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