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Organized lymphoid tissues like the thymus first appeared in jawed vertebrates around 
500 million years ago and have evolved to equip the host with a network of specialized 
sites, strategically located to orchestrate strict immune-surveillance and efficient immune 
responses autonomously. The gut-associated lymphoid tissues maintain a mostly tol-
erant environment to dampen our responses to daily dietary and microbial products in 
the intestine. However, when this homeostasis is perturbed by chronic inflammation, the 
intestine is able to develop florid organized tertiary lymphoid tissues (TLT), which heralds 
the onset of regional immune dysregulation. While TLT are a pathologic hallmark of 
Crohn’s disease (CD), their role in the overall process remains largely enigmatic. A  critical 
question remains; are intestinal TLT generated by the immune infiltrated intestine to 
modulate immune responses and rebuild tolerance to the microbiota or are they playing 
a more sinister role by generating dysregulated responses that perpetuate disease? 
Herein, we discuss the main theories of intestinal TLT neogenesis and focus on the most 
recent findings that open new perspectives to their role in inflammatory bowel disease.
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Quis custodiet ipsos custodes
“Who will guard the guardians?” from Juvenal (Satire VI, lines 347–8).

Intrinsic to the gastrointestinal tract, gut-associated lymphoid tissue (GALT) are the sentinels 
of the enteric immune system and guard the host from an ever-present microbial and antigenic 
assault. Cryptopatches (CP), isolated lymphoid follicles (ILF), Peyer patches (PP), and the chains 
of mesenteric lymph nodes (MLN) respond to microbial and immune signals, allowing for rapid 
remodeling during infection and disease. However, during periods where chronic inflammation 
persists in the setting of failed immunoregulation, such as in inflammatory bowel diseases (IBD), 
a dysfunctional lymphatic system and the development of ectopic tertiary lymphoid tissue (TLT) 
develop as a consistent pathological hallmark. Understanding the function of TLT and the myriad of 
cellular events leading to their development is becoming an area of intense clinical interest, as their 

Abbreviations: AID, activation-induced deaminase; BALT, bronchus associated lymphoid tissue; CD, Crohn’s disease; FDC, 
follicular dendritic cell; GALT, gut-associated lymphoid tissue; GC, germinal center; HEV, high endothelial venule; IBD, 
inflammatory bowel disease; ILC, innate lymphoid cell; ILF, isolated lymphoid follicle, SLO, secondary lymph node; LP, lamina 
propria; LTβR, lymphotoxin beta receptor; LTi, lymphoid tissue inducer cells; MLN, mesenteric lymph node; MMP, matrix met-
alloprotease; NOD1, nucleotide-binding oligomerization domain containing 1; RORγ, ROR-related orphan receptor gamma; 
SFB, segmented filamentous bacterium; Tfh, follicular helper T cells; TLT, tertiary lymphoid tissue; UC, ulcerative colitis.
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role in pathophysiology remains enigmatic. A critical question 
remains unanswered; do TLT develop to protect the vulnerable, 
immune-compromised intestine or do they play a more sinister 
role in driving autoimmune processes and perpetuate disease?

GUT-ASSOCiATeD LYMPHOiD TiSSUe: 
GATEKEEPERS IN HOST DEFENSE

The GALT is the largest collection of lymphoid tissues in the body, 
consisting of both organized lymphoid tissues (MLN and PP) and 
more diffusely scattered lymphocytes in the intestinal lamina 
propria (LP) and intraepithelial space. With the immunologic 
maturation of the intestine after birth, aggregates of organized 
leukocyte populations form CP and ILF and collectively with PP 
and MLN are a crucial interface between the host and commensal 
bacteria.

Prenatal GALT Neogenesis
During lymph node development in embryogenesis, a novel sub-
set of CD4+ CD3− cells, was identified to play a crucial initiating 
role (1). Now termed lymphoid tissue inducer (LTi) cells, these 
hematopoietic progenitors signal to mesenchymal cell subsets 
(stromal organizer cells) within the developing lymph node 
Anlagen [reviewed in Ref. (2)]. Initial signaling via stromal-
derived LTβR with its ligand, lymphotoxin-α1β2 (LTα1β2) on 
LTi’s, drives a cascade of chemokine and stromal markers, which 
recruit and organize immune cells into the developing lymphoid 
tissue (2). LTi are now identified as members of the innate lym-
phoid cells (ILC) [specifically type 3 ILC (ILC3)], which express 
the transcription factors, helix–loop–helix protein inhibitor of 
DNA binding 2 (ID2) and RAR-related orphan receptor gamma+ 
(RORγt+), in addition to the cytokines IL-22 and IL-17a.

Lymphoid tissue inducer cells (ILC3) play a particularly crucial 
role in development of GALT in utero [Reviewed in Ref. (3–5)]. 
For example, MLN develops at embryonic day E11.5, following 
colonization of the anlagen with LTα1β2

+ LTi’s and activation of 
lymphotoxin-β receptor-expressing (LTβR) stromal organizer 
cells (6, 7). The importance of this interaction is evident from early 
murine studies where mice deficient for both RORγt and LTβR 
lack MLN (4, 8). Interestingly, while distinct regulatory cytokine/
chemokine circuits (such as IL-7, LTβ, CXCL13/CXCR5) control 
MLN function and organization, their absence does not interfere 
with MLN development (9–12). Of interest, recent work has 
demonstrated that while LTβR−/− mice fail to develop secondary 
lymph nodes (SLO), in the setting of excessive TNF production 
during intestinal inflammation, TNF-α (transgenic over-expres-
sion in TNFΔARE/+ mice) over-rides the canonical requirement for 
LTi cells and drives a lymphoid neogenesis program, including 
the induction of homeostatic chemokines (13). Thus, subtle 
differences may still remain between homeostasis and chronic 
inflammation for the ontogeny and regulation of MLN formation.

Peyer patches, which are scattered along the anti-mesenteric 
border of the small intestine, drain to the mesenteric lymphatic 
system via efferent lymphatic vessels and directly sample antigen 
from the gut lumen via, specialized microfold cells (M cells) 
(14, 15). The development of PP in the fetal intestine takes place 
later than MLN (E11.5) between E.15.5 and E18.5 and is also 

critically dependent on LTβR signaling and CD11c+ dendritic 
cells (DC) (16, 17). This is most evident by the observation that 
mice deficient in LTα and LTβ, and as such for their membrane 
ligand LTα1β2, lack mature PP (8, 9). Critically, LTβR ligation 
signals via the alternative NFκB pathway to induce CXCL13 and 
recruit LTi and CXCR5+ B cells for PP maturation (6, 18). In 
addition, while TNF is not required for MLN ontogeny in utero, 
TNF and TNFRI (and signaling via classical NFκB pathway) are 
required for PP development (19, 20).

Postnatal GALT Neogenesis – integrating 
environmental and Commensal Stimuli
Aside from the developmental program of GALT organogenesis, 
the mammalian intestine adapts and responds to their postnatal 
colonization by enteric flora with the induction of CP and ILFs.

Cryptopatches are aggregates of approximately 1000 cells 
composed of LTi cells and chemokine producing dendritic (DC) 
and stromal cells found around the crypts of the small intestine 
(21, 22). In response to commensal bacterial stimuli, CP recruit B 
cells and CD4 T cells to develop into ILF and play a major regula-
tory role in the intestine by producing Immunoglobulin A (IgA) 
(23). ILFs are loosely organized clusters of B cells, DC, and T cells 
that resemble secondary lymphoid organs (SLO) in their cellular 
components (24, 25). A series of pioneering studies extended 
on this observation and demonstrated that CP and ILFs utilize 
similar pathways to SLO for development, following stimulation 
by a TNF-Lymphotoxin signaling axis (21–27). Expression of the 
chemokine receptor CCR6 by B cells is critical for expansion of 
ILFs. The CCR6 ligand, CCL20 is expressed by the epithelial cells 
that overlay the B cell follicles and its expression, is regulated by 
LTα1β2 signaling (28).

Recent work has broadened our understanding for the role 
of ILFs, and a general consensus is that they act in a tolerogenic 
manner to control intestinal immune responses by generating 
both IgA+ plasma cells and regulatory T cells (26, 29, 30). It 
is now apparent that intestinal ILF form a feedback loop with 
commensal bacteria, whereby there is reciprocal crosstalk. As 
an example, the induction of the NOD1 receptor (nucleotide-
binding oligomerization domain containing 1) in intestinal 
epithelial cells by Gram-negative bacteria induces ILFs from CP 
precursors (31). Conversely and strikingly, in the absence of ILFs 
(following LTβR-IgG treatment), there is a 10-fold expansion of 
bacterial flora (31). It is not surprising then that ILFs have been 
tasked with building postnatal intestinal immune tolerance, via 
generation of IgA and Th17 responses (32). Of note however is 
that the chain of molecular events required for ectopic lymphoid 
tissue development under conditions of chronic inflammation 
and their role in the pathogenesis of CD are less clear.

iNTeSTiNAL TeRTiARY LYMPHOiD 
TiSSUe iN iNFLAMMATORY BOweL 
DiSeASe

While SLO is developmentally controlled with fixed anatomic 
locations, chronic inflammation in peripheral tissues can give 
rise to the florid development of TLT neogenesis [reviewed in 
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Ref. (33)]. Unlike SLO, TLT do not possess a capsule and as such 
are not true organs per se but rather a highly organized cluster 
of immune cells, which develop regional segregation similar 
to SLO. While intestinal ILF are loosely organized clusters of 
B cells, T cells, and DCs, TLT are defined by the presence of 
densely packed and active germinal centers (GCs) often with 
mature follicular dendritic cell (FDC) networks (34). They 
are further defined by presenting with CD4+ T cell and DC 
clusters in addition to a mature fibroblastic stromal network 
(e.g., VCAM1+). TLT often develop around lymphatic vessels 
and a hallmark indication of mature TLT is the development 
of specialized high endothelial venules (HEV) within and 
around follicles (35, 36). As HEV facilitate recruitment of naive 
(CD62L+) T cells into the T cell cortex of SLO (37), their pres-
ence in TLT has raised the possibility that TLT bypass the need 
for SLO by recruiting and educating naive T cells aberrantly in 
inflamed peripheral tissues.

The inflammatory Bowel Diseases, 
Crohn’s Disease, and Ulcerative Colitis
Inflammatory bowel diseases are a collective of chronic intestinal 
pathologies predominantly represented by Crohn’s disease (CD) 
and ulcerative colitis (UC). There are fundamental differences 
between the two, being best characterized as immune-mediated 
rather than autoimmune, as up to date no single autoantibody 
has been identified. The etiology of IBD remains elusive but 
involves complex interactions between genetic, environmental, 
and immunoregulatory factors. Current hypotheses propose that 
damage to the intestinal mucosa occurs as a result of a dysregu-
lated immune response triggered by microbial antigens (38, 39) 
that eventually becomes autonomous. The resulting increased 
leukocytic infiltrate within the intestinal mucosa release a cock-
tail of enzymes, reactive oxygen species, and cytokines initiating 
and perpetuating tissue damage and disease. Regarding tissue 
distribution, UC involves strictly the colon, while CD can involve 
any segment of the GI tract, from the mouth to the anus, but 
predominantly the immunologically rich terminal ileum in 2/3 
of patients. UC is also a continuous superficial disease, involving 
predominantly the colonic mucosa, while CD is discontinuous 
and penetrating, involving all layers of the intestine from the 
mucosa to the serosa.

The prevailing histopathologic hallmarks of CD during its 
early investigation were occluded lymphatic vessels, lymphocytic 
lymphangitis, and inflammatory “TH1” granulomas. Significantly, 
these cardinal signs of chronic disease were found in or around 
ectopic tertiary lymphoid follicles in the inflamed LP [(40–43); 
Reviewed in Ref. (44)]. Indeed, the presentation of TLT in patient 
biopsies appears to be a predominant feature of CD [in a recent 
study, TLT were present in 22 out of 24 patients assessed by 
immunohistochemistry (45)]. In addition, the presence of TLT 
at the base of aphthous ulcers is also the earliest endoscopically 
evident lesion in CD and their appearance heralds recurrent 
disease within the neoterminal ileum after ilectomy (46–48). 
In light of these findings, the functional relevance of intestinal 
TLT and their impact on the etiology and pathogenesis of CD 
has remained enigmatic, with limited empirical evidence as to 
their role.

A critical question that remains unanswered is the origin of 
TLT and whether they are generated de novo within the chroni-
cally inflamed intestine or predetermined. While the compo-
nents of mature intestinal TLT include CD4+ T cell clusters, 
follicular DC, HEV networks, and mature fibroblastic stroma 
clusters (VCAM1+ ICAM1+) (34), it is unclear whether they arise 
de novo, specifically during chronic inflammation. This question 
is also at the root of our understanding the functional role of 
TLT during chronic intestinal disease. While homeostatic ILFs 
represent a source of IgA to maintain tolerance to commensal 
bacteria, the transformation of ILF into mature TLT [as has 
been suggested (23)] could indicate a final detrimental step in 
the development of intestinal immune dysregulation and the loss 
of immune-tolerance. The anatomic location of both ILF and 
TLT within the normal and inflamed intestine may also shed 
light on their respective functions. While ILFs contain a dome 
of epithelia containing M cells, TLT are often present at sites 
of epithelial barrier loss (aphthous ulcers in CD) and around 
occluded lymphatic vessels in the LP (44, 45). In addition, as 
CD presents with transmural inflammatory infiltrates, TLT fol-
licles may also be present in the deeper layers of the intestine 
including the muscle and surrounding mesenteric adipose tissue 
(e.g., “creeping fat” that encases inflamed intestine in a subset of 
patients with CD).

Elegant recent work has demonstrated that on a background 
of failed anti-microbial immunity (RORγt−/− mice; lacking ILC3 
and TH17 responses) combined with a loss of epithelial barrier 
function (DSS-colitis), mice develop an aggressive colitis in 
addition to florid TLT neogenesis (49). Antibiotic treatment 
reversed this pathology and TLT development confirming its 
dependence on a commensal microbial insult. However, it is 
worth noting that the phenotype of TLT that were generated 
in RORγt−/− mice contributed to systemic pathology, produced 
high levels of AID (to facilitate class-switch recombination), 
and were strikingly attenuated following intravenous immu-
noglobulin (IVIG) treatment (49). Our work and others has 
further demonstrated that in the TNFΔARE/+ mouse model of 
Crohn’s-like ileitis [TNFΔARE/+; a transgenic mouse line with a 
69-bp deletion of the 3′UTR for TNF, allowing for overexpres-
sion of TNF mRNA (50)], TLT develop during chronic disease 
and correspond with both a loss of immune tolerance and a 
prominent dysbiosis of commensal microflora (34, 51, 52). Thus, 
the presence of TLT during chronic intestinal inflammation 
clearly heralds a failure of organ-specific immune regulation 
and the establishment of dysregulated immunity. As such, dis-
tinct intestinal TLT may develop based upon the inflammatory 
environments [tolerogenic CP-ILF induction from commensal 
bacteria versus inflammation-induced TLT (CP independent); 
as has been previously postulated (5)].

POSSiBLe CLASSiCAL AND NON-
CLASSiCAL CUeS FOR iNTeSTiNAL 
B CeLL FOLLiCLe DeveLOPMeNT

A vast literature has demonstrated that the molecular cues 
and cellular machinery required for secondary lymph node 
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FiGURe 1 | Propose developmental sequence of intestinal tertiary lymphoid tissue. Presented here is a proposed sequence of small intestinal tertiary lymphoid 
tissue neogenesis in the setting of inflammatory bowel disease. On a background of failed immunoregulation and loss of intestinal tolerance, the florid development of 
ectopic tertiary lymphoid tissue follicles is a cardinal sign of both Crohn’s disease and TNF-transgenic mice with ileitis (TNFΔARE/+). The plasticity of these ectopic 
lymphoid follicles is demonstrated by the observation that they resolve, for example, after removal of bacterial stimuli by antibiotic treatment or following anti-
inflammatory interventions (34, 119). As the etiology of Crohn’s disease is unknown and proposed to be a result of uncontrolled immune activation to intestinal bacteria 
in genetically susceptible individuals, we have proposed plausible options from the myriad of potential initiating and organizing signals. TLT development is sure to 
follow a loss of tissue integrity, chronic activation of inflammatory mediators, and stabilization of maturation events to maintain complex TLT architecture. BAFF, B cell 
activating factor; APRIL, a proliferation inducing ligand; TACI, TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor [APRIL and BAFF 
receptor]; ER-TR7, anti-reticular fibroblasts and reticular fibroblast marker; gp38, podoplanin; RANKL, receptor activator of nuclear factor kappa-B ligand/TNFSF11.
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development are also utilized for the generation of ectopic TLT 
during chronic inflammation. For example, Lymphotoxin-β 
receptor signaling on LTi cells (LTα1β2

+ LTi and LTβR+ stromal 
cells) remains a cardinal requirement for both the generation 
and organization of SLO. This was elegantly demonstrated 
by the lack of secondary lymph nodes in the LTα, LTβ, and 
LTβR-deficient mice (6, 9). In addition, antibody blockade of 
LTβR signaling in vivo dissociates ectopic TLT structures in a 
multitude of settings using preclinical mouse models of inflam-
matory diseases (49, 53–55).

However, there is also an ever-increasing body of work 
identifying novel immune pathways that can by-pass the classical 
sequence for tertiary lymphangiogenesis (depicted in Figure 1). 
While iILC subsets (to which lymphoid tissue inducer (LTi) cells 
belong to) are critical for mucosal immunity and for the devel-
opment of lymph node Anlagen, some reports have identified 
LTi-redundant mechanisms for TLT development (13,  56, 57). 
This includes the development of small intestinal TLT driven 
by TNF-overproduction in the absence of LTi signals (13). 
TNF production from M1-like macrophage also confers an LTi 

phenotype in stromal cells to generate TLT, independent of LTβR 
signaling (58). Conversely, in the absence of ILC3 and Th17 anti-
microbial responses (RORγt−/−) or LTα−/−, mice develop florid 
TLT development during colonic inflammatory insults (49, 59). 
Thus, the cardinal role of the ILC3–Th17 axis in TLT function, 
during chronic intestinal inflammation and in the heterogene-
ous and anatomically distinct subsets of IBD, warrants further 
investigation (Table 1).

innate and Adaptive Sources of iL-22
IL-22 is a member of the IL-10 cytokine family that is predomi-
nantly expressed by Th17, γδT cells, and ILC3 and plays a criti-
cal role in anti-microbial defense at mucosal surfaces (60, 61). 
Recent work has demonstrated a role for IL-22 in the control 
of both TLT development and function (62). In a viral-induced 
model of Sjögrens syndrome, delivery of adenovirus into the 
salivary glands induced development of TLT that was dependent 
on IL-22 production, initially from NK1.1+ and γδT cells, with 
expression during chronic disease predominated by classical αβT 
cells. The authors demonstrate that IL-22 maintained CXCL13 
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TABLe 1 | incidence of tertiary lymphoid tissue development in human 
and mouse intestine.

Condition/model Location Lymphoid component(s) Reference

Human
Helicobacter Pylori Stomach B/T cells, HEV, CXCL13 (120, 121)
Crohn’s disease Ileum/

Colon
B/T cells, lymphoid follicular 
inflammation

(44–46, 
122)

Ilectomy (Crohn’s 
disease)

Terminal 
ileum

Aphthous ulcers, ulcers 
>8mm, fibrotic strictures rare

(48)

Colorectal carcinoma Colon B/T cells, FDC, CXCL13, 
CCL19, CCL21

(123, 124)

Mice
Disease model
Autoimmune gastritis Stomach B/T cells, CXCL13, FDC, 

autoantibodies
(125, 126)

Helicobacter Pylori Stomach B/T cells, FDC, GC, CXCR5, 
CXCL13

(127–129)

TNF-transgenic 
(TNFΔARE)

Ileum B/T cells, FDC, GC CCL19, 
CCL21, CXCL13

(13, 34)

Prion disease  
(LTα−/−/LTβ−/−)

Small 
intestine

B cells, FDC, CR1/CR2 (130)

DSS-colitis (RORγt−/−) Colon B/T cells, Th1, 
autoantibodies, 
LTBR-dependent

(49)

DSS-colitis (LTα−/−) Colon B/T cells, CD8 (59)
Anti-LTβR in utero Small 

intestine
B/T cells, GC, IgA, Th17 (25, 32, 59)

Genetic model
CCR7−/− Stomach B/T cells, FDC, CCL21, 

CXCL13
(131)

AID−/− Small 
intestine

B/T cells, FDC, hyper IgM (132)

CnAalpha+/− Small 
intestine

B/T cells, CD11b, TFG-β, 
IFNγ

(133)

IL-25−/− Small 
intestine

B cells, CD11b, CD11c (134)

CXCL13-transgenic Ileum LTi, IL-22, LTα, LTβ, CXCL13 (65)
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and CXCL12 levels to facilitate B cell clustering. Strikingly, 
IL-22 blockade resulted in loss of TLT structure in addition to 
anti-nuclear autoantibody generation (62). The involvement of 
IL-22 in the function of intestinal TLT has not been formally 
assessed, but warrants investigation, especially considering the 
major role played by IL-22 during chronic intestinal inflamma-
tion (63, 64). The IL-22–CXCL13 axis may also be a reciprocal 
one, as over-expression of CXCL13 in the intestine facilitates 
the recruitment of IL-22+ ILCs, B cell clustering, and the gen-
eration of ILFs, independent of aberrant inflammation (65).  
A governing signal that drives both IL-22 and CXCL13 expres-
sion is integrated by LTβR, with LTβR initiating an ILC-DC 
cross talk via IL-23 to induce IL-22 following intestinal infection 
with Citrobacter rodentium (66). Surprisingly however, recom-
binant IL-22 administration can restore TLT formation in the 
colon of LTβR-deficient mice, suggesting that IL-22 can directly 
and independently impact TLT organization during intestinal 
infection (67).

iLC- and Th17-Derived iL-17a
Other members of the Th17 family, most notably IL-17a, have 
been implicated in the development of bronchus associated 
lymphoid tissues (BALT) during lung infections and in a mouse 

model of Multiple sclerosis (EAE) (68–70). Following infection 
with P. aeruginosa, mice develop extensive BALT formation, 
which is dependent on IL-17a-driven CXCL12 from the lung 
stroma (69). In a second study, Rangel-Moreno and colleagues 
demonstrated that neonatal mice developed BALT following 
repeated administration of bacterial lipopolysaccharide (LPS), 
initiated by IL-17-induced CXCL13. Of note, the generation of 
CXCL13 was also independent of LTβR in this study (68). As 
the small intestine is the physiologic site for Th17 generation 
(71, 72), targeted interruption of this cytokine family may reveal 
a critical role in intestinal TLT function. In line with this, one 
recent study has demonstrated that segmented filamentous 
bacteria (SFB) stimulated the postnatal development of ILF and 
TLT, which substituted for PP as inductive sites for intestinal IgA 
and SFB-specific T helper 17 (Th17) cell responses (32). How this 
integrates with chronic intestinal inflammation and the impact of 
SFB-induced IgA and Th17 from PP and ILF structures during 
intestinal disease remain to be clarified.

T Follicular Helper Cells and iL-21
Upon antigen stimulation, naive CD4+ helper T cells differenti-
ate into effector subsets with distinctive functions based on the 
cytokine milieu of their environment (e.g., Th1, Th2, Th17, and 
Treg). A critical function of helper CD4+ T cells subsets is to pro-
vide stimulatory signals to developing B cells for the generation of 
appropriate antibody responses. The cardinal CD4+ T cell to carry 
out this function is the T follicular helper cell (Tfh). Tfh localize 
within lymph node follicles and utilize the chemokine receptor, 
CXCR5 (receptor for CXCL13) to stimulate and instruct GC reac-
tions leading to Ig class switch and somatic mutation. Tfh perform 
much of their functions by the generation of the cytokines IL-6 
and IL-21 and under the instruction of the transcription factor 
Bcl-6. An elegant recent study has demonstrated that Th17 cells 
within PP trans-differentiate into IL-21+ Tfh to aid with the 
development of IgA+ plasma cells (73, 74). In the PP, some TH17 
cells lose their expression of RORγt and IL-17 and convert into 
Bcl-6+ and IL-21+ Tfh cells (74). Whether Tfh regulate the GC 
reactions in ectopic TLT during intestinal inflammation is not 
well characterized; however, IL-21 is upregulated in the inflamed 
small intestine of TNFΔARE/+ mice and correlated with the onset 
of TLT appearance (McNamee and Rivera-Nieves, unpublished 
observation). IL-21 expression is upregulated in the intestine of 
patients with IBD and downregulated in anti-TNF responsive CD 
patients (75, 76). While most current studies have focused on the 
interplay between IL-21 and Th17 differentiation (77), how IL-21 
and Tfh integrate into the organization and function of intestinal 
TLT have not been assessed.

Regulatory T Cells
Foxp3+ CD4+ regulatory T cells (Treg) have a unique ability to 
repress chronic inflammation and are critical for the genera-
tion and maintenance of intestinal tolerance and prevention of 
autoimmunity (78–81). They mediate their suppressive effects by 
intimately controlling DC activation and by repressing effector T 
cell proliferation (79, 80, 82). Of note, failed immunoregulation 
and loss of Treg function is a hallmark of both human IBD and 
preclinical models (83–85). The first study to demonstrate a link 
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between TLT development and Treg function utilized CCR7−/− 
mice. CCR7 expression is generally high on CD4+ Foxp3+ Treg’s 
and CD103+ regulatory DC. CCR7−/− mice have a global loss of 
these two cell types and inability to control overt inflammation 
(51). Strikingly, neonatal CCR7−/− mice developed BALT without 
the addition of an extrinsic inflammatory stimulus (86, 87). 
Importantly, the authors inhibited ectopic BALT follicle develop-
ment with the adoptive transfer of functional Treg from wild-type 
mice (87). Thus, the inability of Treg to control chronic intestinal 
inflammation may facilitate the development and function of 
TLT during IBD (83–85); however, this has yet to be formally 
investigated experimentally.

Follicular Dendritic Cells
In the setting of either IBD or in preclinical models that present 
with TLT, it has not yet been delineated if lymphoid chemokines 
from stromal “organizer” cells precede the development of 
intestinal TLT, or if their activation is dependent on the influx of 
TNF+ and LTα1β2

+ leukocytes. This question is of clinical inter-
est as current biologic interventions in IBD are predominantly 
aimed at depleting lymphocytes, and their affects on stromal 
compartment in maintaining chronic tissue inflammation are 
poorly understood. One such cell subset that is critical for active 
SLO and mature TLT organization, yet understudied, is the FDC. 
FDC are highly specialized stromal cells, derived from pericytes, 
arising within active SLO GCs and chronically inflamed tissues 
to organize TLT (88, 89). FDC form a reticular scaffold for 
B cells to generate and maintain GC reactions. They possess a 
unique recycling mechanism to protect captured antigen from 
degradation and retain it for long-term presentation to B cells 
with antibody complexes or on complement receptors CR1 and 
CR2(90). In addition, FDC express CXCL13 and BAFF, which are 
essential for the recruitment and survival of CXCR5+ B cells in 
GC follicles (91). TLTs require chronic antigenic stimulation for 
their maintenance and the tonic supply of lymphoid chemokines 
to conserve their structure. FDCs can perform both of these 
functions (via CR1/CR2 and CXCL13), and their appearance 
within intestinal TLT heralds the onset of chronic disease and 
lack of tolerance; however, their source and function during IBD 
is unknown and warrants investigation. An intriguing question 
remains whether intestinal FDC can maintain tonic IgA or IgG 
production from their neighboring B cells.

iNTeSTiNAL TLT iN iBD AND 
eXTRAiNTeSTiNAL DiSeASe

Are intestinal B Cells Contributing to 
immune Dysregulation via Generation of 
Autoreactive or Microflora-Reactive 
Antibodies?
The classical definition of IBDs (and in particular CD) is that they 
are “immune-mediated” conditions, triggered by a dysregulated 
host immune response to commensal microbiome in genetically 
susceptible individuals and perpetuated by an autonomous or 
independent dysregulated immune response, which might then 
become independent of bacterial stimuli. While auto-reactive 

effector CD4+ helper T cell subsets drive a dysregulated immune 
pathology in CD, neither CD nor UC fall into the category of 
being classical “autoimmune” conditions, as a pathologic autoan-
tibody has not been identified. However, there is a clear precedent 
for dysregulated B cells responses in IBD subsets and serological 
evidence for autoantibodies being generated (92). For example, 
anti-neutrophil antibodies (ANCA and p-ANCA) are present in 
patients with UC (60–80%) and to a lesser extent, CD (5–25%) 
(93–95). Increased concentrations IgG and IgA antibodies to 
Saccharomyces cerevisiae (ASCAs) (brewer’s yeast) are found in 
60–70% of patients with CD (96), while IgG antibodies against 
the Escherichia coli outer membrane porin (OmpC) is identified 
in 55% of CD patients (97). IgG antibodies to the flagellin CBir1 is 
associated with small-bowel, internal-penetrating, and fibrosten-
otic disease, and defines a subgroup of CD patients not previously 
recognized by other serologic responses (92, 98).

Of note, there is now evidence that the magnitude of immune 
response to different microbial antigens (ASCA and OmpC) in 
patients with CD is associated with the severity of the disease 
course (fibrostenosis, internal perforating disease, and the need 
for small-bowel surgery) (99). Thus, a loss of immune tolerance 
and generation of autoreactive B cell responses are clear clinical 
features of CD. Whether this process takes place within the intes-
tinal (and TLT follicles) or is a peripheral response (e.g., spleen 
and bone marrow) is yet to be determined.

Are intestinal TLT a Mucosal Source for 
the Generation of extraintestinal Disease 
during iBD?
A clinical hallmark of IBD is the development of extraintestinal 
manifestations during its disease course. These include inflam-
mation of the joints, skin, eyes, and hepatobiliary tract, which 
are the most usually affected sites (100). An interesting observa-
tion is that TLT are a predominant feature of CD pathologies, 
and patients with CD are more likely than UC patients to have 
immune-mediated (arthritis, eye, skin, and liver) extraintestinal 
manifestations: 20.1% CD versus 10.4% UC, with arthropathy 
significantly more common in CD (12.9%) (100). Of note, altered 
intestinal bacterial diversity and dissemination of specific species 
have been postulated as a mucosal origin for arthritis (101–104). 
In addition, in a TNF-transgenic model of small intestinal CD 
and polyarthritis (TNFΔARE), the temporal onset of arthritis cor-
relates with microbial dysbiosis and the development of intestinal 
TLT (34, 50, 52). Thus there is precedent that intestinal TLT may 
aberrantly develop antibodies on a background of failed immu-
noregulation and thus integrate into a mechanism of systemic 
immune dysregulation.

wHAT ARe THe ANTiGeNiC STiMULi 
DRiviNG THe DeveLOPMeNT OF 
iNTeSTiNAL B CeLL FOLLiCLeS iN TLT?

There are several mechanisms that may underlie the increased 
numbers of ectopic B-cell follicles in the intestine of patients 
with IBD. This may be the result of non-specific polyclonal 
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proliferation of B-cells, responding to the local production of 
B-cell activating factors such as cytokines (IL-6, IL-21, LTβ, and 
TNFα) in the inflamed gut. Alternatively and more likely, follicu-
lar B-cells within intestinal TLT may indicate a specific humoral 
immune reaction. There remains limited data on the (oligo) 
clonality of B cells from IBD patients during active disease or 
in preclinical models to address this. In addition, it is presently 
unclear against which antigen(s) are intestinal B-cells proliferat-
ing. Presumably both microbial and auto-antigens [including 
degradation products from extracellular matrix (ECM)] should 
be considered in the setting of TLT during intestinal immune 
dysregulation (see Figure 1).

intestinal Dysbiosis and Chronic 
Bacterial infection
The increase in lymphocytes in the intestine during IBD and their 
organization into ectopic B cell lymphoid follicles are consistent 
with an orchestrated adaptive immune response, which is believed 
to develop in relation to chronic microbial colonization. Several 
observations favor this hypothesis, including a temporal cor-
relation between the development of small intestinal TLT and a 
marked dysbiosis of the commensal microbiome (34, 52, 59) (see 
Figure 1). Alterations of the commensal flora are now considered 
a feature of human IBD, and our understanding of the profound 
effects that has on intestinal immune homeostasis is rudimentary 
[reviewed in Ref. (105)]. Patients with IBD respond favorably to 
antibiotics and fecal diversion, and have greater antibody titers 
against indigenous bacteria than unaffected individuals (105, 
106). Inflammatory lesions are more pronounced in areas of the 
intestine that contain the greatest number of bacteria. The data 
in animal models provide further evidence for the involvement 
of gut bacteria in IBD. Pre-treatment with antibiotics has been 
shown to alleviate intestinal inflammation in several animal 
models (107).

extracellular Matrix Products 
and Molecular Mimicry
A specific immune response against self-antigens present in 
intestinal tissue could also be the initiating trigger for ectopic TLT 
generation. In the intestine of patients with IBD, there is a chronic 
inflammatory response present with the active recruitment of 
inflammatory cells and concomitant tissue damage. A resulting 
immune response can then be directed against intestinal matrix 
proteins, which can be recognized as neo-antigens. The ECM, 
composed of proteoglycans (including hyaluronan), collagens, 
elastin, and non-collagenous glycoproteins in turn both regulates 
and adapts to this inflammatory milieu. In fact, accumulation of 
ECM products has been shown to activate and recruit immune 
cells like T cells and monocytes during IBD (108). Proteolytic 
degradation of ECM components is a pathognomonic feature of 
a multitude of inflammatory and degenerative diseases [reviewed 
in Ref. (109)] and is mainly under the control of specific disin-
tegrins and metalloproteinases (110). In addition, products 
of infectious agents, e.g., heat shock proteins and enzymes 
responsible for citrullination, have been shown in several models 
to induce immune reactivity. For example, several citrullinated 

autoantigens can be identified in tests for anti-citrullinated 
peptide antibodies (ACPA; Anti-cyclic Citrullinated Peptide; 
Anti-CCP), keratin, fibrinogen, fibronectin (FN), collagen, and 
vimentin from patients with arthritis (111, 112). It is plausible 
that infiltrating B cells, attracted by the TLT chemokine gradients, 
are educated against “self ” proteins/immune complexes and start 
producing antibodies against the ECM degradation products. 
This has been demonstrated in both the joints of patients wit 
arthritis and in the lungs of patients with emphysema (both sites 
for TLT development) (112–114).

SUMMARY

It has been estimated that the intestine-associated GALT constitute 
approximately 50% of our immune cells and both the prenatally 
defined MLN and PP along with the postnatal induced CP and ILF 
maintain a remarkably tolerant environment. A staggering reality 
of IBDs is that the control of the collective regional immune system 
fails with dire consequences for the host. The florid appearance 
of TLT within the chronically inflamed intestine may indicate an 
attempt to support the failed immunoregulatory pathways and 
restore control of dysregulated inflammation. There remains a 
dearth of knowledge on the biological role played by TLT utiliz-
ing chronic models of IBD in addition to limited human data. 
Understanding how TLT integrate into the pathophysiology of 
IBD remains a critical question in our understanding of intestinal 
immunity.

FUTURe DiReCTiONS  
AND KNOwLeDGe GAPS

Since its discovery in 1932, the earliest histopathologic features 
of CD have included the extensive TLT formation within the 
inflamed mucosa. However, over 80 years later, our understand-
ing of the role(s) of intestinal TLT in CD remains elusive and a 
crucial need for empirical evidence as to their function remains. 
The most pertinent question remains as to whether TLT are driv-
ing dysregulated immune pathology (e.g., autoantibodies or naive 
T cell education) or whether they trigger exuberant immune 
responses at sites of bacterial invasion or neo-antigen exposure 
(e.g., generation of IgA). Recent work has started to investigate 
similar questions in the setting of mesenteric fat-associated 
tertiary lymphoid follicles and has elegantly demonstrated for 
the first time somatic hypermutation and IgG generation in situ 
within TLT (115). Surprisingly, an exhaustive cellular profile of 
TLTs in human CD tissues has not been performed. As such, basic 
questions as to the cellular make up and as such, immune profile 
of TLT during active inflammation in CD is limited (e.g., do they 
produce IgA or IgG?). In addition, how TLT respond to current 
therapeutic interventions during CD is limited, and hampered 
by the inability to assess their presence or response to treatments 
via endoscopic or histologic means (e.g., with limited tissue from 
pinch biopsies).

A therapeutic gap also remains for the site-directed targeting 
of TLT structures while sparing lymph node physiology and the 
ability to rapidly respond to infections (e.g., either to selectively 
induce intestinal ILF to increase IgA and antimicrobial defense or 
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to deplete ectopic TLT in situations where they generate autoanti-
bodies and aberrantly activate naive T cells). For example, while a 
plethora of studies have utilized Lymphotoxin-β receptor block-
ade to disaggregate mature TLTs, few report on the subsequent 
impact on disease pathology. In addition, while LTβR inhibition 
will inhibit clustering of TLT in almost all preclinical models 
of disease, it has profound effects on lymph node and splenic 
architecture, e.g., loss of marginal zone macrophage and B cells 
(116), disruption of GCs, HEV repression (117), and altered DC 
ratios (118). While these experiments serve as proof-of-principle 
studies, the site-directed delivery of therapeutics that target TLT 
function may prove a more viable modality for the treatment of 
chronic inflammatory diseases, with limited effects on systemic 
anti-microbial immunity.

An improved understanding of TLT development and func-
tion will shed light on critical questions pertaining to intestinal 

immunity and host defense, and future detailed investigations 
into the functional role of TLT in intestinal immune dysregula-
tion are sure to expand our understanding of the pathogenesis 
of CD.
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