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Neutrophil extracellular traps (NETs) arise from the release of granular and nuclear con-
tents of neutrophils in the extracellular space in response to different classes of micro-
organisms, soluble factors, and host molecules. NETs are composed by decondensed 
chromatin fibers coated with antimicrobial granular and cytoplasmic proteins, such as 
myeloperoxidase, neutrophil elastase (NE), and α-defensins. Besides being expressed 
on NET fibers, NE and MPO also regulate NET formation. Furthermore, histone deimi-
nation by peptidylarginine deiminase 4 (PAD4) is a central step to NET formation. NET 
formation has been widely demonstrated to be an effective mechanism to fight against 
invading microorganisms, as deficiency in NET release or dismantling NET backbone 
by bacterial DNases renders the host susceptible to infections. Therefore, the primary 
role of NETs is to prevent microbial dissemination, avoiding overwhelming infections. 
However, an excess of NET formation has a dark side. The pathogenic role of NETs has 
been described for many human diseases, infectious and non-infectious. The detrimental 
effect of excessive NET release is particularly important to lung diseases, because NETs 
can expand more easily in the pulmonary alveoli, causing lung injury. Moreover, NETs and 
its associated molecules are able to directly induce epithelial and endothelial cell death. 
In this regard, massive NET formation has been reported in several pulmonary diseases, 
including asthma, chronic obstructive pulmonary disease, cystic fibrosis, respiratory 
syncytial virus bronchiolitis, influenza, bacterial pneumonia, and tuberculosis, among 
others. Thus, NET formation must be tightly regulated in order to avoid NET-mediated 
tissue damage. Recent development of therapies targeting NETs in pulmonary diseases 
includes DNA disintegration with recombinant human DNase, neutralization of NET pro-
teins, with anti-histone antibodies and protease inhibitors. In this review, we summarize 
the recent knowledge on the pathophysiological role of NETs in pulmonary diseases as 
well as some experimental and clinical approaches to modulate their detrimental effects.

Keywords: neutrophil, neutrophil extracellular traps, NeTs, pulmonary diseases, lung infection, respiratory 
infection, bacteria, viruses

iNTRODUCTiON

Neutrophils are key players in microbial killing, being the first immune cells to achieve the site of 
injury or infection (1). Therefore, neutrophils act as the first line of defense against microorgan-
isms through phagocytosis, release of reactive oxygen species (ROS), and degranulation (2). 
Aside from these traditional mechanisms, neutrophils are also able to extrude DNA lattices, 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00311&domain=pdf&date_stamp=2016-08-15
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00311
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:barbara.porto@pucrs.br
http://dx.doi.org/10.3389/fimmu.2016.00311
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00311/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00311/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00311/abstract
http://loop.frontiersin.org/people/310493/overview
http://loop.frontiersin.org/people/105462/overview


2

Porto and Stein NETs in Pulmonary Diseases

Frontiers in Immunology | www.frontiersin.org August 2016 | Volume 7 | Article 311

called neutrophil extracellular traps (NETs), which entrap 
and facilitate the killing of bacteria, fungi, protozoa, and even 
viruses (3–8). NETs are composed of decondensed chromatin 
fibers coated with antimicrobial proteins, such as histones, neu-
trophil elastase (NE), myeloperoxidase (MPO), and α-defensins 
(3, 7). Besides being expressed on NET fibers, NE and MPO 
also regulate NET formation (9). Differently, the participation 
of NADPH oxidase-derived ROS in NET release seems to be a 
matter of time of stimulation. While ROS are required to NET 
generation in time points beyond 1 h after stimulation (10, 11), 
a very rapid process (5–30  min) of NET extrusion has been 
reported to be ROS-independent in response to Staphylococcus 
aureus and Candida albicans (12, 13). Furthermore, histone 
deimination by peptidylarginine deiminase 4 (PAD4) is a 
central step to NET formation (14). Additionally, the release 
of these DNA threads requires autophagy and activation of p38 
MAPK and the Raf-MEK-ERK signaling pathways (15–17). 
However, it is important to keep in mind that the specific cell 
components and signaling cascades may vary depending on 
the stimulus (18).

The primary role of NETs is to prevent microbial dissemina-
tion because of its stringy structure, and to kill pathogens due 
to the high local concentrations of antimicrobial molecules (19). 
However, these attributes make NETs potentially detrimental to 
the host. The pathogenic role of NETs has been described for 
many human diseases, infectious and non-infectious (20), being 
particularly important to lung diseases. Netting neutrophils in 
the lung tissue are able to disturb microcirculation and NETs 
produced in the pulmonary alveoli can expand easily, filling the 
lungs, as is the case for cystic fibrosis (CF) (19, 21). Therefore, 
NET formation must be tightly regulated. In this review, we sum-
marize the recent knowledge on the pathophysiological role of 
NETs in pulmonary diseases as well as some experimental and 
clinical approaches to modulate their detrimental effects.

CYSTiC FiBROSiS

Cystic fibrosis is a fatal hereditary disorder resulting from 
mutations in the CF transmembrane conductance regulator 
(CFTR) anion channel (22). This anion channel is responsible 
for the transport of chloride ions across the epithelial layer of 
the airways, which is necessary for the production of thin, freely 
flowing mucus. Therefore, the lungs of CF patients produce large 
amounts of thick mucus, leading to an obstruction of the airways 
and colonization by bacteria (23). Typically, CF infants are rapidly 
colonized by Haemophilus influenzae or S. aureus, or both. Over 
time, Pseudomonas aeruginosa represents the main bacterial 
pathogen infecting CF lungs (23, 24). Due to these frequent infec-
tions, there is a massive neutrophil infiltration to the lungs and 
development of chronic inflammation (25, 26). The chronic and 
progressive lung disease accounts for morbidity and mortality of 
CF patients (25).

Cystic fibrosis sputum constituents include DNA, NE, MPO, 
and other neutrophil proteins (27), as it has been shown that 
bronchoalveolar lavage fluid (BAL) from CF infants presented 
high concentrations of DNA, which correlated with neutrophil 
numbers in BAL (28). However, the great amounts of extracellular 

DNA in CF sputum were considered to be from necrotic neu-
trophils and lung tissues (29). More recently, several studies 
have demonstrated that NETs and NET-associated proteins are 
present in CF sputum (30–35). Marcos and coworkers quantified 
free DNA levels in airway fluid from CF patients and found that 
those patients with poor pulmonary function presented higher 
levels of extracellular DNA compared to patients with mild lung 
disease (36), indicating that the accumulation of NET–DNA in 
the airways contributes to airflow obstruction in CF. Moreover, 
analysis of CF sputum samples revealed that elevated levels of 
macrophage migration inhibitory factor (MIF), a potent pro-
inflammatory cytokine, correlated with poor pulmonary func-
tion, and MIF was able to induce NET formation (33). Although 
many of the microorganisms that colonize CF airways have 
been shown to induce NET formation directly (4, 6, 12, 37, 38), 
pro-inflammatory cytokines and neutrophil chemokines present 
in CF lungs are also able to stimulate NET release (30, 33), thus 
perpetuating the inflammation.

Neutrophil recruitment and NET production in the lungs 
would be key events to fight against invading microorganisms, 
but their mission accomplishment is profoundly compromised 
in CF airways as patients often suffer chronic infections. Together 
with the failure in killing the bacteria, the excessive release of 
extracellular DNA accounts for biofilm formation by P. aerugi-
nosa, and NETs act as a proinflammatory component of biofilms 
(39). Furthermore, over the time of infection in CF airways, 
P. aeruginosa is able to acquire resistance to NET-mediated kill-
ing (38), probably due to its hypermutability, a well-described 
mechanism for P. aeruginosa adaptation within CF lungs (40–42). 
In addition, it has been recently demonstrated that sub-inhibitory 
concentrations of LL-37, a NET component, triggers P. aeruginosa 
mutagenesis in chronic infections (43). Interestingly, P. aerugi-
nosa triggers the release of the eicosanoid hepoxilin A3 by lung 
epithelial cells, which induces neutrophil transepithelial migra-
tion and is a natural inducer of NET formation (44, 45). Thus, the 
excessive release of NETs coated with proteases, together with the 
colonizing bacteria may worsen pulmonary inflammation and 
dysfunction. Besides NETs being able to directly induce endothe-
lial and epithelial cell death in vitro through histones (46), MPO 
and NE expressed on NET fibers could exacerbate lung pathology 
through the destruction of connective tissue and degradation of 
endothelial cell matrix heparan sulfate proteoglycan (47, 48). 
Moreover, it has been shown that NE cleaves host proteins at 
the site of inflammation (49). Additionally, histones are highly 
cytotoxic to endothelial cells in vitro and are lethal in mice (50). 
Altogether, these findings highlight the need to target the massive 
NET release in CF.

The current therapy to improve CF symptoms is the admin-
istration of recombinant human DNase I (pulmozyme/dornase 
alpha) (51). DNase inhalation is one of the successful treatments 
for CF, as it improves lung function and reduces infectious exac-
erbations (52); however, it is not effective for all CF patients. 
Therefore, alternative therapeutic options are desired. Dubois 
and colleagues have demonstrated that DNase administration 
to CF sputum dramatically increased its elastase activity (53). 
Thus, the combined administration of DNase and an elastase 
inhibitor could be useful to avoid the devastating effects of 
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excessive proteases in CF lungs. There are also candidate drugs 
to inhibit NET release, such as chloroquine and PAD4 inhibi-
tors, however neither of these molecules has been evaluated in 
animal models of CF.

ASTHMA

Asthma is a chronic heterogeneous inflammatory disorder of 
the airways characterized by airway inflammation and reversible 
airflow obstruction (54–56). Asthmatic subjects present periods 
of stable condition that alternate with severe episodes of exacer-
bations, leading to the impairment of lung function (57). Asthma 
symptoms include recurrent wheezing, coughing, and shortness 
of breath (55). This very complex disease is caused by multiple 
environmental factors that act in combination with hundreds of 
susceptibility genes (55). Asthma has been seen for a long time 
as an eosinophilic disease (56); however, in recent years, it has 
become evident that some asthmatics have a prominent neutro-
philic inflammation in the lungs (58). Patients with neutrophilic 
asthma usually present a severe form of the disease that does not 
respond to the classical treatment with glucocorticoids (59, 60). 
In addition, glucocorticoid administration to neutrophilic asth-
matics could aggravate lung inflammation, since glucocorticoids 
can prolong neutrophil survival (61). It has been described that 
neutrophils recruited to the lungs of atopic asthmatic patients 
generated NETs colocalized with elastase (62). In some patients, 
the number of neutrophils and NET-releasing neutrophils 
exceeded the number of eosinophils in the lungs. In this study, 
Dworski and colleagues also demonstrated that eosinophils 
infiltrating the airways of atopic asthmatics were able to release 
eosinophil extracellular traps (EETs), which colocalized with 
eosinophil granule proteins, such as major basic protein (MBP) 
and eosinophil cationic protein (ECP). Similar to the first study 
reporting the release of EETs from viable eosinophils (63), the 
DNA actively released by eosinophils in asthmatic lungs was 
from mitochondrial origin, and not nuclear (62). Interestingly, 
allergen challenge did not increase EET or NET formation in 
the airways of asthmatic subjects (62). Thus, what would be 
the role of EETs and/or NETs in the pathogenesis of asthma? 
And what would be the cause of EET/NET release in asthma? 
Taking into consideration the high concentrations of proteases 
anchored in extracellular DNA traps, one can assume that these 
enzymes could contribute to epithelial and endothelial cell dam-
age, a hallmark of asthma. On the other hand, the formation of 
DNA lattices could protect the host against possible infections 
secondary to cell damage. Currently, these and many other 
questions regarding DNA traps formation in allergic diseases are 
still open for debate. More recently, it has been demonstrated 
that eosinophils from asthmatic mice release EETs decorated 
with eosinophil peroxidase (EPO) with no signs of cell death 
(64), indicating that DNA release is an active process. In addi-
tion, recombinant human DNase treatment of asthmatic mice 
improves lung resistance and decreases oxidative stress in the 
lungs, providing a potential antioxidant effect on asthma (65, 66). 
Accordingly, the combined use of recombinant human DNase 
therapy together with the current treatments (such as inhaled 
glucocorticoids) for severe acute asthma may prove effective in 

decreasing sputum viscosity, as it has been shown in specific case 
reports (67, 68).

CHRONiC OBSTRUCTive 
PULMONARY DiSeASe

Chronic obstructive pulmonary disease (COPD) is a progressive 
disorder of the airways characterized by persistent neutrophilic 
inflammation (69, 70). The disease develops following long-term 
exposure to external stresses, such as inhaled tobacco smoke 
(71–73). COPD patients are affected by recurrent bacterial and 
respiratory viral infections, which represent the main causes of 
exacerbations in these subjects. Exacerbations are associated 
with increased upper and lower airway and systemic inflam-
mation (74). Patients with severe COPD present large amounts 
of airway neutrophils when stable, and these numbers further 
increase during exacerbations, which may be due to the high 
expression of neutrophil chemokines and chemokine receptors in 
airway mucosa (75). Furthermore, NE is expressed in the airway 
mucosa of COPD patients during severe exacerbations (75) and 
has a proinflammatory role by inducing the secretion of IL-8 in 
COPD (76). It is noteworthy that IL-8 is a potent NET inducer 
(3, 77). These features make COPD lungs more likely to be filled 
by NETs. Indeed, confocal microscopy analysis has shown that 
sputum from exacerbated COPD patients presents extracellular 
DNA, frequently entangled with bacteria (78), characterizing 
NETs. Moreover, NETs are present not only during COPD acute 
exacerbations, but also in the lungs of patients with stable disease 
(79–81). There is a clear correlation between the abundance of 
NETs in the sputum of COPD patients and disease severity – over 
90% of exacerbated COPD subjects presented large amounts of 
NETs in their sputum compared to 45% of stable COPD subjects. 
In addition, the very large quantities of NETs directly correlate 
with the severity of airflow limitation in these patients (79). Why 
NETs are produced in excess in COPD and what would be the 
trigger for NET release are unsolved issues. Under physiological 
conditions, NETs would be degraded by endogenous nucleases 
and cleared by alveolar macrophages (82). However, COPD 
subjects present lower numbers of alveolar macrophages (81) 
and these macrophages are defective in phagocytosis (83), which 
may explain the persistence of NETs in the airways. Nonetheless, 
a recent interesting study has shown that the outcome of the 
interaction of macrophages and netting neutrophils depend on 
macrophage phenotype. M2 macrophages in contact with netting 
neutrophils helped to perpetuate an inflammatory response, while 
M1 macrophages initially released extracellular DNA and there-
after degraded DNA in a caspase-activated DNase-dependent 
manner (84). These findings highlight a phenotype-dependent 
mechanism of macrophage regulation of NET release, which 
reinforce the argument that a prolonged exposure to NETs may 
favor the development of autoimmunity. The exact role of NETs 
in COPD pathogenesis is uncertain, but the need for developing 
novel diagnostic and therapeutic strategies is clear. The treat-
ment for COPD is very difficult, as anti-inflammatory drugs are 
ineffective. The most successful current treatment for COPD is 
long-acting bronchodilators, but no therapy reduces the progres-
sion or inhibits the inflammation (85). As NETs were implicated 
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in disease worsening, selective inhibitors of NET formation or 
NET-associated proteins (such as NE, MPO, histones) may prove 
valuable in improving the clinical picture of the disease.

TUBeRCULOSiS

Tuberculosis (TB) remains a major health problem for human-
kind. Annually, there are approximately nine million new cases 
and 1.5 million deaths caused by the disease (86). This chronic 
bacterial infection is caused by Mycobacterium tuberculosis and 
affects the lungs, promoting huge morbidity and mortality rates 
(86, 87). M. tuberculosis is usually transmitted by tiny droplets 
from cough or sneeze of an infected subject. Once in the lungs, 
the bacilli is phagocytosed and killed by alveolar macrophages. 
However, M. tuberculosis developed strategies to survive inside 
the macrophages. Therefore, the infection develops as a latent 
infection, inducing granuloma formation in the lung paren-
chyma. Consequently, the subject remains healthy while harbor-
ing dormant bacteria (87, 88). The key factor for the maintenance 
of latent TB infection is the equilibrium between the bacteria 
and the host immune response. TB reactivation is achieved when 
the immune response decreases and cannot restraint bacteria 
growth, inducing cell death and an increase in granulomatous 
lesions, as a result of inflammatory cell recruitment (88). Clinical 
symptoms of TB are caused by a severe impairment of lung 
function and by substantial morphological alterations in the lung  
parenchyma (87).

Although macrophages are generally viewed as the main cells 
involved in harboring M. tuberculosis, a growing body of evidence 
shows that neutrophils are rapidly recruited to infected lungs 
and can serve as bacterial reservoirs. Additionally, neutrophils 
were identified as the main immune cell type in sputum and BAL 
from active TB patients (89). Furthermore, human neutrophils 
are able to phagocytose M. tuberculosis in vitro, but fail to kill the 
bacilli (90). Neutrophils have been assigned to play both protec-
tive and pathological roles during active TB (91–93). As a part 
of their role in TB pathogenesis, neutrophils have been shown 
to release NETs coated with NE and histones when stimulated 
by two genotypes of M. tuberculosis (H37Rv and M. canetti). 
NETs were able to trap mycobacteria but not to kill them (94). 
This lack of killing ability of NETs may favor lung destruction in 
active TB. Another study has found matrix metalloproteinase-8 
(MMP-8) expressed on NET fibers induced by M. tuberculosis 
in  vitro. In addition, induced sputum from TB patients had 
increased amounts of NETs compared to healthy subjects and 
MMP-8 secretion correlated to lung tissue destruction in these 
patients (95). The effect of M. tuberculosis on NET induction 
might be mediated by the early secretory antigen-6 (ESAT-6), 
a protein secreted by M. tuberculosis, responsible for the escape 
of mycobacteria from phagosome to cytoplasm of cells (96), as 
ESAT-6 induces the production of NETs colocalized with MPO 
(97). ESAT-6 is also secreted in large quantities in the extracellular 
space and therefore can interact with immune cells to stimulate 
them and facilitate the maintenance of chronic inflammation in 
the lungs of TB patients (98). Importantly, neutrophils release 
high levels of calprotectin (S100A8/A9) within lung granulomas 
of patients with active TB (99), which are constituents of NETs 

(100). The release of calprotectin in TB could be related to NET 
formation, as neutrophil cytoplasmic proteins can attach to DNA 
fibers before being released. Urban and coworkers have shown 
that calprotectin can be released from neutrophils in two ways: 
bound to NETs and unbound (100). This could be the case for 
calprotectin release in the lungs of TB subjects; however whether 
M. tuberculosis induces the formation of NETs expressing calpro-
tectin remains to be determined.

Tuberculosis is a curable disease, although the treatment is 
difficult, since it can take several months (6–9 months) and has 
different drug regimens. Currently, the first line anti-TB drugs 
include isoniazid, rifampin, ethambutol, and pyrazinamide, 
among others when necessary, according to CDC (Centers for 
Disease Control and Prevention – http://www.cdc.gov/tb/topic/
treatment/). Moreover, new therapies aiming to improve the 
treatment outcomes, shorten the duration of treatment, and 
reduce lung pathology in TB patients were described (101). 
However, no therapeutic approach aimed to specifically regulate 
the deleterious effects of NETs in TB lungs was reported.

BACTeRiAL PNeUMONiA

The most common type of bacterial pneumonia is community-
acquired pneumonia (CAP). CAP remains a burden worldwide, 
being responsible for approximately 3.5 million deaths annually 
(102). A total of 20–60% of CAP patients require hospitalization 
due to disease severity, including children under age 5  years 
(102, 103). The etiology of CAP is variable, depending partly on 
the diagnostic tools used in the population studied. Among all 
bacteria, Streptococcus pneumoniae (S. pneumoniae) is the most 
frequently identified cause of CAP, with high morbidity and 
mortality rates, but H. influenzae is also an important etiologic 
agent of CAP (102, 104).

Once bacterial infection is established in the lungs, neutrophils 
are massively recruited to the infection site, inducing a prominent 
inflammatory response. The clinical outcome in CAP depends on 
the balance between the inflammatory response and pathogen 
clearance (102). In this sense, neutrophils actively producing 
NETs during CAP might lead to potential collateral damage to the 
lungs. Indeed, three different strains of S. pneumoniae (serotypes 
3, 4, and 19F) were able to induce pulmonary NET formation 
in mice, which correlated with the histopathologic severity. In 
addition, the pneumococcal capsule directly contributes to 
excessive NET release that paralleled with pneumonia severity in 
mice (105). The mechanism of NET induction by S. pneumoniae 
seems to be mediated by the pneumococcal protein α-enolase, 
which binds to myoblast antigen 24.1D5 on neutrophil surface 
and stimulates NET generation (106). However, S. pneumoniae 
appears to have evolved strategies to counteract NET-mediated 
killing. In an elegant study, Beiter and colleagues have demon-
strated that S. pneumoniae expresses EndA, a membrane-local-
ized endonuclease able to degrade NETs in vitro and to promote 
spreading of bacteria from the upper airways to the lungs and 
from the lungs to the bloodstream of mice. Additionally, mutant 
bacteria lacking EndA infect the upper airways but fail to dis-
seminate to the lungs and bloodstream (107). Moreover, EndA 
is secreted into the culture medium during pneumococcal cell 
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growth and rapidly dismantle DNA in NETs, being required 
for full virulence of S. pneumoniae during lung infection (108). 
Corroborating with these studies, streptococcal endonuclease has 
been previously implicated in disease progression (109). Besides 
EndA, streptococcal cells hold other important mechanisms to 
protect them from NET trapping and killing, such as a positive 
charge on their surfaces as a result of capsule expression and 
lipoteichoic acid d-alanylation (110). Thus, it seems that NETs 
released during S. pneumoniae infection function only to damage 
lung tissue, instead of having a bactericidal activity. The evidence 
that NETs released in response to bacterial infections can trap and 
inactivate viruses (8, 111) points out the utmost importance of 
NETs during co-infections in vivo. On the other hand, secondary 
pneumococcal infection following primary influenza intensified 
NET formation, but NETs did not show any bactericidal activity, 
only worsening lung pathogenesis (112). Altogether, these find-
ings suggest that the nature of NET trigger is fundamental to the 
clearance of subsequent infections.

Non-typeable H. influenzae (which lacks a capsule) is 
an important cause of pneumonia, mainly in subjects with 
chronic bronchitis and COPD (113), and the persistence of 
NETs could worsen lung inflammation in these subjects. Viable 
and heat-killed H. influenzae induces NET release in vitro, in 
a mechanism possibly mediated by lipooligosaccharide bind-
ing to TLR-4 and Myeloid Differentiation Primary Response 
(MyD)-88, an adaptor protein necessary to TLR-4 signaling. 
Interestingly, bacteria are not killed by NET proteins and 
survive within NETs (114). Accordingly, it has been recently 
demonstrated that these bacteria evolved to express specific 
molecules, peroxiredoxin–glutaredoxin and catalase, which 
allow them to resist to host oxidants and to survive within 
NETs in  vivo (115). In addition, non-typeable H. influenzae 
populations survive in biofilm communities in the airway 
surface, and NETs constitute an integral part of these biofilms 
(116). Astoundingly, it has been reported a fatal case of non-
typeable H. influenzae infection with severe pneumonia and 
bacteremia in an adult found to have large amounts of NETs 
expressing NE and histone H3 in his sputum (117). This case 
highlights the association between excessive NET generation 
and severe respiratory infection and sepsis. More recently, it 
has been shown that besides NETs, non-typeable H. influenzae 
is also able to induce macrophage extracellular traps (METs) 
expressing MMP-12 (118). MMP-12 has been implicated as a 
key factor for protease imbalance and emphysema. Therefore, 
the release of METs together with NETs may have a detrimental 
role during emphysema, pneumonia, and COPD. Importantly, 
DNase was effective to dismantle non-typeable H. influenzae-
induced MET and NET formation (118), which could be used 
as a short-term adjunctive therapy to avoid the injurious effects 
of these extracellular traps and associated proteases during 
pneumonia and other lung diseases.

ReSPiRATORY SYNCYTiAL 
viRUS BRONCHiOLiTiS

Respiratory Syncytial Virus (RSV) is the leading cause of acute 
bronchiolitis in children under age 2  years (119). Throughout 

the winter, RSV causes a significant number of hospitalizations, 
resulting in a huge burden to communities worldwide (119, 120). 
Due to the high infectivity of RSV, almost 70% of all children 
are infected with the virus during the first year of life, and by 
age 3, practically all children will have experienced at least one 
infection with this virus (121, 122). The clinical symptoms of RSV 
bronchiolitis include labored breathing, coughing, and wheezing 
(123). Microscopically, there is a massive neutrophil recruitment 
to the airways of infected children – these cells comprise for 
approximately 80% of infiltrated cells (124–127). Once in the air-
ways, RSV is able to activate neutrophils, inducing degranulation 
and IL-8 secretion (128), and also to inhibit neutrophil apoptosis, 
through phosphoinositide 3-kinase (PI3K) and nuclear factor-κB 
(NF-κB)-dependent mechanisms (129). This body of evidence 
suggests that neutrophils may play a significant role in disease 
pathogenesis.

Aside from the mechanisms mentioned above, we have 
recently demonstrated that RSV particles and one of its 
membrane-bound glycoproteins are capable of inducing NET 
formation by human neutrophils (130). RSV Fusion protein 
mediates the fusion of virus with the host cell and it is essen-
tial for viral replication both in  vivo and in  vitro (131), being 
considered the primary target for vaccine and antiviral drug 
development. RSV F protein induces the release of NETs coated 
with MPO and NE through Toll-like receptor (TLR)-4 activa-
tion. Moreover, F protein stimulates ROS generation and MAPK 
phosphorylation, and these signaling pathways are necessary to 
F protein-induced NET formation (130). Data in the literature 
regarding the role of NETs in viral diseases are conflicting (132). 
We hypothesized that the excessive production of NETs could 
fill the lungs and impair lung function, worsening inflammation 
in young children and babies affected by RSV infection. Indeed, 
analysis of bronchoalveolar fluid cytology samples from children 
with severe RSV lower respiratory tract infection revealed the 
presence of NETs expressing NE and citrullinated histone  
3 (citH3) (133). Furthermore, the infection of calves with bovine 
RSV induced an extensive release of NETs colocalized with 
dense cellular plugs containing shed epithelial cells and large 
amounts of neutrophils, which obstructed the airways (133). 
These recent studies indicate that NETs contribute to the airway 
obstruction and immunopathology observed in children and 
animals infected with RSV.

Despite extensive research efforts, there is no RSV vaccine cur-
rently available. Nevertheless, monoclonal antibodies targeting 
the RSV fusion protein have been developed and they passively 
protect against RSV challenge in an animal model and reduce 
the severity of infection in premature and newborn babies (134, 
135). However, the humanized monoclonal antibody against RSV 
F protein is only used in high-risk groups, such as preterm infants 
and those suffering from cardiovascular diseases or immunosup-
pression (134). In addition, ribavirin is an antiviral drug used to 
treat severe RSV bronchiolitis due to its anti-replicative activity, 
but it presents a high cost and is administered only to high-risk 
infants (136). Moreover, the use of recombinant human DNase in 
the management of severe RSV bronchiolitis has been previously 
reported. The administration of nebulized DNase to young babies 
with complicated bronchiolitis was able to immediately improve 
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the clinical signs and chest radiograph, and even led to the reso-
lution of atelectasis (137, 138). In contrast, in infants with mild 
RSV bronchiolitis, recombinant DNase therapy did not reduce 
the length of hospital stay or the duration of supplemental oxygen 
(139). Thus, DNase seems to be a useful therapeutic option in the 
treatment of infants who develop atelectasis due to severe RSV 
bronchiolitis.

iNFLUeNZA viRUS iNFeCTiON

Influenza A virus is responsible for regular outbreaks, whose 
severity may vary among the population. While the influenza 
pandemic that started with the Spanish flu in 1918 killed approxi-
mately 50 million people worldwide, the pandemic influenza 
A H1N1 2009 virus has affected more than 214 countries and 
caused nearly 18,449 deaths (140, 141). The clinical features of 
influenza infection include fever and upper respiratory symp-
toms, such as cough, runny nose, and sore throat (141). To 
date, there is little information about clinical complications of 
influenza A infection, but they appear to be similar to those of 
seasonal influenza, including sinusitis, otitis media, pneumonia, 
bronchiolitis, seizures, toxic shock syndrome, and secondary 
bacterial pneumonia with or without sepsis. Among subjects with 
high risk for complications are those at extremes of age and those 
with pre-existing medical conditions (141).

The characteristic feature of acute lung inflammation fol-
lowing influenza virus infection is the excessive infiltration of 
neutrophils in the lungs (142, 143), and CXCR2 seems to be the 
major receptor mediating neutrophil recruitment during this 
infection (144). Neutrophils have been demonstrated to play 
both protective and detrimental roles during influenza virus 
infection (143, 145, 146). Among the harmful roles played by 
neutrophils is the excessive production of NETs in the lungs of 
animals infected with influenza A H1N1 virus. NETs express-
ing histones and MMP-9 were found entangled with alveoli, 
causing increased alveolar capillary damage and obstruction 
of the small airways, thus confirming the link of these DNA 
lattices with lung damage (146). Furthermore, NET formation 
stimulated by influenza A infection is dependent on histone 
deimination by PAD4 (147). In addition, NET release induced 
by influenza virus is potentiated by the cathelicidin LL-37 
(148), which has been shown to facilitate the formation of 
NETs (149). Paradoxically, the antimicrobial protein expressed 
on NETs, α-defensin-1, is able to directly inhibit influenza 
replication through the inhibition of protein kinase C (PKC) 
in infected cells (150); however the expression of α-defensins 
on NETs induced by this virus has yet to be demonstrated. 
The expression of α-defensins on NETs could inactivate the 
virions sequestered in NET fibers and consequently prevent 
them from reaching the target cells in the lungs. Thus, although 
antimicrobial proteins expressed on NETs have the ability to 
inactivate the virus and to prevent spreading, they are also 
able to inflict damage to host cells and tissues due to their 
cytotoxic properties.

Currently, influenza treatment relies on the administration of 
two groups of antiviral drugs, the adamantanes and neuramini-
dase inhibitors. Zanamivir and oseltamivir are neuraminidase 

inhibitors active against both influenza A and B, and are approved 
for the prevention and treatment of influenza in the United States. 
Supportive care of uncomplicated cases of influenza includes 
administration of fluids and rest (141). To date, there is no study 
describing the effect of DNase treatment on the outcome of 
influenza infection in animal models.

TRANSFUSiON-ReLATeD 
ACUTe LUNG iNJURY

Transfusion-related acute lung injury (TRALI) is a serious 
complication of blood transfusion (whole blood or blood compo-
nents) that develops within 6 h of transfusion and is characterized 
by hypoxemia, respiratory distress, and pulmonary infiltrates 
(151, 152). Currently, TRALI is the most important cause of 
transfusion-related morbidity and mortality (152). Histological 
analysis revealed lung edema, capillary leucostasis, and massive 
neutrophil infiltration (153). TRALI development requires the 
presence of antileukocyte antibodies in the transfused product, 
and antineutrophil antibodies have been linked to the most 
severe cases of TRALI (154). These antibodies activate recipient’s 
neutrophils, inducing their sequestration in the pulmonary capil-
laries and consequently tissue injury (155).

In an elegant study, Thomas and coworkers have found 
NET biomarkers (DNA, nucleosomes and MPO) in the serum 
of patients with documented TRALI (156). In addition, in a 
fatal case of TRALI neutrophils with decondensed nuclei were 
detected in lung vessels together with abundant extracellular 
histones and MPO (157). In a mouse model of TRALI, DNA 
streaks colocalizing with citrullinated histone H3 were found 
in alveoli outside blood vessels (156). Moreover, platelets also 
accumulate in the lungs of mice with TRALI, being required for 
injury development (158). In this model, platelets were shown to 
induce NET formation during TRALI (157). As a vicious cycle, 
histones expressed on NETs may activate platelets (159), which 
in turn induce further NET release, promoting coagulation and 
thrombi formation in the lungs. Accordingly, the pretreatment 
of mice with a histone-blocking antibody decreased lung edema, 
lung vascular permeability, and even mortality. This treatment 
also reduced NET generation detected in plasma, indicating 
that extracellular histones may help to spread NETs in the 
body (157). Furthermore, intranasal administration of DNase 
provided several benefits to mice undergoing TRALI, such as 
improvement of blood oxygenation, reduction in lung edema 
and vascular permeability, impairment of NET formation, and 
platelet sequestration in the lungs (156, 157). These studies sup-
port the argument that NETs are formed and play a critical role 
in the pathogenesis of TRALI and may be a promising target for 
therapeutic approaches.

MeCHANiCAL veNTiLATiON

Mechanical ventilation is a supportive intervention and a key 
feature of intensive care for patients with acute respiratory fail-
ure, including those with severe RSV bronchiolitis, pneumonia, 
or influenza infection (160, 161). However, it can be potentially 
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injurious to the ventilated lung, inducing the so-called ventilator-
associated lung injury (VALI), which contributes to morbidity 
and mortality in those patients (162). Furthermore, animal mod-
els of acute lung injury have been developed and characterize an 
experimental insult to a normal lung and therefore were named 
ventilator-induced lung injury (VILI) (162).

Neutrophils have been implicated as central cells in the 
pathogenesis of both VALI and VILI. It has been described 
that the early phase of VILI involves the release of several pro-
inflammatory cytokines and chemokines, whereas the late phase 
is characterized by the infiltration of a lung-marginated neutro-
phil pool (163, 164). However, more recently Choudhury and 
coworkers demonstrated that injurious mechanical ventilation 
induced a prominent neutrophil recruitment to the lung at the 
very early stage of VILI, before the development of physiological 
signs of lung injury. The infiltration of neutrophils in the course 
of VILI was dependent on L-selectin engagement but independ-
ent of CD18 (165), indicating that immune mechanisms medi-
ate neutrophil recruitment and activation during mechanical 
ventilation. Moreover, lung-derived soluble mediators appear 
to have a pathogenic role in an isolated perfused lung model of 
VILI (166). In line with this evidence, the chemokine receptor 
CXCR2 and its ligands, CXCL1 (KC) and CXCL2/3 (MIP-2), 
were shown to play a significant role in mediating neutrophil 
recruitment and promoting lung inflammation in VILI (167). 
Accordingly, short periods of mechanical ventilation in preterm 
infants induce an overproduction of the pro-inflammatory 
cytokines TNF and IL-1β, neutrophil chemokines IL-8 and 
MCP-1, and MMP-9 (168, 169). These inflammatory mediators 
may work together to induce a massive neutrophil infiltration 
to ventilated lungs and to stimulate NET release in response to 
mechanical ventilation in those patients. So far, IL-8, TNF, and 
IL-1β were shown to promote NET release in different experi-
mental settings (10, 170, 171). In fact, excessive NET forma-
tion has been recently implicated in the pathogenesis of VILI.  
A double-hit model of intratracheal LPS challenge followed by 
high tidal mechanical ventilation induced a prominent lung 
injury in mice, with high amounts of NETs, decreased lung 
compliance and release of pro-inflammatory cytokines (172). 
The mechanism of NET formation during VILI seems to rely on 
the simultaneous engagement of G protein-coupled receptors 
(GPCR) and Mac-1 (CD11b), by the platelet-derived CCL5/
CXCL4 heterodimer and a β2-integrin ligand, respectively 
(173). Surprisingly, these two studies showed opposing results 
regarding the role of NETs during VILI. Rossaint and coworkers 
found that DNase treatment of mice after induction of VILI was 
protective, as treated mice showed an improved gas exchange 
and reduced NET markers in the blood; whereas Yildiz and 
colleagues did not find a significant impact of DNase treatment 
on lung injury induced by VILI. There is at least one possible 
explanation for these differences: in the study of Yildiz and col-
leagues, the lungs of mice were already filled with neutrophils at 
the early stage of VILI due to LPS instillation, which could not 
be counteracted by DNase. Whereas in the study of Rossaint 
and coworkers, neutrophils infiltrated the lungs in the course of 
VILI, in this case a sterile inflammation. Although the outcome 
of DNase treatment in VILI is an issue for debate, there is no 

doubt that excessive NET formation accounts for the pathogen-
esis of acute lung injury.

OTHeR PULMONARY DiSeASeS 
AND NeTs

Besides the pulmonary diseases aforementioned, there are other 
disorders or syndromes affecting the lungs, in which NETs may 
play harmful roles as well.

Acute lung injury following severe sepsis is a common clinical 
consequence with significant morbidity and mortality rates (174), 
as the lung is the most sensitive target organ during systemic 
inflammation (175). Czaikoski and collaborators have recently 
shown that NETs are produced systemically in mice with cecal 
ligation and puncture (CLP) model of sepsis. The excessive release 
of NETs was directly correlated to heart, liver, and lung injury, 
as rhDNase plus antibiotics treatment of septic mice drastically 
decreased organ damage (176). Additionally to extracellular 
DNA measurement, NETs were observed in alveolar spaces and 
pulmonary capillaries of septic mice (177). Furthermore, higher 
concentrations of cell-free NETs were present in the serum of 
septic patients who developed severe acute respiratory distress 
syndrome (ARDS) compared to healthy controls (176), extend-
ing the experimental observations in mice to the clinical setting. 
Mechanistically, platelet TLR-4 is essential for NET induction 
within hepatic sinusoids and pulmonary capillaries of septic 
mice (178). Interestingly, NETs retained their integrity under 
flow conditions and were able to trap bacteria in septic blood. 
Therefore, platelets may serve as a platform for neutrophil activa-
tion and NET production, which can trap and kill pathogens but 
also induce disseminated organ injury during severe sepsis (178).

Another lung disorder featuring neutrophil-induced injury is 
interstitial lung disease (ILD). Actually, ILD are a group of diffuse 
parenchymal lung disorders characterized by pulmonary fibrosis. 
ILD can be frequently associated with a specific environmental 
exposure or an underlying connective tissue disease (179). 
Activated neutrophils were found increased in BAL from patients 
with idiopathic pulmonary fibrosis and were associated with early 
mortality (180). Interestingly, patients with ILD complications 
due to autoimmunity showed elevated levels of circulating cell-
free NETs and plasma LL-37 (a NET component), together with 
a decreased DNase activity (181), suggesting that the prolonged 
exposure to NETs is involved in the pathogenesis of ILD. In 
vitro, NETs have been demonstrated to promote the activation of 
lung fibroblasts and differentiation into myofibroblast phenotype. 
Moreover, these fibrotic effects were significantly decreased after 
degradation of NETs with DNase (182). Consistently, these find-
ings were supported by the detection of NETs in close proximity 
to alpha-smooth muscle actin-expressing fibroblasts in biopsies 
from patients with fibrotic ILD (182). This effect is very likely 
to be mediated by NE, since NE directed both lung fibroblast 
proliferation and myofibroblast differentiation in vitro (183). In 
addition, a NE inhibitor attenuated pulmonary fibrosis induced 
by bleomycin in mice via inhibition of TGF-β1 and inflammatory 
cell recruitment to the lungs (184). Altogether, these studies point 
to a key role of NETs in the development of ILD of different 
etiologies.
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CONCLUSiON

Neutrophil extracellular traps formation by activated neutrophils 
has a crucial role in host defense against microorganisms, as 
deficiency in NET release or dismantling NET backbone by 
bacterial DNases render the host susceptible to disseminated 
and lethal infections (107, 185). Moreover, aggregated NETs 
have been shown to limit sterile inflammation by degrading 
cytokines and chemokines via serine proteases (186). However, 
an excess or persistence of NET release is potentially injurious 
to host organs and cells, leading to worsening or perpetuation 
of many diseases. The pathogenic effects of excessive NET 
production is especially important in pulmonary diseases due 
to lung architecture itself, which may favor the spreading of DNA 
fibers, consequently enhancing tissue damage and impairing lung 
function (Figure 1). The mechanisms underlying NET produc-
tion and the boundaries between the beneficial and detrimental 
effects of NETs during disease state are still to be unveiled. To 
date, recombinant human DNase is the only treatment targeting 

NETs approved for a small number of pulmonary disorders. 
Nevertheless, a long-term DNase therapy presents side effects to 
patients. Hence, the quest for an ideal therapy targeting NETs and 
its associated proteins continues to be a challenge for scientists 
around the globe.
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FiGURe 1 | Overview of the beneficial and detrimental roles of NeTs in pulmonary diseases. Infectious and non-infectious pulmonary diseases cause the 
massive infiltration of neutrophils into the lungs. Activated neutrophils release an excess of NETs in the airways. The production of NETs requires the activation of 
specific signaling pathways described so far, such as raf-MEK-ERK and p38 MAPK, PAD-4, autophagy and NADPH oxidase-induced ROS generation. Additionally, 
NE and MPO also regulate NET formation. Accordingly, selective inhibitors of these signaling pathways are able to abolish or decrease NET release. The primary 
goal of NETs is to protect the host from invading microorganisms through their sticky nature and the high concentrations of antimicrobial proteins. However, these 
characteristics make NETs potentially detrimental to host cells and tissues. Excessive NET formation enhances mucus viscosity, filling the lungs, and impairing lung 
function. NET proteins are highly cytotoxic and can induce endothelial and epithelial cell death and cause the disruption of host proteins and cellular matrix.
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