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The herpesvirus Epstein–Barr virus (EBV) was discovered as the first human candidate 
tumor virus in Burkitt’s lymphoma more than 50 years ago. Despite its strong growth 
transforming capacity, more than 90% of the human adult population carries this virus 
asymptomatically under near perfect immune control. The mode of primary EBV infection 
is in part responsible for EBV-associated diseases, including Hodgkin’s lymphoma. It is, 
therefore, important to understand which circumstances lead to symptomatic primary 
EBV infection, called infectious mononucleosis (IM). Innate immune control of lytic viral 
replication by early-differentiated natural killer (NK) cells was found to attenuate IM symp-
toms and continuous loss of the respective NK cell subset during the first decade of life 
might predispose for IM during adolescence. In this review, we discuss the evidence 
that NK cells are involved in the immune control of EBV, mechanisms by which they 
might detect and control lytic EBV replication, and compare NK cell subpopulations that 
expand during different human herpesvirus infections.

Keywords: lytic eBv infection, NKG2D, DNAM-1, infectious mononucleosis, humanized mice

ePSTeiN–BARR viRUS iNFeCTiON AND PReDiSPOSiNG 
FACTORS FOR eBv DiSeASe

The herpesvirus Epstein–Barr virus (EBV) was discovered in 1964 by electron microscopy in Burkitt’s 
lymphoma, the most common childhood tumor in sub-Saharan Africa (1). It is arguably the most 
potent human tumor virus, because it readily transforms primary human B cells into immortalized 
lymphoblastoid cell lines (LCLs) in culture (2). This strong growth transforming capacity is due to 
the latent EBV proteins, six nuclear antigens (EBNAs) and two latent membrane proteins (LMPs), 
which are expressed as the default infection program in B cells (3). Lytic EBV replication occurs in 
LCLs only at low levels and triggers the expression of around 80 gene products under the guidance of 
the immediate early lytic transactivator BZLF-1 for the production of infectious DNA virus particles 
(4). In addition to Burkitt’s lymphoma, EBV is associated with numerous malignancies, mostly of B 
and epithelial cell origin, such as Hodgkin’s lymphoma and nasopharyngeal carcinoma (3). Despite 
this strong growth transforming capacity, EBV is carried by more than 90% of the human adult 
population as an asymptomatic persistent infection.

Epstein–Barr virus infection remains asymptomatic in most persistently infected individuals 
despite transforming latent EBV protein expression (5). In healthy EBV carriers, the expression of 
all six EBNAs and the two LMPs can be found in naïve B cells of secondary lymphoid organs like 
the tonsils (6) (Figure 1). In germinal center B cells, only the subset of viral proteins that is also 
present in Hodgkin’s lymphoma is expressed (EBNA1, LMP1 and 2). Finally, in homeostatically 
proliferating memory B cells, the latency pattern of Burkitt’s lymphoma is present with EBNA1 as 
the only expressed protein (7). Reactivation from this persistent EBV reservoir of memory B cells 
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FiGURe 1 | Role of NK cells in the immune control of the eBv life cycle. Epstein–Barr virus (EBV) is transmitted via saliva exchange and infects submucosal B 
cells. In infected naïve B cells, the latency III EBV program can be found (EBNA1, 2, 3A–C, LP, and LMP1 and 2). Activation via EBV infection drives infected B cells 
into differentiation. In resulting germinal center B cells, latency II EBV infection can be found (EBNA1, LMP1 and 2). These EBV proteins allow EBV-infected B cells to 
survive and enter the memory B cell pool. In memory B cells, all EBV proteins expression is switched off (latency 0). Upon B cell receptor cross-linking, the lytic EBV 
cycle is activated due to plasma cell differentiation, which allows epithelial cell infection for further amplification of infectious virus before shedding into saliva. NK 
cells target lytically EBV replicating cells via their activating NKG2D and DNAM-1 receptors. It remains unclear if also lytically EBV replicating epithelial cells can be 
recognized by NK cells.
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into lytic replication seems to occur after B cell activation and 
plasma cell differentiation (8). These findings, however, indicated 
that healthy EBV carriers are continuously challenged with trans-
forming latent EBV expression programs, which could result in 
tumor formation without immune control.

Indeed, immune suppression after organ transplantation 
or due to human immunodeficiency virus (HIV) co-infection 
causes the occurrence of EBV-associated malignancies, such as 
post-transplant lymphoproliferative disease (PTLD) and immu-
noblastic lymphoma (3). Some of these lymphoproliferations can 
be treated by the adoptive transfer of EBV-specific T cell lines 
(9). Moreover, some individuals remain EBV seronegative despite 
carrying the virus, and seem to control persistent EBV infection 
entirely by cell-mediated immunity (10). Thus, cell-mediated 
immunity by T cells seems to be sufficient to control persistent 
EBV infection (11). In addition to direct immune suppression of 
cell-mediated immunity, the conditions under which this immune 
response is primed, seems to be decisive for an asymptomatic 
immune control of EBV infection. Indeed, if primary infection 
with EBV is delayed into adulthood, the virus is more frequently 
acquired with symptomatic primary infection, called infectious 
mononucleosis (IM) (12). This immunopathology by massive 
CD8+ T cell expansion and activation seems to result from an 
uncontrolled lytic EBV replication, because most of the expand-
ing CD8+ T cells are directed against lytic EBV antigens (13). 
This massive lymphocytosis seems to transiently compromise 

EBV-specific immune control with an increased susceptibility 
to some EBV-associated malignancies, such as Hodgkin’s lym-
phoma up to 5–10 years after IM (14). In this review, we discuss 
the innate arm of cell-mediated immune control of EBV, which 
could explain the different outcomes of primary infection with 
this tumor virus and might be required to limit initial viral titers 
so that long-lasting adaptive cell-mediated immune control can 
be efficiently primed.

PRiMARY iMMUNODeFiCieNCieS THAT 
AFFeCT NK CeLL FUNCTiON AND 
PReDiSPOSe FOR eBv DiSeASe

Evidence that loss of cytotoxic cell-mediated immune control 
predisposes for EBV-associated diseases comes from primary 
immunodeficiencies that sensitize for EBV-associated malig-
nancies (15, 16). A subset of these affect, in addition to T cell 
responses, natural killer (NK) cell responses and hint toward 
an important function of cell-mediated innate immunity in 
EBV-specific immune control. The underlying genetic lesions 
affect gene products that are involved in NK cell differentiation, 
stimulation, and cytotoxic effector function.

Natural killer cell differentiation is disrupted by mutations in 
GATA-binding protein 2 (GATA2) and minichromosome main-
tenance complex component 4 (MCM4). Accordingly, a GATA2 
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mutation was identified later in the first indicator patient with 
susceptibility to herpesvirus induced diseases (17, 18). GATA2 is 
a hematopoietic transcription factor that is required for the devel-
opment of several immune cell lineages, including B cells, CD4+ 
T cells, dendritic cells, neutrophils, and monocytes in addition to 
NK cells (19). With respect to EBV-associated diseases, patients 
with GATA2 mutations have been diagnosed with chronic active 
EBV infection (CAEBV) and virus-positive smooth muscle 
tumors (20, 21). In contrast to this multilineage deficiency in 
patients with GATA2 mutations, partial deficiency of the DNA 
helicase MCM4 blocked differentiation of the human CD56dim 
NK cell subset, while other hematopoietic lineages seemed to 
be unaffected (22). One of the afflicted patients suffered from 
an EBV-associated lymphoma (23). Thus, compromised NK cell 
differentiation is associated with uncontrolled EBV infection.

In addition to NK cell differentiation, some mutations that 
impact NK cell stimulation are associated with EBV disease. 
These include deficiencies in SLAM-associated protein (SAP) 
of X-linked lymphoproliferative disease type 1 (XLP1), in mag-
nesium transporter 1 (MAGT1) of X-linked immunodeficiency 
with magnesium defect, EBV infection, and neoplasia (XMEN), 
in CD27, in phosphatidylinositol 3 kinase (PI3K) 110δ and in 
FcγR3A (CD16). XLP1, also known as Duncan’s disease, primar-
ily manifests in boys (24). Primary infection with EBV often leads 
to fatal IM in the affected patients, if they cannot be identified 
early enough and treated with bone marrow transplantation (25). 
The underlying mutations in SAP were identified in 1998 (26–28) 
and affect the adaptor protein of SLAM receptors that mediate 
their co-activating function in T and NK cells. Two of these 
SLAM receptors, 2B4 and NTB-A, increase NK cell cytotoxicity 
(29, 30), but XLP1-associated SAP mutations might primarily 
compromise EBV-specific CD8+ T cell immune control (31–33). 
Furthermore, deficiency in the magnesium transporter MAGT1 
results in diminished free magnesium levels within cells, which is 
associated with downregulation of the activating NKG2D receptor 
on cytotoxic lymphocytes, T, and NK cells (34). Supplementation 
of magnesium results in decreased EBV loads in the affected 
XMEN patients. Another activating co-receptor on T and NK 
cells is CD27. Mutations in this CD70 engaging co-receptor pre-
dispose for EBV-associated lymphoproliferations (35, 36). Also, 
loss-of-function mutations in the signaling molecule PI3K 110δ 
of activating receptors are associated with persistent EBV viremia 
(37). Finally, the activating FcγR on NK cells, CD16, seems to be 
required for EBV-specific immune control. Mutations in CD16 
were reported to be associated with persisting IM symptoms (38, 
39). These primary immunodeficiencies identify 2B4, NKG2D, 
CD27, and FcγR as important receptors in EBV-specific cell-
mediated immune control.

Apart from these activating receptors, the cytotoxic effector 
machinery also seems to be important in EBV-specific immune 
control. Accordingly, mutations in perforin, Munc13-4, and 
Munc18-2 have been identified in patients with EBV-associated 
diseases. Mutations in perforin are responsible for type 2 familial 
hemophagocytic lymphohistiocytosis (FHL2). Persistent IM has 
been described in one FHL2 patient (40). Munc18-2 and 13-4 
mediate docking and activation of syntaxin 11 for cytotoxic 
granule fusion with the cell membrane, respectively. Mutations 

in these two components of the cytotoxic machinery were 
found in patients with CAEBV (41). These genetic lesions point 
toward a role of cytotoxic lymphocytes in EBV-specific immune 
control. Primarily, prolonged IM resulting in CAEBV seems to 
be associated with primary immunodeficiencies that affect NK 
cell function.

NK CeLL eXPANSiON DURiNG PRiMARY 
eBv iNFeCTiON

Natural killer cell expansion during primary EBV infection 
has first been reported in a study by Tomkinson et  al. (42), in 
which peripheral NK cells (identified as CD16+ lymphocytes) 
were described to be significantly increased in both frequency 
(1.5-fold) and absolute number (4-fold) in – by these measures 
– a similar manner to CD8+ T cells in a cohort of IM patients. 
However, since the authors had to use a strategy for gating lym-
phocytes that included activated and, thus, blasted cells, CD16+ 
monocytes could not be excluded from the analysis and might 
account for some of the quantitative changes ascribed to the NK 
cell compartment. Still, threefold to sixfold increases in the num-
ber of bulk NK cells in IM patients were found by other groups 
as well (43, 44) and these increases were found to be inversely 
correlated with viral load in blood (43). Likewise, higher NK cell 
counts tended to be associated with less severe disease (43). On 
the contrary, a large and, notably, prospective study of primary 
EBV infection (45), while also reporting expansions of NK cells 
during the acute phase, positively correlated NK cell numbers 
with blood viral load and also positively correlated blood viral 
load with disease severity (45). Similarly, the increase in NK cells 
in IM patients was related to greater disease severity by another 
group, although the small number of subjects in that study 
precluded statistical significance (44). A study by Azzi et al. (46) 
detailed the phenotype of NK cells during IM and convalescence 
in pediatric patients and demonstrated the lack of influence of 
primary EBV infection on the expression of killer cell immuno-
globulin-like receptors (KIRs) but instead noted an up to fivefold 
expansion of an early-differentiated NK cell subset (Figure  2). 
This accumulated NKG2A+KIR−CD57− NK cell subset was the 
only identifiable subset within the NK cell compartment that 
proliferated in the acute phase and importantly, this proliferating 
early-differentiated NK cell subset also correlated with viral load 
in PBMCs (46). Although overall NK cell numbers and frequen-
cies contract early after the onset of symptoms (43–46), these 
early-differentiated NK cells remain elevated in frequency up to 
6  months after the acute symptomatic phase (46–48), but over 
time accumulate signs of differentiation (46, 47). Asymptomatic 
primary EBV infection is mostly found in young children (49, 
50) compared to a symptomatic outcome, i.e., IM, in up to 75% of 
cases of primary EBV infection in adolescents (45). While asymp-
tomatic infection was associated with high viral load, phenotype, 
and frequencies of antigen-specific CD8+ T cells similar to IM, 
the massive expansion of CD8+ T cell numbers typically seen in 
IM was absent (49). It might be speculated that the confinement 
of CD8+ T cell expansion is exerted by the EBV-responsive early-
differentiated NKG2A+KIR− NK cell subset, especially since this 
subset is highest in both frequency and numbers in newborns and 
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FiGURe 2 | eBv and HCMv expand different NK cell populations. Epstein–Barr virus (EBV) expands early-differentiated NKG2A/CD94, NTB-A, 2B4, CD27, 
CD16, NKG2D, and DNAM-1-positive NK cells, which after expansion upregulate the senescence marker CD57. Human cytomegalovirus (HCMV) in contrast 
expands late-differentiated CD94/NKG2C, CD16, CD2, KIR, and CD57-positive NK cells.
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young children but decreases with age (46). Whether the loss of 
early-differentiated NK cells during adolescence is associated with 
a specific molecular imprint that affects NK cell homeostasis, e.g., 
the result of changes in the expression of transcription factors, 
has not yet been explored in the current literature. One explana-
tion for such an age-dependent effect, however, is an increased 
burden and accumulation of various infectious challenges with 
advancing years that can likely be expected to have an impact on 
the differentiation of NK cells. One of these challenges, namely 
infection with the human cytomegalovirus (HCMV), that seems 
to drive NK cell differentiation via IL-12 and IL-15 production, is 
discussed below. Thus, dynamics within the NK cell compartment 
over time might in part explain the age-dependent occurrence of 
symptomatic primary EBV infection.

NK CeLL ReACTiviTY AGAiNST LYTiC 
eBv iNFeCTiON

Indeed, the trigger of peripheral NK cell accumulation in primary 
EBV infection does not seem to be caused by the inflammatory 
status of IM itself, e.g., increased levels of pro-inflammatory 
cytokines, since patients with equally inflammatory conditions 
but lacking evidence of EBV seroconversion do not show any 
expansions in their NK cell compartment (46). Instead, there is 
evidence that the state of the infectious cycle of EBV, either latent 
or lytic, drives the expansion of NK cells during infection, specifi-
cally changes that are inherent to lytic replication. In mice with 
reconstituted human immune system components (HIS mice), 
NK cell expansion only occurs during infection with wild-type 
EBV, but not with recombinant EBV engineered to only establish 
latent infection (EBV BZLF-1 knockout or BZ1KO EBV) (51). 
Furthermore, proliferation of NKG2A+KIR− NK cells was only 
seen after in vitro infection of cord blood with wild-type EBV but 
not with BZ1KO EBV (46). It is, therefore, conceivable that the 
expansion of the cytotoxic lymphocyte populations, namely NK 

and CD8+ T cells, during EBV infection is driven by the amount 
of available antigen (45, 46, 51), since the expansion of total CD8+ 
T cell and NK cell numbers as well as viral load correlate (45). 
Actually, lytic replication might not only be responsible for the 
expansion of the early-differentiated NK cell subset, but seems 
to also be a target of NK cells itself (Figure 1). In EBV-infected 
HIS mice, NK cells protect from high viral load, elevated cytokine 
levels, splenomegaly, weight loss, and occurrence of lymphopro-
liferative tumors, as well as limit the expansion of CD8+ T cells 
(51). Most of the protective effects of NK cells are lost in HIS mice 
only latently infected with EBV, but regained when these mice 
are infected with a recombinant virus reverted to allow for lytic 
replication (51). Also, in EBV-infected HIS mice depleted of NK 
cells, there is an increased abundance of lytic proteins and cell-free 
viral DNA indicative of ongoing uncontrolled lytic replication 
(51). In vitro, NK cells respond to and kill an EBV-positive B cell 
line more efficiently when these cells are in the lytic as compared 
to the latent phase of infection (51–53), in particular NK cells 
with the NKG2A+KIR− phenotype (46). The preferential killing of 
lytic cells was sensitive to blocking of CD112 and ULBP-1, ligands 
of the activating NK cell receptors DNAM-1 and NKG2D, respec-
tively (52) as well as directly blocking DNAM-1 (53). Therefore, 
the identification of activating receptors or combinations thereof 
crucial in NK cell-mediated protection in vivo holds promise to 
further our understanding of the intricate interplay between EBV 
with the host’s immune system and HIS mice might constitute a 
feasible model to answer such questions (51).

DiFFeReNCeS BeTweeN eBv-DRiveN 
NK CeLL eXPANSiON AND OTHeR 
HUMAN HeRPeSviRUS iNFeCTiONS

In contrast to EBV infection, other herpesviruses either do not 
change the NK cell composition, such as recurrent α-herpesvirus 
infection by herpes simplex virus 2 (HSV2) (54), or expand 
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terminally differentiated NKG2C+KIR+CD16+ NK cells, such as 
the β-herpesvirus HCMV (55–57) or the γ-herpesvirus Kaposi 
sarcoma-associated herpesvirus (KSHV) in HIV-infected indi-
viduals (58). Accumulation of terminally differentiated NK cells 
is primarily connected to HCMV infection (Figure 2) and it has 
been argued that in other viral infections, for which such terminal 
NK cell differentiation can be observed, such as with Hantavirus 
(59), Chikungunya virus (60), HIV (61), and hepatitis virus (62), 
mainly HCMV-positive individuals are affected by this alteration 
in NK cell repertoire composition (63–65).

This HCMV-driven terminal NK cell expansion has been 
linked to NK cell stimulation by cells that produce the NKG2C 
ligand HLA-E plus the NK cell proliferation stimulating cytokine 
IL-15 on their surface (59, 66). Expansion of NKG2C-positive 
NK cells could be obtained with HCMV infected fibroblasts 
plus IL-15 (67) and bystander monocytes were able to provide 
NK cell stimulating cytokines, including IL-12 (68). However, 
HCMV-infected individuals with NKG2C deficiency also 
develop NK cell populations that more vigorously secrete IFN-γ 
upon stimulation, the so-called adaptive NK cell populations 
(69), and the NKG2C genotype does not affect the outcome of 
congenital HCMV infection (57). Therefore, HLA-E-mediated 
NK cell stimulation might not be essential for the expansion and 
anti-viral function of NKG2C-positive NK cell populations, but 
IL-15 and IL-12 might be more important (65). Accordingly, one 
patient with IL-12Rβ1 deficiency did not carry adaptive NK cell 
populations (70). Therefore, cytokines might be one of the main 
drivers of adaptive NK cell expansion, as originally proposed in 
mice (71). These adaptive NK cells are terminally differentiated 
NKG2C-positive NK cells during HCMV infection, while for the 
early-differentiated NK cells that expand and persist for 6 months 
during acute EBV infection adaptive features have still to be 
investigated.

In contrast to direct immune control of lytic EBV replica-
tion by early-differentiated NK cells (51), the role of terminally 

differentiated NK cells is less clear during HCMV infection. 
Only for decidual NKG2C-positive NK cells it was shown 
that they directly kill HCMV-infected autologous decidual 
fibroblasts in an HLA-E dependent fashion (72). Most stud-
ies, however, implicate the NKG2C-positive NK cell subset 
that expands during HCMV infection in mediating superior 
antibody-dependent cellular cytotoxicity (ADCC) against 
antibody opsonized HCMV-infected macrophages or fibroblasts 
(73, 74). In these studies, both IFN-γ production and degranula-
tion of NKG2C-positive NK cells of HCMV-infected donors 
were superior upon opsonized target recognition compared to 
NKG2C-negative NK cell populations. These superior effector 
functions most likely result from epigenetic modifications, as 
has been shown for the IFN-γ gene locus in NKG2C-positive 
NK cells of HCMV infected individuals (75–78). Thus, early-
differentiated NK cells that expand during EBV infection might 
directly recognize lytically EBV replicating targets, while the 
terminally differentiated NK cells in HCMV-infected individu-
als mainly promote ADCC.
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