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Adoptive cellular therapy (ACT) is a form of immunotherapy whereby antigen-specific 
T cells are isolated or engineered, expanded ex vivo, and transferred back to patients. 
Clinical benefit after ACT has been obtained in treatment of infection, various hemato-
logical malignancies, and some solid tumors; however, due to poor functionality and 
persistence of the transferred T cells, the efficacy of ACT in the treatment of most solid 
tumors is often marginal. Hence, much effort is undertaken to improve T cell function 
and persistence in ACT and significant progress is being made. Herein, we will review 
strategies to improve ACT success rates in the treatment of cancer and infection. We 
will deliberate on the most favorable phenotype for the tumor-specific T cells that are 
infused into patients and on how to obtain T cells bearing this phenotype by applying 
novel ex vivo culture methods. Moreover, we will discuss T cell function and persistence 
after transfer into patients and how these factors can be manipulated by means of pro-
viding costimulatory signals, cytokines, blocking antibodies to inhibitory molecules, and 
vaccination. Incorporation of these T cell stimulation strategies and combinations of the 
different treatment modalities are likely to improve clinical response rates further.
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iNTRODUCTiON

During the recent years, immunotherapy has emerged to be a powerful and potentially curative 
therapy for the treatment of various types of cancer and recurrent viral diseases. Adoptive cellular 
therapy (ACT) is a form of immunotherapy that involves the ex vivo isolation and expansion of 
antigen-specific T cells for adoptive transfer back to patients (1, 2). Although clinical benefit has 
been obtained in treatment of hematologic malignancies and melanoma, the efficacy of ACT in 
the treatment of most solid tumors is thus far limited since transferred T cells fail to function 
and persist in vivo. This is in sharp contrast to clinical results obtained with patients treated by 
ACT for virus-associated malignancies and recurrent viral infections. Here, sustained presence 
of functional virus-specific T cells is observed, even up to 9  years post-infusion (3–5). This 
prolonged presence of transferred virus-specific T cells translates into a high clinical response rate 
that is being observed in patients that are treated with these cells. The superior efficacy obtained 
with ACT in the treatment of viral infections and virus-associated malignancies compared to 
the treatment of most solid cancers can be attributed to several factors, including tolerance to 
tumor-associated antigens (TAAs) and inhibition of tumor-specific T cells due to the suppressive 
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tumor environment. Moreover, also the necessity for extensive 
culturing of tumor-specific T cells to obtain sufficient numbers 
for infusion into patients greatly influences the quality of the 
T cells and, hence, persistence and anti-tumor efficacy in vivo. 
In addition to lessons that can be learned from studying T cells 
in a setting of viral infection, valuable lessons can also be 
learned by critical evaluation of results obtained with current 
protocols and, importantly, by improving our understanding 
of the underlying mechanisms. In this review, we will focus on 
current protocols of adoptive T cell therapy in cancer treatment, 
and discuss the various attempts to improve the clinical success 
rate of ACT by aiming to advance the quality of the infused 
T cells through delivery of costimulatory signals and cytokines, 
blocking of inhibitory signals and vaccination. As such, these 
developments are of interest for ACT improvement in cancer 
but also for other complicated T cell-dependent treatment 
modalities.

APPROACHeS OF ACT

One form of ACT involves expansion and infusion of natural 
T cells isolated from autologous tumors. Generation of tumor-
infiltrating lymphocyte (TIL) cultures is performed by first 
culturing resected tumor fragments or tumor single-cell sus-
pensions in medium containing IL-2 for 3–5  weeks followed 
by a rapid expansion protocol (REP) involving the activation 
of TILs using an anti-CD3 monoclonal antibody in the pres-
ence of irradiated peripheral blood mononuclear cells (PBMC) 
and IL-2 (2, 6, 7). Systemic administration of TILs to patients 
with advanced stage melanoma has mounted high and durable 
responses that resulted in objective clinical responses in >50% of 
the patients and complete regression in up to 24% of the patients 
(6, 8–10). However, such results have only been described for 
ACT in melanoma patients and not for other solid tumors. 
This is probably due to the high mutational load in melanoma 
giving rise to neoepitopes, which can serve as neoantigens 
facilitating tumor recognition by T cells (11–14). The stability 
of this neoantigen expression, however, is altering upon ACT 
demonstrating a dynamic interaction of the transferred T cells 
with their targets and advocates for ACT procedures inducing a 
broad tumor-specific T cell response (15).

In most medical centers, lymphodepletion before transfer 
is a standard part of the treatment (16). However, ~50% of the 
patients experience side effects of this pretreatment, which are 
mostly infection related, i.e., neutropenia and bacteremia (10). 
There is some evidence that alternative approaches can overcome 
the necessity to pre-condition the patient, e.g., selection of par-
ticular T cell clones, tailoring tumor-specific T cells to produce 
IL-12 or administration of low dose IFN-α (17–19). Another 
hurdle in ACT for solid tumors is the failure to successfully 
isolate TILs or expand TILs to sufficient numbers. In ACT for 
melanoma patients, these procedures are usually very efficacious, 
showing a success rate of more than 50% (7, 8). However, TILs 
harboring sufficient anti-tumor activity can rarely be generated 
from tumors other than melanoma and, moreover, for other types 
of cancer, adequate amounts of surgical/bioptic material is often 
not available (20).

One strategy to circumvent these limitations is genetic engi-
neering of autologous T cells by lentiviral or retroviral transduc-
tion to express TCRs that recognize TAAs. Although a promising 
clinical response rate of 30% was observed in a clinical trial for 
melanoma patients using a high-affinity HLA-A0201-restricted 
MART-1 TCR, in 29 out of 36 patients severe off-target toxicity 
was seen in the skin, ears, and eyes as destruction of melanocytes 
also occurred at these sites (21). In a clinical trial where myeloma 
and melanoma patients were infused with autologous engineered 
T cells expressing an affinity-enhanced TCR against MAGE-A3, 
the first two patients died of cardiogenic shock. This severe cardiac 
toxicity was due to recognition of a MAGE-A3-unrelated protein 
expressed by normal cardiac tissue (22). This off-target activity is 
likely caused by the fact that an affinity-enhanced TCR was used 
instead of the low-affinity parental TCR against MAGE-A3. Thus, 
a major drawback of this approach is the (sometimes unidenti-
fied) expression of target antigens on healthy tissue resulting in 
unwanted cross-reactivity. Nevertheless, certain antigens, such as 
cancer-testis antigens (CTAs), do form an attractive target since 
they are expressed by a variety of tumor types, but usually not 
by adult tissue, with the exception of germline cells on which 
HLA class I and II is not expressed. In clinical trials, targeting 
of the CTA NY-ESO-1 antigen, 61% of synovial cell carcinoma 
patients and 55% of the melanoma patients demonstrated objec-
tive clinical responses without signs of off-target toxicity (23). 
Another report showed even an 80% response rate in multiple 
myeloma (24). Although TCR transduction allows the generation 
of tumor-specific T cells without the necessity to isolate TILs, a 
major limitation of this approach is the HLA-restriction. For 
example, transduction of a TCR that recognizes its antigen in the 
context of HLA-A*0201 is only functional in patients with the 
same HLA type.

An alternative approach to obtain T cells with anti-tumor 
reactivity without the complication of HLA-restriction is genetic 
engineering of T cells to express chimeric antigen receptors 
(CARs). CARs are constructed by linking an antigen-binding 
domain, usually a single-chain variable fragment (scFv), to an 
intracellular T cell signaling domain such as CD3-ζ (first genera-
tion CAR), and currently also including one or two costimulatory 
domains (second/third-generation CAR). The specific binding of 
CAR T cells occurs, thus, in a non-MHC-restricted fashion, yet 
antigen-binding results in T cell activation. The most impres-
sive clinical results so far have been obtained using CAR T cells 
targeting CD19 in patients suffering from B cell malignancies 
(25–30). Mixing defined populations of CD4+ and CD8+ CAR 
T cells recognizing both CD19 further improved this therapy 
(31, 32). However, since all CD19-expressing cells are targeted 
using this approach, also non-malignant B cells are depleted. 
The drawback that healthy cells expressing the antigen are also 
targeted by CAR T cells has also been reported for CARs directed 
to her2/neu and carboxy-anhydrase-IX (33, 34). In addition to 
this on-target off-tumor effect, acute anaphylaxis and tumor lysis 
syndrome (TLS) occurs frequently after CAR T cell therapy, but 
most often observed is cytokine release syndrome (CRS) (35–37). 
It has been suggested that the incidence and severity of the CAR 
T cell-mediated toxicity is related to tumor burden and T cell 
infusion dose. To minimize toxicity in patients with a high tumor 
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burden, treatment with a low T cell dose may be required (30, 32, 
35, 37). Other strategies to overcome these adverse events include 
addition of a suicide gene (e.g., HSV-TK and iCasp9), whereby 
transferred cells can be selectively eliminated, and the generation 
of CAR T cells with dual specificity whereby each CAR targets 
a different tumor antigen and only engaging of both results in 
proper T cell activation and effector function (38–44).

Clinical trials using CAR T cells targeting other antigens than 
CD19 have, thus far, only shown limited anti-tumor efficacy. In 
a trial wherein neuroblastoma patients received CAR T cells rec-
ognizing the extracellular domain of L1-CAM, present on neuro-
blastoma cells, two out of six patients showed a clinical response 
(34). However, in two other trials, using CAR T cells specific for 
carboxy-anhydrase-IX and alpha-folate receptor to treat renal cell 
carcinoma and ovarian cancer, respectively, no clinical responses 
were observed (45, 46). The limited success for these CAR T cells 
may in part be due to antigen-independent CAR signaling due 
to clustering of CAR scFvs resulting in their early exhaustion. 
This tonic CAR signaling is observed for several CARs, except 
the CD19 CAR (47). Incorporation of the endodomain of 4-1BB 
(CD137), a costimulatory member of the TNF receptor (TNFR) 
superfamily, rather than a CD28 domain ameliorates this induc-
tion of exhaustion (47, 48). In addition, novel targets for CAR 
T cell therapy for solid tumors are on their way, which may have 
high clinical potential. For example, it was recently reported that 
CAR T cells can be engineered to target aberrantly glycosylated 
antigens on MUC1, which is expressed by multiple cancers, 
thereby providing a potential broad application (49).

Although CAR T cells and TCR transgenic T cells are favorable 
cancer treatment modalities, they usually target a single tumor 
antigen, which increases the chance of tumor escape (50, 51), and 
limits eradication of the often very heterogeneous tumors. The 
use of a combination of CARs with different antigen specificity or 
bispecific CARs could prevent antigen escape (52).

QUALiTY OF ANTi-TUMOR T CeLLS

A major challenge in ACT is to obtain sufficient numbers of 
tumor-specific T cells for infusion into patients and, importantly, 
since durable clinical responses profoundly depend on persis-
tence of the infused T cells, the transferred cells should have the 
capacity to persist long-term in vivo (53). Several reports suggest 
that the relative contribution to long-term persistence of T cells 
mainly comprises the least effector-differentiated memory T 
cells: central memory T  cells (Tcm) and T memory stem cells 
(Tscm) (54). Tcm and Tscm circulate in the lymphoid organs 
and are endowed with an excellent expansion potential upon 
antigenic challenge as opposed to more differentiated memory 
T cells. Effector and effector memory T cells (Teff/Tem) home 
to tissues and respond to antigen with immediate effector func-
tion as compared to Tscm/Tcm, but have a reduced regenerative 
capacity (55). In addition, Tem in humans can be subdivided into 
cells that are either CD45RA− or cells that re-express CD45RA+. 
The re-expressing cells, termed Temra, are thought to be the most 
differentiated memory cells, as these cells have low proliferative 
capacity, strong cytotoxic potential, and a higher susceptibility to 
apoptosis (56).

Tscm have the capacity to differentiate into Tcm and Tem, 
and display a superior potential to self-renew as evidenced by 
a positive correlation of the amount of infused Tscm with early 
expansion after transfer and absolute numbers of long-term 
persisting cells (57–59). However, very low numbers of Tscm 
are found in the periphery and extensive expansion would be 
required, which likely results in loss of memory potential (60, 61). 
The limitation of low natural frequencies can be bypassed by 
targeting the Wnt/β-catenin pathway in naive cells that results 
in arrested Teff differentiation and promotion of memory-like 
CD8+ T cells with Tscm features. Although targeting the Wnt 
signaling pathway appears to be an effective method to promote 
stemness and inhibit differentiation, this may restrict the pro-
liferation and function; hence, further research is required for 
its suitability to improve ACT (62). An alternative method to 
generate sufficient Tscm is a procedure whereby human naive 
T cells are activated by CD3/CD28 engagement and culturing 
in the presence of IL-7, IL-15, and IL-21 (63, 64). Another 
approach currently being explored is based on inhibition of the 
Akt-signaling pathway during the ex vivo expansion of tumor-
specific T cells resulting in the induction of early memory-like 
cells (65, 66). The advantage of this approach is that the ex vivo 
proliferation is not strongly inhibited and sufficient numbers of 
cells can be obtained for treatment. However, the role of Akt in T 
cell differentiation and metabolism needs to be further validated 
in order to determine if Akt inhibition could potentially be 
used in ACT protocols. Thus, although it is clear that Tscm have 
excellent stemness properties and much effort is being made to 
optimize isolation and expansion protocols, there are still some 
major hurdles and it is, therefore, not feasible yet to use these 
cells routinely for adoptive cell therapy.

A recent report demonstrates an alternative approach in which 
TCR transgenic CD8+ T cells were successfully reprogrammed 
into induced pluripotent stem (iPS) cells using a Sendai virus 
vector. After transfer into melanoma-bearing mice, iPS-derived 
T cells mediated potent anti-tumor activity. Nevertheless, their 
anti-tumor activity and persistence were comparable with their 
non-reprogrammed counterparts (67). Importantly, the Busch 
laboratory convincingly showed in mice that also Tcm have 
stemness and long-term persistence potential after transfer. 
Actually, both naive T cells and Tcm cells were highly efficient 
in inducing epitope-specific T cell populations during serial 
single cell adoptive transfers (68). Also, infused Tcm clones in 
monkeys and humans have shown to have the capacity to mount 
long-term persistent clonotypes, and furthermore CD19 CAR 
T cells derived from Tcm have superior anti-tumor effects (31, 
59, 69, 70).

In the current point of view, both Tscm and Tcm seem to 
be bona fide T cell subsets to use in ACT. Moreover, also naive  
T cell subsets have the potential to establish long-term per-
sistence allowing for prolonged anti-tumor activity (71, 72). 
However, these less-differentiated T cell subsets are not per 
definition superior in all tumor eradication settings. In cases of 
solid tumors where the level of tumor-antigen presentation by 
antigen-presenting cells in lymphoid organs is low, these T cell 
subsets may not be activated sufficiently to exit the lymphoid 
organs and invade the tumor to exert their anti-tumor effects. 
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One strategy to overcome this hurdle is increasing the level of 
antigen presentation in the lymphoid organs by vaccination, 
which results in appropriate T cell stimulation (as will be 
discussed later). Another approach is co-infusion of Teff and 
Tem cells. These cells have direct effector function and have 
(extralymphoid) tissue migrating properties leading to tumor 
destruction (55, 73–75). Consequently, this may also lead to suf-
ficient activation of the co-transferred Tcm/Tscm, which enables 
long-term anti-tumor immunity.

EX VIVO eXPANSiON PROTOCOLS 
AND COSTiMULATiON

The expansion protocols that are currently used to expand 
TILs or generate engineered tumor-specific T cells often mount 
expanded T cell pools with a highly differentiated phenotype that 
have lost CD28 expression, decreased expression of the costimu-
latory TNFR family member CD27 and more susceptibility to 
activation-induced cell death (AICD) (76–78). Approaches to 
obtain sufficient numbers of TILs with a favorable phenotype or 
to reprogram TILs or TCR engineered T cells to the preferred phe-
notype during ex vivo expansion include manipulation of critical 
costimulatory and cytokine signaling pathways. Costimulatory 
signals can be provided via agonistic antibodies and artificial 
APCs (aAPCs), of which the latter can either be cell-based or 
non-cell-based (79). An advantage of non-cell-based aAPCs over 
cell-based aAPCs is that they can be engineered to be magnetic, 
which makes removal of the cells before infusion of the T cell 
product straightforward. Also bio-degradable particles can be 
designed of which removal is not necessary. One of the costimula-
tory pathways known to be critical for priming T cells, the CD28 
pathway, is currently implicated in ACT protocols for ex vivo 
expansion and transduction. Another candidate is 4-1BB, which is 
expressed on activated T cells and upon triggering enhances T cell 
responses by promoting proliferation, survival, and effector func-
tion, and by regulating the suppressive potential of regulatory T 
cells (Tregs) (80). Comparison of aAPCs providing costimulation 
via CD28 or 4-1BB showed that signaling through 4-1BB prefer-
ably expands memory CD8+ T cells, whereas CD28 costimulation 
favors expansion of naive cells. In addition, the CD8+ T cells that 
received 4-1BB signals displayed improved cytolytic function 
(81). Interestingly, enhanced 4-1BB costimulation through an 
agonistic antibody has been shown to rescue expression of CD27 
and CD28 on post-REP CD8+ TILs, improved expansion of CD8+ 
T cells, and increased responsiveness to antigenic re-stimulation 
and increased expression of the CD127 (IL-7Rα) (82, 83). Also, 
when combined with a potent TCR trigger, signaling through 
4-1BB induces prominent upregulation of CD25 (IL-2Rα) and 
IL-2 (84). Thus, while generating tumor-specific T cell pools from 
naive cells, 4-1BB triggering could promote the generation of 
T cells capable of expanding upon secondary challenge. Another 
costimulatory molecule that could potentiate ex vivo culturing of 
tumor-specific T cells is CD27. The interaction of CD27 with its 
ligand CD70 has been shown to be important for IL-2-mediated 
T cell activation and in  vitro activation of human T cells with 
anti-CD3 in the presence of an agonistic CD27 antibody showed 
comparable expansion potential as stimulation through 4-1BB 

(85). On the other hand, in vitro experiments have shown that in 
a co-culture of naive CD4+ T cells with CD70 expressing tumor 
cells, Tregs accumulate because of increased IL-2 production by 
non-Treg CD4+ cells (86). Other costimulatory members of the 
TNFR superfamily include OX40 (CD134), HVEM, and GITR, 
and agonistic antibodies targeting these molecules could also 
potentially be used to improve REP cultures. OX40 has been 
described to promote T cell expansion and survival, the latter 
probably by regulating BCL-2 and BCL-xL expression (80, 87, 
88). It has been shown that ligation of OX40 increases expres-
sion of IL-7Rα on antigen-specific CD8+ T cells, which leads to 
enhanced survival and accumulation upon IL-7 signaling, and 
combining OX40 and 4-1BB costimulation further enhanced 
this effect (89). Thus, to further improve the ex vivo culturing 
procedure, targeting of two or more costimulatory pathways 
simultaneously can be taken into consideration. Importantly, 
although the signal strength that is delivered to the T cells 
should be robust enough for proliferation, it should not result in 
an overall terminal differentiation of the T cells. An alternative 
approach is to make combinations of an agonistic antibody with 
cytokines that prevent overt differentiation, as will be discussed 
hereafter. To be able to select the most favorable agonist–cytokine 
combinations, it would be highly recommendable to expand our 
knowledge regarding the effect on the expression of cytokines 
and cytokine receptors by targeting the costimulatory pathways 
simultaneously.

EX VIVO eXPANSiON AND CYTOKiNeS

An alternate strategy to boost cultured T cells and modulate 
the phenotype is via cytokine-mediated signals. The common-
gamma chain (γc)-cytokine IL-2 is long been known to massively 
expand T cells, and high doses of IL-2 have been used to establish 
and expand ACT T cell cultures for more than 20  years (90). 
Enforced expression of IL-2 by the T cells themselves results also 
in prolonged survival in vitro and maintains the tumor specificity 
and function (91, 92). However, IL-2 can promote differentiation 
of T cells (93, 94), which may lead to an unfavorable phenotype 
for ACT usage. So strategies to optimize ex vivo T cell cultures 
for ACT involving the (co-)use of alternative cytokines are fully 
explored. Next to IL-2, other γc-cytokines, such as IL-7, IL-15, 
and IL-21, have been described to play a role in memory T cell 
formation, proliferation, and survival, yet result in a lower degree 
of T cell differentiation but are still able to enhance anti-tumor 
responses (95–99). Also IL-12 and IFN-α, non-γc-cytokines, hold 
promise to enhance the efficacy of ACT. IL-12 has been shown to 
play an essential role in T cell differentiation and memory forma-
tion and IFN-α is important in driving memory cell development 
(100–102). Use of these cytokines in ex vivo T cell cultures present 
a promising moiety to yield T cells with an improved capacity to 
respond (103, 104). T cells forced to secrete IL-12 benefited also 
of this cytokine during culture (105).

In particular combinations of cytokines have shown encourag-
ing results. In expansion, protocols using naive T cells as a start-
ing source, different combinations of IL-2, IL-7, IL-15, and IL-21 
have proven to efficiently expand T cells and result in populations 
expressing early-differentiation markers, such as CD27, CD28, 
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CD62L, and CD127 (64, 106–108). It has also been shown that 
CAR T cells can be efficiently expanded using a protocol devoid 
of IL-2, using CD3 and CD28 stimulation in the presence of IL-7 
and IL-15 (109). Interestingly, also in TIL cultures and TCR/CAR 
engineered T cell cultures that are established in the presence of 
anti-CD3 and IL-2 and usually display a substantial degree of 
differentiation, cytokine cocktails were able to establish T cell 
populations with a less-differentiated phenotype (76, 110, 111). 
This suggests that cytokine cocktails can be used to reprogram 
late differentiated T cells. Besides delivery of cytokine-mediated 
signals via cytokine supplementation to the cultures, aAPCs 
can be designed to express cytokines or T cells can be triggered 
or engineered to produce abundant cytokines themselves (99, 
112–114). The advantage of aAPCs is that they can be designed 
to simultaneously provide costimulation and cytokine-mediated 
signals (112, 115). Irrespective of the cytokine delivery manner, 
more research is required to pinpoint the amount, ideal timing, 
and combination of cytokines for ex vivo cultures (108, 110). 
Moreover, requirements for establishing cultures from naive 
T cells or previously primed T cells are likely to be different. For 
example, addition of IL-21 causes naive T cells to significantly 
expand, while memory T cells fail to do so (98). Nevertheless, in 
both subsets, IL-21 signaling increases CD28 expression.

IN VIVO COSTiMULATiON

Another approach to improve ACT is by enhancing the T cell 
expansion and function after transfer. The essentiality of costimu-
latory pathways has been demonstrated in experimental settings 
of adoptive transfers showing, e.g., that CD27- and CD28-
mediated costimulatory signals are important for expansion of 
both naive and memory CD8+ T cells upon transfer (116, 117). 
To study the benefit of augmenting costimulatory pathways in 
patients after T cell infusion, preclinical studies and clinical trials 
have been performed exploring the use of agonistic antibodies 
against TNFR superfamily members 4-1BB, OX40, GITR, CD27, 
HVEM, and CD40. The promise of these molecules in cancer 
immunotherapy has been reviewed recently (118–120).

Besides expansion, an additional beneficial effect delivered 
by costimulation is induction of T cells with the capacity to 
produce IL-2 that acts in an autocrine manner (84, 121). In 
contrast to exogenous IL-2, either provided in vitro or in vivo, 
autocrine IL-2 seems to be highly beneficial for both the (sec-
ondary) expansion potential and survival of CD8 T cells (113, 
122). However, in order to be able to optimize ACT protocols 
further and minimize the chance of severe adverse side effects 
as observed in the Phase I clinical trial with anti-CD28 and to a 
lesser extent in the Phase II study with the anti-4-1BB antibody 
Urelumab (NCT00612664), which was associated with a high 
incidence of severe hepatitis, a better understanding of the 
underlying mechanisms by which these antibodies exert their 
effects is crucial (123, 124). In preclinical models, agonistic 
4-1BB contributes to tumor regression by promoting survival 
and avoiding AICD of CD8+ T cells and more importantly in the 
context of this review; in models using OVA-expressing tumors, 
it has been demonstrated that a combination of agonistic 4-1BB 
antibody and transfer of OVA-specific CD8+ T cells significantly 

improves tumor control (125, 126). Whether combining ACT 
and 4-1BB agonists enhances anti-tumor activity in humans has 
not yet been assessed, but when used as a monotherapy, 4-1BB 
antibodies seem to have some anti-tumor activity. Although two 
4-1BB agonists have already been used in clinical trials, only 
recently more insight into the mechanisms by which anti-tumor 
effect is exerted, is obtained, and it has become clear that at least 
in preclinical models systemic 4-1BB activation induces a phe-
notype of CD4+ and CD8+ T cells that is characterized by high 
expression of the T-box transcription factor Eomes, KLRG1+, 
and high cytotoxic capacity (125, 127–129). KLRG1 marks  
Tem and Teff cells and as already mentioned above, ACT of Tem 
and Teff cells combined with less-differentiated cells might be 
beneficial. Furthermore, agonistic 4-1BB antibody treatment 
correlated with decreased expression of the inhibitory receptors 
programmed death-1 (PD-1) and Lag3.

OX40 signaling can enhance T cell differentiation and survival 
via effects on IL-2 and IL-7-mediated signaling, and via increasing 
the anti-apoptotic molecules Bcl-2 and Bcl-xL (130) Essentially, 
providing OX40 triggering augmented anti-tumor activity in a 
preclinical model of adoptive T cell transfer mediated by both 
CD4+ and CD8+ T cells (131). Conflicting results are reported 
on whether Treg responses are inhibited or promoted by OX40, 
which is most likely due to differences in dose and/or timing 
of OX40 ligation, and may depend on the model/setting (132). 
Although unraveling the precise mechanism of OX40 agonists 
remains a challenge, anti-OX40 has already been used in a Phase I 
clinical trial for patients with metastatic solid malignancies, albeit 
not in ACT settings (133). Results were promising, and indicated 
enhanced proliferation of CD4+ and CD8+ T cells that coincided 
with regression of at least one metastatic lesion in 12 out of 30 
patients. Tregs in the tumor showed a higher expression of OX40 
compared to peripheral blood Tregs.

Explored as well, albeit to a lesser extent are agonistic CD27 
antibodies (134, 135). Promising results were reported in 
preclinical models, and are likely related to improved CD27-
mediated T cell expansion, survival, and function (77, 136–138). 
Conversely, it has also been reported that CD27 signaling can 
increase survival of Tregs in  vivo and thereby promote tumor 
progression (86). The Teff:Treg ratio in the tumor has been 
suggested to determine whether CD27 agonist will promote or 
diminish tumor control (139).

An indirect way to improve the efficacy of transferred T cells 
is via administration of agonistic antibodies to CD40 result-
ing in activation of APCs, such as dendritic cells (DCs) (120). 
Consequent upregulation of costimulatory molecules on the 
APCs then provide the necessary stimulatory signals to activate 
tumor-specific T cells. In addition to DCs, CD40 antibodies 
also activate other myeloid cells (140) and the activity can also 
depend on complement-mediated cytotoxicity (CMC) or anti-
body-dependent cell-mediated cytotoxicity (ADCC), or even be 
immune effector independent when CD40 is expressed on tumor 
cells (141–146). Important to note is that CD40 triggering in 
malignant cells is able to promote tumor cell proliferation lead-
ing to tumor progression (147, 148). Likely depending on one or 
more of the above-described mechanisms, targeting of CD40 has 
already been proven a promising strategy in several preclinical 
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models and clinical trials against solid cancer (120, 149–154). 
Also in preclinical models of ACT, agonistic CD40 antibodies 
promote tumor-specific T cell expansion and enhanced anti-
tumor activity (155, 156). Thus, clinical effectiveness in ACT has 
potential given that CD40 antibody-associated toxicity is man-
aged (152, 157). So far three agonistic CD40 antibodies, which 
differ in their agonistic activity, have been tested in clinical trials. 
The strongest agonistic antibody, CP-870.893, is a humanized 
antibody of an IgG2 isotype. Human IgG2 antibodies typically 
interact marginally with Fc receptors and are, therefore, not very 
effective mediators of CMC and ADCC (158). Nevertheless, this 
antibody is a potent activator of macrophages and DCs and can 
thereby mediate T cell-dependent anti-tumor immune responses, 
which suggests that it has the potential to enhance ACT. The 
two other antibodies that have been tested in the clinic (i.e., 
Dacetuzumab and ChiLob 7/4), displaying less agonistic activity 
compared to CP-870.89, are of an IgG1 isotype and, hence, are 
more potent mediators of CMC and ADCC, making them less 
suitable for combinations with T cell transfer (120). Adverse 
effects that were observed after CD40 antibody treatment include 
CRS and liver damage (120). Targeting of CD40 is also possible 
by imposed expression of CD40L (CD154) on the transferred 
T cells. In an experimental model, CD19-specific CAR/CD40L 
T cells displayed increased cytotoxicity and enhanced tumor 
eradication (159).

Also currently under investigation in clinical trials is an agonis-
tic antibody against GITR. In multiple animal models of cancer, 
this antibody has proven to exert anti-tumor immune responses 
by providing costimulatory signals to T cells and skewing the bal-
ance between induced Treg and TH9 cell differentiation in favor of 
TH9 (160–162). In a preclinical adoptive transfer setting, agonistic 
GITR antibody has shown to increase the polyfunctionality of the 
transferred T cells and reduce the frequency of Tregs in the tumor, 
resulting in tumor regression (163). Repetitive doses of a GITR 
agonist is, however, potentially toxic (164).

Taken together, considerable progress has been made in 
dissecting the mechanisms by which agonistic antibodies to 
costimulatory molecules exert their anti-tumor effects but fur-
ther unraveling is required to be able to implement this therapy 
into patients receiving ACT. Importantly, in case of treatment 
with such powerful agonists, also the mechanisms underlying 
the adverse immune-mediated side effects require attention. 
Undoubtedly, the effects of agonistic antibody administration are 
often multifaceted thereby making it challenging to predict treat-
ment outcome. Attempts to minimize the chance of antibody-
induced toxicity could include pretreatment with corticosteroids 
and local administration of agonistic antibodies (151, 152, 154).

As mentioned before, second-generation CAR T cells contain 
a costimulatory domain placed in series with CD3ζ and thereby 
costimulation is provided per definition upon target recognition. 
Since it is well appreciated that T cells require costimulation 
for proper activation, it is not surprising that incorporation of 
costimulatory domains advanced CAR T cell treatment. Alike 
for providing costimulation by agonistic antibodies, the choice of 
the costimulatory signaling domain influences CAR T cell func-
tionality and persistence, i.e., by differential regulation of down-
stream signaling expression. Most extensively explored are CAR 

T cells with incorporated CD28 and 4-1BB signaling domains 
and although treatment with both CAR T cells have resulted in 
clear clinical responses, comparisons showed prolonged persis-
tence and ameliorated exhaustion of CAR T cells using the 4-1BB 
domain (47, 165, 166). Alternative signaling domains that have 
been integrated include domains of CD27, ICOS, and OX40 (165, 
167–169). In third-generation CAR T cells, attempts to further 
enhance anti-tumor activity and long-term persistence rely on 
incorporation of two costimulatory domains. So far, combina-
tions of CD28 with 4-1BB and CD28 with OX40 have shown to 
be promising, resulting in T cells having potent effector functions 
and improved capacity to persist long term (168, 170). In a small 
pilot trial, a CD20-specific CAR with CD28 and 4-1BB costimula-
tory domains has been tested in four relapsed indolent B cell and 
mantle cell lymphoma patients and the data suggest improved 
CAR T cell persistence (171).

In addition to improving T cell function by triggering 
costimulatory pathways, inhibitory pathways can be blocked 
and this strategy, also known as immune checkpoint blockade, 
has led to significant clinical advances in cancer immunotherapy 
(172–174). Several reports show that combinations of ACT and 
blockade of inhibitory molecules, such as CTL-associated antigen 
4 (CTLA-4) and PD-1, have the potency to augment anti-tumor 
efficacy and increase T cell persistence (175–179). An alterna-
tive method in which PD-1-mediated inhibition was turned 
into CD28-mediated costimulation by generating PD-1–CD28 
fusion receptors was also effective in ACT (180). Nevertheless, 
although targeting of either costimulatory or inhibitory pathways 
for the benefit of ACT may improve anti-tumor responses, for 
achieving greater clinical response rates, combinations of the 
two might be required and are currently under investigation. So 
far this approach has yielded encouraging results as evidenced 
by inhibition of tumor growth in preclinical settings, including 
ACT cancer models (181–185). Decreased tumor progression 
coincided with an increase in Teffs and a decrease in Tregs and 
myeloid suppressor cells at tumor sites. This shift from a more 
immunosuppressive to a more immunostimulatory tumor 
environment might explain the potent effects of these antibody 
combinations.

CYTOKiNeS IN VIVO

Adoptive cellular therapy using TILs generally includes in vivo 
administration of high-dose IL-2 to improve proliferation and 
survival of the transferred TILs. Unfortunately, exogenous IL-2 
treatment has two major drawbacks; it is often associated with 
severe toxicity and can promote Treg proliferation. It has been 
reported that the number of doses of IL-2 that are administered 
after adoptive TIL transfer is positively correlated with Treg 
reconstitution after lymphodepletion and, furthermore, that 
the degree of Treg reconstitution is inversely correlated with the 
patient’s response to treatment (186).

Attempts to circumvent IL-2-induced toxicity and Treg 
stimulation have been made. A straightforward measurement is 
by reduction of the IL-2 administration (187). Tailoring CD8+ 
T cells to augmented autocrine IL-2 production seems an alterna-
tive promising manner, which increases the availability of IL-2 
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to the right cell without promoting Treg proliferation. This can 
be achieved using retroviral or lentiviral transduction and this 
would especially be feasible in  situations where transduction 
is already required. For instance, in case of generating TCR 
engineered T cells, but in fact also TILs can be transduced in the 
same manner. Recently, we have shown in a preclinical model 
that CD8+ T cells cultured in the presence of IL-7 and IL-15 that 
are forced to overexpress IL-2 display improved persistence and 
expansion potential after transfer and subsequent vaccination 
(113). Consequently, this heightened anti-viral and anti-tumor 
immunity in vivo compared to mock transduced cells. Notably, 
after in vivo secondary challenge, the cells with elevated autocrine 
IL-2 efficiently re-expanded yet also expressed IL-7Rα, suggest-
ing that although these cells underwent prolonged IL-2 signaling, 
they still seem to be of a less-differentiated phenotype, which may 
be related to the transduction procedure in the presence of IL-7 
and IL-15. In addition, we did not observe any alterations in Treg 
homeostasis (113). ACT with human T cells overexpressing IL-2 
has also been explored yielding promising results with respect 
to longevity but large clinical studies should be performed to 
determine if IL-2 over-expressing T cells result in clinical 
benefit (44, 92). Likely, ACT approaches with IL-2+ T cells are 
most successful when they are combined with vaccination given 
the prominent role of autocrine IL-2 production for second-
ary expansion of CD8+ T cells (113, 122). As discussed before, 
another strategy to circumvent exogenous IL-2 administration is 
to provide agonistic antibodies to costimulatory receptors that 
promote autocrine IL-2 production in T cells.

Other cytokines than IL-2 have also been explored to enhance 
ACT-mediated T cell responses. IL-7 and IL-15 are crucial 
cytokines for lymphoid homeostasis by playing an important role 
in orchestrating the survival of naive and memory T cells and 
memory cell differentiation (188, 189). Increased availability of 
IL-7 and IL-15 has been shown to be an important mechanism 
by which a lymphodepleting regimen improves the engraftment 
of the adoptively transferred T cells and, hence, the success of 
ACT (190–192). Preclinical ACT models, in which the effect of 
exogenous IL-7 and IL-15 on tumor outgrowth has been tested, 
demonstrated that both cytokines can improve tumor control, 
including in vaccinated lymphodepleted or immunodeficient 
hosts (193–195). Recently, a phase I clinical trial has been 
conducted to determine safety, adverse event profiles, and the 
maximum tolerated dose of rhIL-15 in humans (196). Patients 
with metastatic melanoma and metastatic renal cancer were 
infused with different doses of IL-15 (0.3/1.0/3.0  μg/kg/day) 
for 12 consecutive days and this treatment regimen resulted in 
markedly altered homeostasis of mainly NK cells, γδ cells, and 
to somewhat lesser extent of memory CD8+ T cells. No clinical 
responses according to the RECIST criteria (197), which includes 
the persistence of the cells after transfer, were observed and the 
maximum tolerated dose was determined to be the lowest used 
dose. Because of clinical toxicity caused by strong cytokine pro-
duction, the authors stated that rhIL-15 is too difficult to admin-
ister intravenously and suggest developing alternative dosing 
strategies and new trials to assess this are being conducted (196). 
IL-7 administration is tolerated better in humans, but anti-tumor 
efficacy requires further evaluation (198, 199).

As for IL-2, systemic IL-15-mediated toxicity might be cir-
cumvented by tailoring tumor-specific T cells to express IL-15. 
In that way, the IL-15-mediated effects are likely confined to the 
tumor environment, eluding systemic toxicity. In experimental 
models, it was shown that IL-15-expressing CD8+ T cells improve 
anti-tumor activity (95), and human IL-15 secreting cells perform 
also well in vivo (43, 200, 201).

The more recently discovered member of the γc cytokine 
family, IL-21, has also been explored as an anti-cancer treatment 
and IL-21 monotherapy of thymoma and melanoma in mice has 
shown to result in improved CD8+ T cell-mediated anti-tumor 
responses with augmented long-term survival (193, 202–204). 
IL-21 treatment prolonged persistence of endogenous and 
adoptively transferred tumor-specific transgenic CD8+ T cells, 
which was mainly attributed to IL-21-mediated promotion of 
survival (202). Additionally, it has been shown that IL-21 is able 
to potentiate tumor-specific antibody responses, which resulted 
in complement-mediated tumor cell lysis (204). Combination of 
cytokines involving IL-21 demonstrated further enhancement of 
anti-tumor immunity compared to IL-21 as a monotherapy. In 
a study wherein mice were challenged with B16F10 melanoma, 
treatment by adoptive transfer of transgenic tumor-specific 
CD8+ T cells, combined administration of IL-21 and IL-2 and 
vaccination resulted in higher absolute numbers of circulating 
tumor-specific T cells and improved tumor-free survival com-
pared to therapy with IL-2 or IL-21 alone (203). In addition, in 
a model using murine B16 melanoma cells that were transfected 
to secrete IL-21, it was shown that local presence of IL-21 can 
also promote anti-tumor immunity by preventing IL-2-mediated 
Treg induction (205). Experiments in the B16 model has shown 
that mixing IL-21 with IL-15 improves expansion of transferred 
tumor-antigen-specific CD8+ T cells and enhances tumor control 
after vaccination (106). Clinical trials using IL-21 as a single agent 
in melanoma and renal cell carcinoma show that this cytokine is 
well tolerated and favorable clinical responses have been observed 
as evidenced by patients in which disease stabilized (206, 207). 
To our knowledge, the anti-tumor effect of IL-21 in human ACT 
has not been addressed yet. A study by Markley and Sadelain 
showed that forced expression of IL-7 and IL-21 by CD8+ T cells 
resulted in improved rejection of systemic lymphoma compared 
to T cells that overexpressed IL-2 or IL-15 (99). However, in these 
experiments, vaccination was not provided post-transfer, which 
may have resulted in improved expansion of the transferred  
IL-2+ cells.

Anti-tumor efficacy of some cytokines that do not belong to 
the γc cytokine family has been explored as well. In preclinical 
models, administration of IL-12 caused tumor regression and 
promoted survival of tumor-bearing animals. This provided the 
rationale for applying IL-12 treatment in a clinical setting, how-
ever, translation into the clinic was hindered by severe toxicity 
(208, 209). To be able to explore IL-12 as a treatment modality, 
multiple attempts have been made to design a safe IL-12-based 
treatment, including different administration schedules and 
routes and intratumoral delivery (210). Several reports explored 
the therapeutic efficacy of tumor-specific T cells designed to 
express IL-12. In experimental settings, T cells modified to 
produce IL-12 improved tumor eradication (19, 101, 211–213). 
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Promising results were obtained using IL-12 gene transduced 
human TILs. Here, different doses of IL-12-producing TILs 
were infused into metastatic melanoma patients and higher 
doses resulted in better clinical responses (214). Nevertheless, 
IL-12 transduced TILs did not persist for more than a month. 
In addition, higher cell doses led to severe adverse side effects 
attributable to the secreted IL-12 (214). The lack of persistence of 
the transferred T cells that is observed might be due to a negative 
feedback loop that involves IL-10 production to limit ongoing 
T cell activation (215). So far, these reports suggest that ACT 
with IL-12-producing T cells has potential but improving the 
longevity of the cells and measures to prevent IL-12-mediated 
toxicity are vital for further application.

IFN-α is known for its direct anti-tumor effect and is currently 
a frequently used cytokine for the treatment of cancer. It has also 
been recognized that IFN-α promotes T cell activation, survival, 
expansion, and memory formation through activation and differ-
entiation of DCs (216). The mechanism by which IFN-α mediates 
memory formation is suggested to be mediated by enhancement 
of IL-15 presentation of DCs to T cells (217). Moreover, IFN-α can 
also affect T cell expansion directly. This so-called signal 3 further 
amplifies the signals T cells receive via the TCR (signal 1) and 
costimulatory receptors (signal 2) (218–220). However, due to 
severe adverse events caused by IFN-α administration, treatment 
is discontinued in up to 50% of the cases. Frequently observed 
symptoms of IFN-α-related toxicities include “flulike” symptoms, 
fatique, anorexia, and nausea (18, 221). To improve tolerability of 
IFN-α treatment, a polyethylene glycol (peg) moiety was added, 
resulting in a longer half-life. This allowed for less-frequent 
administration and, hence, less toxicity. Accordingly, discontinu-
ation rates of IFN-α treatment were lower when a pegylated form 
was used (up to ~25%). To further enhance the anti-tumor effect 
of cytokines in ACT, blocking antibodies to inhibitory receptors 
can be co-administered, e.g., IL-21 and CTLA-4 (222).

Overall, we conclude that although combining ACT with 
cytokine treatment seems a promising approach, as hold true for 
treatments that trigger costimulatory pathways, great care must 
be taken in applying cytokine therapy. The immune effects are not 
solely confined to the infused T cells and affect many other cells, 
frequently leading to severe systemic toxicities.

vACCiNATiON PROviDeD POST 
TRANSFeR

Therapeutic cancer vaccines have the potential to mediate clinical 
benefit, even as a monotherapy, providing the rational to con-
sider it as an approach to improve ACT (223). Preclinical tumor 
models provided the insight that vaccination can improve ACT 
and strategies that have been used to aid anti-tumor efficacy in 
ACT include vaccination with viruses encoding tumor antigens, 
long peptides, peptide-pulsed DCs, and DNA vaccination 
(224–229). Vaccination predominantly seems to improve anti-
tumor responses by enhancing tumor infiltration, persistence, 
and IFN-γ production of adoptively transferred T cells. Also in 
clinical trials, the potential of vaccination to enhance ACT has 
been explored, but thus far clinical success is marginal (230–233). 
An encouraging approach by Rapoport and colleagues showed 

that in the setting of autologous HSC transplantation for multiple 
myeloma pre-transplant vaccination, adoptive transfer of in vivo 
vaccine-primed T cells and subsequent vaccinations led to signifi-
cant improvement of immunity in patients that would otherwise 
suffer from severe immunodeficiency due to high-dose chemo-
therapy (233). Since then, similar strategies have been applied 
in anti-cancer treatment in patients; autologous vaccine-primed 
lymphocytes were expanded ex vivo and adoptively transferred 
accompanied by vaccinations. Using this strategy, promising 
results have been obtained with respect to enhancement of the 
tumor-specific T cell response, but clinical activity remains to 
be further validated (234–237). More recently, two preclinical 
reports showed enhancement of CAR T cell-mediated anti-tumor 
responses by vaccination. Both studies were conducted using 
bispecific T cells targeting CMV and CD19, and vaccination 
consisted of the CMV peptide pp65 presented by either T cells or 
CD40L and OX40L expressing K562 cells (238, 239). Compared 
to mice receiving vaccination with an irrelevant peptide, control 
of tumor cell growth was improved and this coincided with 
increased frequencies of CAR–CMV–CTLs, suggesting that 
CMVpp65 stimulation expanded the bispecific T cells efficiently.

Thus vaccination as a modality to enhance ACT has so far not 
been explored in great detail and clinical trials using this approach 
have so far not yielded outstanding results. One of the reasons for 
this might be that the responsiveness of the adoptively transferred 
T cells to the vaccine is poor. As aforementioned pointed out, 
vaccination may be best suitable for less-differentiated T cells 
producing IL-2. Another possible explanation is that the immu-
nosuppressive tumor environment is hampering T cell activation 
(240). Strategies to improve vaccination in the context of ACT 
include combination with peritumoral administration of TLR 
ligands and TLR-based adjuvants (226, 241).

Additional of great importance is the antigen that is used for 
vaccination. Often TAAs are used for vaccination. The advan-
tage of this approach is that it is broadly applicable as it allows 
treatment of most patients with a certain tumor type. However, 
the specific T cell response toward the TAA can be blunted by 
central tolerance mechanisms. By contrast, T cells reacting to 
neoantigens expressed by tumors are not centrally tolerized (240). 
However, these antigens harbor unique mutations in a patient 
and, thus, targeting these antigens would require the production 
of personalized vaccines. This is a topic of intense interest and 
future studies should resolve the feasibility of such approaches.

Taken together, it is clear that strategies to improve ACT by 
vaccination need to be optimized and it seems that vaccination 
as a single modality to enhance this treatment is not sufficient.

CONCLUDiNG ReMARKS

Currently multiple clinically approved immunostimulatory 
antibodies and cytokines are available that target a multitude of 
receptors expressed by T cells (Figure 1). It is expected that the 
agents targeting these receptors as well as the number of receptors 
that are targeted will increase in the coming years. The anti-tumor 
activity and persistence of infused T cells is highly dependent on 
the costimulatory pathways that are triggered after T cell transfer 
and on the expressed cytokine receptors. Unfortunately, the 
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question as to which of the many T cell-stimulating pathways 
need to be activated during ACT to attain T cells that exert a 
superior anti-tumor effect and are able to persist long-term 
has no unanimous answer. Ex vivo culture methods should be 
designed in such way that the expression of the appropriate recep-
tors on particular T cell subsets is induced, and this holds true for 
(autocrine) cytokine production as well. To predict the expres-
sion pattern, a detailed understanding of the regulation of these 
receptors is essential. Once this question has been addressed, the 
next challenge would be to make sure that the transferred T cells 
remain functional longitudinally, which involves likely a certain 
degree of heterogeneity of T cell subsets expressing various 
costimulatory and cytokine receptors.

Moreover, it is important to keep in mind that the effect 
of delivery of antibodies or cytokines to patients in order to 
improve survival, accumulation, and anti-tumor efficacy of 
the transferred T cells is not confined to the transferred T cells 
alone, but can affect also host cells bearing the appropriate 
receptor, potentially resulting in severe toxicity. Due to these 
toxicity issues, the overall results of using cytokines and ago-
nistic antibodies against immune costimulators may have been 

modest with respect to the anti-tumor activities in clinical trials. 
It is conceivable that also by enhancing the quality of engineered 
T cells (including CAR T cells), which generally already recog-
nize their targets with good affinity, the provision of (additional) 
costimulation or cytokines might potentiate cross-reactivity or 
toxicity. An approach to circumvent treatment-related adverse 
effects includes local administration or specific targeting to the 
tumor site (152, 226, 242). Furthermore, combinations of treat-
ment modalities are likely to reduce the dose that is required 
for clinical responses and this might avoid severe adverse 
effects. On the other hand, certain combinations, even at lower 
concentrations might result in unexpected toxicity. In addition 
to strategies to enhance ACT that have been discussed in this 
review, i.e., by providing costimulation, blocking inhibitory 
molecules, cytokines, and/or vaccination, the T cell quality 
can be further enhanced by changing the tumor microenvi-
ronment to induce a more favorable milieu for T cells. Those 
strategies, which are beyond the scope of this review to be 
discussed in detail, include therapies counteracting myeloid-
derived suppressor cells (MDSCs), neutralization of tumor 
acidity, chemotherapy, inhibition of IDO, and treatment with 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

Redeker and Arens Improving Adoptive Cellular Therapy

Frontiers in Immunology | www.frontiersin.org September 2016 | Volume 7 | Article 345

antibodies against immune suppressive cytokines (243–248). 
Finally, as discussed vaccination provided post transfer as an 
approach to enhance the efficiency of ACT is promising, yet 
such a combined treatment requires substantial effort to make 
it clinically successful.

Taken together, ACT holds its promise as an effective anti-
cancer treatment but improvement is required. Concluding from 
the aforementioned discussion, the inclusion of T cell costimula-
tion and cytokines should be an integral part for optimization of 
ACT protocols. In addition, combinations with other immune 
therapies, such as vaccination are expected to further improve the 
clinical success rates of ACT.
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