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Human NK cells are distinguished into CD56brightCD16− cells and CD56dimCD16+ cells. 
These two subsets are conventionally associated with differential functional outcomes 
and are heterogeneous with respect to the expression of KIR and CD94/NKG2 het-
erodimers that represent the two major types of HLA-class I-specific receptors. Recent 
studies indicated that immature CD56bright NK cells, homogeneously expressing the 
inhibitory CD94/NKG2A receptor, are precursors of CD56dim NK cells that, in turn, during 
their process of differentiation, lose expression of CD94/NKG2A and subsequentially 
acquire inhibitory KIRs and LIR-1. The terminally differentiated phenotype of CD56dim 
cells is marked by the expression of the CD57 molecule that is associated with poor 
responsiveness to cytokine stimulation, but retained cytolytic capacity. Remarkably, this 
NKG2A−KIR+LIR-1+CD57+CD56dim NK cell subset when derived from individuals pre-
viously exposed to pathogens, such as human cytomegalovirus (HCMV), may contain 
“memory-like” NK cells. These cells are generally characterized by an upregulation of 
the activating receptor CD94/NKG2C and a downregulation of the inhibitory receptor 
Siglec-7. The “memory-like” NK cells are persistent over time and display some hall-
marks of adaptive immunity, i.e., clonal expansion, more effective antitumor and antiviral 
immune responses, longevity, as well as given epigenetic modifications. Interestingly, 
unknown cofactors associated with HCMV infection may induce the onset of a recently 
identified fully mature NK cell subset, characterized by marked downregulation of the 
activating receptors NKp30 and NKp46 and by the unexpected expression of the inhibi-
tory PD-1 receptor. This phenotype correlates with an impaired antitumor NK cell activity 
that can be partially restored by antibody-mediated disruption of PD-1/PD-L interaction.
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inTRODUCTiOn

In physiological conditions, human peripheral blood NK cells include different cell subsets corre-
sponding to different stages of NK cell differentiation. These subsets are characterized by the different 
expression of some receptors and distinct functional capabilities (1, 2).

The two major peripheral blood NK cell subsets are distinguished on the basis of their relative 
surface expression of CD56 molecule. In particular, CD56bright NK cells (around 10% of peripheral 
blood NK cells) are CD16 (Fcgamma RIIII)dim/negative, CD117/c-kitpositive and express the high affinity 
IL-2Rα chain (CD25), whereas CD56dim NK cells (around 90%) are CD16bright and express only the 
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intermediate affinity IL-2Rβ and γ chains (CD122/132) (3). In 
addition, CD56bright NK cells are characterized by higher IL18Rα 
surface expression than CD56dim subset (4). The same NK cell 
subsets are also characterized by distinct homing properties 
due to the different surface expression of chemokine receptors: 
CD56dim NK cells, expressing CXCR1, CX3CR1, and ChemR23, 
preferentially migrate to inflamed peripheral tissues (5, 6), 
whereas CD56bright NK cells, thanks to their CCR7 and CD62L 
expression, preferentially migrate to secondary lymphoid organs 
(SLOs) (6). Interestingly, recent data indicate that, in some cases, 
the CD56dim subset may also de novo express CCR7 and migrate 
toward SLOs (7–9).

Differently from CD56dim NK cells, CD56bright NK cells are char-
acterized by low expression of lytic granules and by production of 
high amounts of cytokines, such as IFN-γ, TNF-α, and GM-CSF 
(10, 11). Thus, CD56bright NK cells have been usually considered 
as “regulatory NK cells” and CD56dim NK cells as “cytotoxic NK 
cells” (notably CD56dim NK cells can also release large amounts 
of cytokines but only upon receptor-mediated triggering) (12).

These two NK cell subsets also differ in terms of surface 
expression of HLA-I-specific receptors. Indeed, CD56bright NK 
cells express only CD94/NKG2A, whereas CD56dim NK cells may 
also express KIRs, and/or LIR-1 (13, 14). Since inhibitory and 
activating receptors can be distinguished within the KIR family 
(15), two broad groups of KIR haplotypes have been identified on 
the basis of gene content. A haplotypes express only one activat-
ing KIR whereas B haplotypes up to five (16). Also CD94/NKG2A 
has an activating counterpart represented by CD94/NKG2C (17).

In this context, several studies indicated that CD56dim KIR+ 
NK cells derive from CD56bright KIR− NKG2A+ NK cells and that 
late stages of NK cells maturation are associated with the expres-
sion of CD57. This molecule is expressed on a fraction of CD56dim 
NK cells and is believed to mark a subpopulation of terminally 
differentiated NK cells that are mainly characterized by the KIR+, 
LIR-1+, and CD94/NKG2A− phenotype (18, 19).

In addition to CD56bright and CD56dim NK cell subsets, low 
frequencies of CD56neg CD16bright NK cells are also detected in 
healthy donors. In patients with chronic viral infections, this 
CD56neg NK cell subset expands and a pathological redistribu-
tion of the various NK cell subsets occurs. Indeed increments in 
the percent of CD56neg NK cells have been reported in several 
pathological conditions, including hepatitis C virus (HCV) (20, 
21), human cytomegalovirus (HCMV) (22), hantavirus infections 
(23), and autoimmune disorders (24–26).

The fact that the CD56dim NK cell subset is often heterogene-
ous in terms of expression levels of natural cytotoxicity receptors 
(NCRs: NKp46, NKp30, and NKp44) (27) led to the distinction of 
two additional NK cell subsets termed NCRdull and NCRbright (28). 
The demonstration that the NCR surface density correlates with 
the magnitude of the NK-mediated natural cytotoxicity provided 
a rational explanation for the clonal heterogeneity of NK cells in 
killing autologous or allogeneic NK-susceptible targets.

In this context, it is important to consider that, in healthy 
donors, most CD56dim KIR+NKG2A−CD57+ NK cells are char-
acterized by a lower surface expression of NCRs (18, 19). On 
the other hand, CD56bright NK cells are characterized by higher 
NKp46 surface expression as compared to CD56dim NK cells.

Finally, despite the fact that NK cells have always been con-
sidered members of the innate immune system, new increasing 
evidences suggest that NK cells can display some features that 
are usually attributed to adaptive immune cells, such as expan-
sion and contraction of subsets, increased longevity, and a more 
potent response upon secondary challenge with the same antigen 
(memory-like properties) (29).

MeMORY-LiKe nK CeLL SUBSeTS 
eMeRGinG UPOn HCMv inFeCTiOn

In the last years, it has been observed how HCMV infection 
can shape the NK cell receptor repertoire inducing the expan-
sion of a specific NK cell population expressing the activating 
receptor CD94/NKG2C (30, 31) and the marker of terminal 
differentiation CD57 (32). This HCMV-induced NKG2C+CD57+ 
NK cell subset displays a highly differentiated surface phenotype, 
CD56dimCD16brightLIR-1+KIR+NKG2A−, and is characterized by 
the expression of self KIRs (33). More recently, it has been pro-
posed that, upon HCMV infection, NK cells might acquire some 
hallmarks of adaptive immunity, i.e., clonal expansion, enhanced 
effector function, longevity, as well as given epigenetic modifica-
tions (34–36). Indeed, in HCMV seropositive healthy individuals 
(HD), the memory-like NKG2C+CD57+NK cell subset is charac-
terized by an epigenetic remodeling at the IFN-γ locus similar to 
that found in memory T cells, which is likely responsible for the 
enhanced IFN-γ production upon target recognition observed 
in NKG2C+ NK cells (37). Interestingly, the HCMV-induced 
NKG2C+ subset is also characterized by a decreased expression 
of certain signaling molecules, i.e., the adaptor protein FcεRγ and 
the tyrosine kinase Syk, and by lower expression levels of the tran-
scription factor PLZF, which is involved in regulating epigenetic 
modifications (e.g., DNA methylation) (34, 35). While the higher 
accessibility of the IFN-γ locus can enhance IFN-γ production 
upon target recognition, the lack of FcεRγ could favor a more 
efficient killing via ADCC of opsonized HCMV-infected targets 
by memory-like NKG2C+ NK cells as compared to conventional 
NK cells (Figure 1). Indeed, in the absence of FcεRγ that only 
bears one immunoreceptor tyrosine-based activatory motif 
(ITAM) sequence, CD16 engagement would involve exclusively 
the adaptor protein CD3ζ, which contains three ITAMs, possibly 
delivering a stronger signal inside the cell (38, 39). Along this line, 
a crucial role for CD16 engagement by anti-HCMV antibodies 
has been proposed not only in promoting ADCC and cytokine 
release by NKG2C+ NK cells but also in favoring their preferential 
expansion (34, 35, 40). Moreover, the effector function trig-
gered by CD16 engagement in adaptive NKG2C+ NK cells (i.e., 
degranulation and cytokine release) can be enhanced by CD2 
costimulation, suggesting a synergy between these receptors in 
regulating anti-HCMV responses (39).

However, although new insights on memory-like (or adap-
tive) NK cells are continuously collected, the signals responsible 
for the described epigenetic modifications and protein expres-
sion alterations as well as the exact mechanisms regulating the 
generation of memory-like NKG2C+ NK cells are not completely 
understood.
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FiGURe 1 | nK cells differentiate starting from CD34+ bone marrow precursors into CD56bright (CD94/nKG2A+KiR−) and then to CD56dim cells. CD56dim 
NK cells, in turn, continue to differentiate throughout their life-span, acquiring novel functional and phenotypic properties. During this process, they lose expression 
of CD94/NKG2A, sequentially acquire inhibitory KIRs and, at the final step, CD57. This molecule appear to define a subpopulation of highly differentiated NK cells 
(classical fully mature NK cells), characterized by the KIR+LIR-1+NKG2A−NCR+/− phenotype. Functionally, these cells display natural cytolytic activity and ADCC 
against tumor targets, but poor responsiveness to cytokine stimulation. After HCMV infection/reactivation, increased proportions of a subset of terminally 
differentiated CD57+ NK cells, characterized by high expression of NKG2C and downregulation of Siglec-7 receptors are induced (the so-called memory-like NK 
cells). These cells display increased functional capability in terms of ADCC and IFN-γ production/killing in response to HLA-E+ and opsonized HCMV-infected targets 
but decreased function after cytokine stimulation. Following HCMV infections accompanied by other cofactors (infections?), an additional type of CD57+ NK cell 
subset can be generated. This subset is characterized by the expression of the inhibitory PD-1 receptor (not necessary co-expressed with NKG2C) and a very low 
expression of the NCRs, NKp30 and NKp46. These cells, called PD-1+ NK cells, are characterized by compromised effector functions against tumor cells 
expressing ligands for PD-1 as well as against tumors primarily killed on NCRs/NCR-ligands interactions.
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The studies carried out in immunocompromised individuals 
undergoing hematopoietic stem cell transplantation (HSCT), 
where HCMV infection exerts the strongest effect on NK cells 
skewing, could help clarifying these aspects. The first observations 
reported that, in adult UCBT recipients, a rapid accumulation 
of mature CD56dim KIR+NKG2A−NKG2C+ NK cells occurred 
following HCMV infection (22, 41). This accelerated maturation 
was usually accompanied by the downregulation of the inhibitory 
receptor Siglec-7, which, thus, represents a typical hallmark of the 
anti-HCMV response in NK cells, along with the expansion of 
cells expressing NKG2C. Notably, in uninfected UCBT recipients, 
NK cells were characterized by a more immature phenotype 
(high frequencies of CD56bright NK cells and NKG2A+CD56dim 

NK cells) even at late time points after UCBT. Remarkably, in 
some HCMV-infected UCBT recipients, a subset of hyporespon-
sive CD56−CD16bright NK cells displaying a mature phenotype 
was also observed which likely reflected a condition of severely 
impaired T cell immunity (22, 42). More recently, a remarkable 
acceleration of NK cell maturation was described also in pediatric 
patients receiving a type of allograft different from UCBT, i.e., 
a HLA-haploidentical HSCT, depleted of both α/β+ T cells and 
B cells and containing variable numbers of donor-derived NK 
cells and γ/δ+ T cells (43). In most recipients, HCMV reactiva-
tion favored the preferential expansion of highly differentiated 
NKG2C+CD57+selfKIR+NKG2A−Siglec-7−NCRlowIL18Rαlow 
NK cells and their persistence over time. These cells could kill 
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certain tumor targets, release IFN-γ, display efficient reverse 
ADCC, and could recognize HLA-E+ targets through NKG2C 
(putative receptor for HCMV). On the other hand, they showed 
an impaired ability to release IFN-γ upon IL-12+IL-18 exposure. 
The particular signature shown by these HCMV-induced NK 
cells may suggest their skewing toward an adaptive condition 
specialized in controlling HCMV (43). The NKG2C+CD57+ 
memory-like NK cell subset could also contribute to protect 
against leukemia relapse (44). Interestingly, an expansion of 
memory-like NKG2C+CD57+ NK cells could be observed also in 
some recipients who did not reactivate HCMV and who received 
grafts containing high numbers of mature NK cells derived from 
a HCMV+ donor. Thus, donor-derived transplanted NK cells, 
primed by a previous encounter with HCMV in the donor, could 
have persisted and proliferated in the recipient in response to a 
subclinical reactivation, favoring antiviral responses (43, 45).

Notably HCMV-induced memory NK cell subsets could be 
represented not only by the described NKG2C+CD57+ popula-
tion but also by NKG2C− NK cell subsets, expressing activating 
receptors different from NKG2C, such as activating KIRs, or 
other still undefined activating receptors (33, 39, 46, 47).

Thus, in the HSCT setting, HCMV clearly reveals as a key 
driving force regulating the differentiation of functionally and 
phenotypically skewed NK cell subsets characterized by memory-
like properties.

HUMAn ReSTinG nK CeLLS CAn 
eXPReSS HiGH LeveLS OF PD-1 
ReCePTOR

NK cells are believed to play a critical role in the recognition 
and eradication of tumors by using different killing strategies; 
however, tumor cells often develop immunosuppressive mecha-
nisms to avoid NK cell-mediated killing, allowing for tumor 
escape (48, 49).

An improved understanding of the molecular mechanisms 
involved in tumor recognition and eradication has led to the 
identification of checkpoint signaling pathways involved in limit-
ing the anticancer immune response.

One of the most critical checkpoint pathways responsible 
for mediating tumor-induced immune suppression is the 
programmed death-1 (PD-1) pathway. This receptor, by modu-
lating the duration and the amplitude of physiological immune 
responses, is capable of promoting tolerance and preventing 
tissue damage in settings of chronic inflammation, as well as 
autoimmune pathologies (48, 49). The induction of the PD-1-
dependent inhibitory pathway is mediated by the interaction of 
this receptor with its ligands, PD-L1 and PD-L2 (50).

The constitutive or inducible expression of the PD-1 receptor 
has been described on both adaptive and innate immune cells, 
including T, B, and dendritic cells.

In T cells, binding of PD-1 to its ligands inhibits T cell activa-
tion, proliferation, and cytokine production and eventually may 
result in T lymphocyte exhaustion. Thus, tumors and viruses, by 
expressing PD-1 ligands, have evolved a remarkable mechanism 

to hijack the PD-1-dependent regulatory mechanism to avoid T 
cell-mediated surveillance of cancer or infected cells. Remarkably, 
however, mAb-mediated blockade of PD-1/PD-L interactions, 
by disrupting the immune checkpoint-based inhibitory path-
way, provides an important opportunity to enhance antitumor 
immunity particularly in the case of tumor antigen-specific T 
cells (51, 52).

Similar to T cells, NK cells express surface inhibitory receptors 
that can be targeted in checkpoint blockade strategies, including 
the HLA-class I-specific KIR family and CD94/NKG2A heterodi-
mer. Blocking KIR/NKG2A–HLA-class I interactions resulted in 
potent NK cell-mediated antitumor efficacy (53). Phase I/II trials 
testing human anti-KIR and anti-NKG2A antibody are ongo-
ing (54–57). Regarding PD-1, the antitumor effect of specific 
antibodies has been always considered to depend mainly on the 
rescue effect on activated PD-1+ tumor-specific T cells recruited 
in the tumor environment (58). On the contrary, very little was 
known on the activated PD-1+ NK cells expansions that had been 
seldom reported in patients with certain tumors or chronic viral 
infections (59–63). In fact, a precise information on the actual 
function of these cells was not possible due to the low levels of 
PD-1 expression and the consequent difficulty in distinguishing 
positive from negative NK cells.

More insights on the expression and function of PD-1 on NK 
cells could be recently obtained thanks to the demonstration that 
the PD-1 receptor is brightly expressed on a discrete cell subset of 
peripheral blood NK cells from one-fourth of otherwise healthy 
individuals (64).

PD-1+ cells are confined to CD56dim NK cells, and (if pre-
sent) on CD56neg NK cells, whereas the CD56bright cell subset is 
consistently PD-1−. In addition, a remarkable difference exists 
among donors regarding the size of the PD-1+ NK cell subset. 
Importantly, the analysis at different time points of the size of 
PD-1+ cell subset in given individuals indicated that this popula-
tion remains substantially stable over time (64).

The fact that only some of the individuals analyzed are charac-
terized by a PD-1+ NK cell subset may be the result of given acute 
or chronic infection affecting only part of the population (an 
increase in PD-1+ lymphocytes has been associated with HCV, 
HBV, and HIV) (63, 65–68).

Interestingly, our analysis indicates that a direct correlation 
between HCMV infection and presence of a PD-1+ NK cell subset 
in the healthy donors analyzed could be established. In particular, 
we found that PD-1+ individuals are in all instances seropositive 
for HCMV and display higher frequencies of NKG2C+ and 
Siglec-7− NK cells.

By comparing the PD-1+ and PD-1− NK cell subsets derived 
from seropositive PD-1+ HD, it was possible to show that the 
PD-1+ subset is confined to cells displaying the phenotypic 
features of fully mature NK cells, characterized homogeneously 
by the CD56dim KIR+LIR-1+NKG2A−CD57+ phenotype (22, 30). 
Moreover, only a minor fraction of these cells expressed Siglec-7, 
whereas, unexpectedly, NKG2C was not necessarily co-expressed 
with PD-1 receptor. These data could indicate that, in addition 
to HCMV, additional factors (infections?) may contribute to the 
induction of PD-1 expression (64).
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Further phenotypic characterization indicates that the PD-1+ 
NK cell subset, when compared with PD-1− NK cells, has lower 
expression of NCRs (NKp46 and NKp30). In addition, the com-
parison between PD-1+ and PD-1− NK cells that are contained 
within the highly differentiated KIR+NKG2A−CD57+ subset 
showed that the expression of NCRs is maximally reduced in the 
PD-1+ subset (Figure 1).

Functional analysis of PD-1+ NK cells indicated that they 
display a low cytolytic activity and impaired degranulation 
against tumor targets, even when these cells lack PD-L1/PD-L2 
expression (i.e., K562). The impaired degranulation in response 
to PD-Lneg tumor target cells may be a consequence of the defec-
tive expression of NCRs, since these target cells may express a 
series of ligands for activating NK receptors, such as B7-H6 (69, 
70). Remarkably, the reduced degranulation of PD-1+ cells fol-
lowing interaction with tumor targets expressing PD-1 ligands 
is reflecting not only the poor NCR-mediated cell activation but 
also the inhibitory signal mediated by PD-1 upon interaction 
with PD-L1/PD-L2 expressed on tumor targets. In this context, it 
is of note that the inhibition of NK cell degranulation induced by 
PD-1/PD-L interaction on tumor cells could be partially reverted 
by mAbs specific for PD-L1/PD-L2 (64).

PD-1+ NK cells also display an altered capability of releasing 
IFN-γ and TNF-α cytokines after stimulation with the same 
tumor targets used in degranulation assays. Finally, in line with 
previous data on classical CD57+ NK cells, PD-1+ NK cells appear 
to represent a population of poorly proliferating cells, rescued to 
divide only in the presence of high concentrations of microen-
vironmental cytokines. This suggests that PD-1+ NK cells, like 
CD57+CD8+ T cells, have a proliferation defect in vitro (e.g., lower 
expression of IL-2Rβ).

Remarkably, PD-1+ NK cells are present in higher proportions 
in the ascites of ovarian-carcinoma patients (71), suggesting their 
possible induction/enrichment in tumor microenvironment. 
Also, in this case, the PD-1+ NK cell subset of these patients 
displayed a functional defect against PD-L1/PD-L2+ tumor tar-
gets. However, disruption of PD-1 receptor/ligands interaction 
by specific anti-PD-L mAbs restored degranulation against these 
tumor target cells.

In conclusion, these findings support the notion that PD-1 
signaling may inhibit/block not only T lymphocytes-mediated 
adaptive responses but also NK cell-mediated innate responses 
(58, 72).

Therefore, it cannot be excluded that PD-1 may represent an 
inhibitory checkpoint expressed on NK cells in various cancers 
of different histotype and that this inhibitory receptor may be 
involved in the impaired antitumor NK cell responses by these 
patients.

In this context, it should be stressed/emphasized that, while, in 
conventional NK cells, the effector function against tumors is pri-
marily regulated by the interactions between HLA-class I-specific 
inhibitory receptors (KIR and CD94/NKG2A) and HLA-class 
I molecules, in the case of PD-1+ NK cells, the simultaneous 
expression of PD-1 together with given inhibitory HLA-specific 
receptors may provide an additional level of suppression of NK 
cell-mediated antitumor responses. In this case, downregulation 

of HLA-class I molecules on tumor cells may not be sufficient 
to induce efficient NK cell responses. These, however, could be 
restored, at least in part, by mAb-mediated disruption of PD-1/
PD-L interaction. On the other hand, in case of PD-L+ tumors 
that do not downregulate HLA-class I molecules, it may be neces-
sary the combined blocking of different inhibitory checkpoints by 
anti-KIRs and anti-PD-1 mAbs.

COnCLUSiOn

In conclusion, recent studies led to the identifications of novel 
unexpected properties of NK cells, including the generation of 
fully mature NK cells displaying some functional characteristics 
that are reminiscent of cells of adaptive immunity. These cells 
are generally considered “memory-like” and are characterized 
by the expression of given set of inhibitory checkpoints mainly 
represented by different KIRs and LIR-1. Memory-like NK cells 
that have been originally identified in HCMV+ individuals are 
characterized by functional enhancement in terms of ADCC and 
IFN-γ production, features linked to changes in the expression of 
multiple intracellular proteins and transcription factors. On the 
other hand, these “adaptive” NK cells respond weakly to certain 
tumors (due to the reduced expression of NKp46 and NKp30) 
and cytokine receptor-based activation compared to classical 
fully mature NK cells. Recently, a further novel NK cell subset 
has been identified in HCMV+ individuals. This subpopulation, 
called “PD-1+ NK cells,” is mainly composed by fully mature NK 
cells and displays strongly reduced capacity to kill PD-L+ tumor 
cells, due to the expression on their surface of high levels of the 
inhibitory checkpoint PD-1 and of very low levels of NCRs. Due 
to its ineffective antitumor functions, it would be important 
to better evaluate the conditions that lead to the generation of 
this subset and to understand its role in health and disease, in 
particular in patients with advanced cancers.

In this context, drugs blocking PD-1 and its major ligand 
PD-L1 have shown great promise in treating many different can-
cer types. However, the focus is currently only on T cell responses. 
The fact that a fraction of NK cells express PD-1 can open pros-
pects for extending the potential of cancer immunotherapy to this 
important innate effector cells.

Innovative treatment could be designed to combine innate 
immune activation with activation of the adaptive immune 
system (73).
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