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Neutrophils are motile and responsive to tissue injury and infection. As neutrophils 
emigrate from the bloodstream and migrate toward a site of affliction, they encoun-
ter the tissue extracellular matrix (ECM) and thereby engage integrins. Our laboratory 
studies the neutrophilic response to the fungal pathogen Candida albicans either in the 
filamentous state of the microbe or to the purified pathogen-associated molecular pat-
tern, β-glucan. We have gained an appreciation for the role of integrins in regulating the 
neutrophil anti-Candida response and how the presence or absence of ECM can drive 
experimental outcome. The β2 integrin CR3 (complement receptor 3; αMβ2; Mac-1; 
CD11b/CD18) plays an important role in fungal recognition by its ability to bind β-glucan 
at a unique lectin-like domain. The presence of ECM differentially regulates essential 
neutrophil anti-fungal functions, including chemotaxis, respiratory burst, homotypic 
aggregation, and the release of neutrophil extracellular traps (NETs). We have shown that 
NET release to C. albicans hyphae or immobilized β-glucan occurs rapidly and without 
the requirement for respiratory burst on ECM. This is in contrast to the more frequently 
reported mechanisms of NETosis to other pathogens without the context of ECM, which 
occur after a prolonged lag period and require respiratory burst. As expected for an 
ECM-dependent phenotype, NETosis and other neutrophil functions are dependent 
on specific integrins. The focus of this review is the role of ECM ligation by neutrophil 
integrins as it pertains to host defense functions with an emphasis on lessons we have 
learned studying the anti-Candida response of human neutrophils.
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PRevALenCe AnD RiSK FACTORS FOR CAnDiDiASiS

Candida albicans exists as normal flora of the skin and GI tract but can become a serious and life-
threatening infection. Candidiasis can present either locally as mucocutaneous infection or as the 
more severe invasive form of the disease. Predisposing factors lending to loss of host control of the 
colonized organism are likely to be a combination of host as well as microbial factors (1). Invasive 
candidiasis continues to be a significant medical problem and Candida ranks as the fourth leading 
pathogen in causing nosocomial infection with mortality up to 40% in spite of available anti-fungal 

Abbreviations: CARD9, caspase recruitment domain-containing protein 9; CR3, complement receptor 3; ECM, extracellular 
matrix; LAD, leukocyte adhesion deficiency; NETs, neutrophil extracellular traps; PAD4, peptidyl arginine deiminase type IV; 
PAMP, pathogen-associated molecular pattern; PRR, pattern recognition receptor; ROS, reactive oxygen species.
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therapy (2). Infection can take place in any bodily organ and 
systemic infection can involve coincident infection of multiple 
organs, as well as the blood.

Clinical risk factors for acquisition of Candida infection 
include neutropenia or a neutrophil defect whether heritable or 
epigenetic, systemic antibiotic usage, central venous catheter, 
mucosal damage, and prolonged stay in the ICU even in the pres-
ence of surfeit neutrophils (3, 4). Candida infection is remarkably 
high in non-trauma emergency surgical patients with a prolonged 
ICU stay, reaching a rate of 21.7/100 discharges, higher than other 
established high-risk populations (5, 6).

FUnGAL ReCOGniTiOn

Candida albicans is a polymorphic fungal pathogen that can 
grow as yeast, pseudohyphae, and true hyphae and the ability to 
switch between phenotypic states is an essential virulence factor 
complicating immune detection (7–9). Neutrophils respond to 
infectious fungi in a variety of ways, including phagocytosis, 
production of reactive oxygen species (ROS), degranulation, 
recruitment of other leukocytes, and the more recently rec-
ognized release of neutrophil extracellular traps (NETs). In its 
budding yeast form, C. albicans is small enough for neutrophils 
to phagocytose. This response involves uptake of microbes into 
the phagosome, where fusion of cytotoxic granules and oxidative 
products facilitate microbial killing (10). The invasive filamen-
tous forms of C. albicans are too large to be engulfed, necessitating 
other cellular strategies for anti-fungal response and clearance 
(11–16). The recently described process of NETosis, where NETs 
consisting primarily of DNA studded with histones and compo-
nents of cytotoxic granules are extruded into the extracellular 
space, accomplishes the dual functions of both immobilizing and 
killing harmful microbes where phagocytosis is not feasible (17).

Innate immune cells recognize C. albicans by binding to 
molecules present in the fungal cell wall. β-glucans are a class of 
long-chain polymers of glucose in β-(1,3) (1,6)-linkages that are 
conserved in microbial structures but not found in mammalian 
cells and, thus, are considered a pathogen-associated molecular 
pattern (PAMP) (11, 18, 19). Pattern recognition receptors (PRRs) 
on cells of the innate immune system discern PAMPs as being 
non-self and initiate antimicrobial host defense mechanisms 
through activation of intracellular signaling pathways. With 
regard to recognition of β-glucan, two receptors have received the 
most attention; the integrin CR3 and the C-type lectin Dectin-1 
that may exert non-overlapping roles in clinical and experimental 
host defense. To parse the relative roles of these receptors, one 
must take into account the species of the host and immune cell 
type being studied as the anti-fungal role of these receptors 
can differ between monocyte/macrophages and neutrophils. 
Differences may also lie in the specific immune function being 
assayed and the morphological form of the Candida.

Dectin-1 plays a key role in C. albicans control in mice such 
that mice defective in Dectin-1 are susceptible to fungal infec-
tions while CR3 knockout mice are more resistant to challenge 
with disseminated C. albicans, suggesting that CR3 has a non-
protective, or suppressive effect on murine host defense (20). In 
humans, Dectin-1 has been shown to be important in control 

of mucocutaneous but not systemic infection (21, 22). This was 
supported by a study of a family with a mutation of caspase 
recruitment domain-containing protein 9 (CARD9), a signal-
ing molecule downstream of Dectin-1 (23). In this family, the 
CARD9 defect presented as a predisposition to mucocutaneous 
candidiasis similar to the absence of Dectin-1, mediated by a 
cytokine production defect of monocytes and macrophages (21, 
23). Neutrophils from leukocyte adhesion deficiency (LAD) type 
1 patients that are devoid of CD11b/CD18 but which express 
Dectin-1 failed to internalize Saccharomyces cerevisiae or unopso-
nized zymosan demonstrating the primacy of CR3 in phagocyto-
sis of unicellular yeast and β-glucan-containing particles (24). In 
short, phagocytosis of unopsonized yeast or β-glucan-containing 
particles is primarily mediated by CR3 in human phagocytes and 
by Dectin-1 in murine cells (25). It is not clear why the genetic 
absence of CR3 has such different implications for anti-fungal 
immunity in mice and humans. This is often correlated with the 
notion that CR3 ligation by β-glucan particles fails to induce 
respiratory burst thereby limiting this host defense mechanism 
(26). However, we and others have shown that human neutrophils 
induce a CR3-dependent respiratory burst to fungal hyphae or 
immobilized purified β-glucan as a model of the response to non-
phagocytosable filaments (11, 12, 15). Given the multifaceted role 
of CR3 in immune response to a pathogen, it is difficult to ascribe 
a mechanism to the increased resistance in CR3 knockout mice.

With regard to recognition of non-phagocytosable fungal 
hyphae, our laboratory showed that antibody blockade of either 
fungal cell wall β-glucan or neutrophil CR3 was sufficient to obvi-
ate the respiratory burst of human neutrophils; antibody blockage 
of Dectin-1 had no effect (11, 13). In addition to the host defense 
mechanisms affected by CR3 and Dectin-1 individually, there is 
solid evidence for a crosstalk pathway connecting these PRRs. 
Li et  al. showed a mechanism dependent on the RhoGTPase 
exchange factor, Vav, through which binding of β-glucan to 
Dectin-1 resulted in CR3 activation in both murine and human 
cells (27). This highlights the potential complexity of working 
toward a more complete understanding of the differential nature 
of immune recognition of C. albicans hyphae and yeast forms. 
A significant step forward in this regard is found in a report by 
Lowman et al. (22) in which a novel cyclical, or “closed chain” 
structure of β-glucan was found in C. albicans hyphae but not in 
yeast. These authors purified β-glucan from C. albicans yeast and 
hyphae into water-insoluble microparticulate form and showed 
that the β-glucan extracted from hyphae, but not yeast, produced 
a potent IL-1 response by human monocytes and macrophages, 
which was Dectin-1-dependent. Whether monocyte Dectin-1 
can recognize cyclical hyphal β-glucan within the cell wall 
of the organism remains to be seen. Findings to date suggest 
that Dectin-1 recognition of Candida hyphae is limited to bud 
scars where β-glucan is particularly exposed, it does not appear 
to recognize β-glucan along hyphal filaments (28). Whether 
neutrophils exhibit differential responsiveness to these β-glucan 
isoforms has not yet been determined. Therefore, the differential 
responsiveness of innate immune cells to the yeast and hyphal 
forms of C. albicans may well be due to variance in the structure of 
the prominent fungal PAMP β-glucan. Work from our laboratory 
and others show that CR3 is most likely the prominent immune 
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receptor on human neutrophils and is able to detect β-glucan 
within fungal filaments (11, 13, 15, 29). As CR3 serves as both a 
PRR and an extracellular matrix (ECM)-binding integrin, it plays 
a critical role in integrating tissue environment and microbial 
recognition, driving neutrophil anti-fungal immunity.

ROLe OF inTeGRinS in AnTi-FUnGAL 
iMMUniTY

All cell–cell and cell–ECM adhesive events occur extracellularly 
but are translated into cellular responses by communication 
across the plasma membrane through the action of integrins 
(30). Integrins are essential for proper regulation of a number of 
fundamental physiological processes, including tissue morpho-
genesis, inflammation, immune responsiveness, wound healing, 
and regulation of cell growth and differentiation. All cells express 
a contingent of integrins and respond to integrin activation by 
cytoskeletal-dependent processes, such as shape change, adhe-
sion, spreading, migration, and/or phagocytosis (31). Among 24 
αβ heterodimers that have been reported in vertebrates, the β2 
family (αLβ2, αMβ2, αXβ2, and αDβ2) are specifically expressed 
on leukocytes (31). Leukocyte β2 integrins regulate many aspects 
of immune or inflammatory responses because, unlike cells that 
reside within solid tissues, circulating leukocytes by necessity 
relocate during the course of immune reactions. In so doing, they 
dynamically adhere and de-adhere to cells of the vasculature, to 
other immune cells, and to components of the ECM, in order 
to ultimately contact the foreign body or pathogen at the site of 
infection or injury. Evidence for the physiological significance 
of leukocyte integrins is highlighted by the recurrent, life-
threatening infectious episodes observed in LAD patients that 
are genetically deficient for expression of β2 integrins (32). In 
stark contrast to impaired host defense found in the absence of 
β2 integrins, sustained and improper activation of these integrins 
contributes to the pathogenesis of autoimmune diseases, chronic 
inflammatory disorders, and ischemic stroke (33).

Complement receptor 3 (CR3; αMβ2; CD11b/CD18; Mac-1) 
is a member of the β2 integrin family, yet it functions like no 
other integrin and, in some ways, like no other receptor yet 
described in nature. In general, receptors can be defined as having 
a canonical ligand that binds with characteristic affinity to a single 
binding site which, in turn, leads to a characteristic intracellular 
response. In stark contrast, CR3 has two spatially distinct bind-
ing sites, the so-called I-domain and the lectin-like domain, 
that bind completely different ligands and results in differing 
cellular responses. The I-domain itself is a highly promiscuous 
binding site with over 30 structurally unrelated ligands shown 
to be capable of binding at that domain alone, including iC3b, 
fibrinogen, ICAM-1, fibronectin, heparan sulfate, and factor X 
(34, 35). I-domain ligands are both host- and microbial-derived 
such that a multitude of immune effector functions executed by 
inflammatory neutrophils are entirely mediated, or regulated, by 
CR3. As with other integrins, ligand binding is regulated by the 
structural state of activation such that when in a bent conforma-
tion the integrin is in a low-affinity state that is modulated upon 
activating signals that can originate internally (inside-out) or 

externally (outside-in). In either case, the receptor assumes an 
upright conformation consistent with high-affinity ligand bind-
ing that can be further regulated by receptor clustering resulting 
in avidity modulation (36). The lectin-like domain is spatially 
distinct from the I-domain, and is noted for its ability to bind the 
glucose polymer β-glucan (11, 18, 37–39). Ligation of purified 
fungal β-glucan to CR3 is sufficient to induce a signaling response 
(39). The ability of CR3 to mediate neutrophil recognition of 
fungi and initiate signaling identifies it as the only integrin that 
also serves as a PRR.

A novel aspect of CR3 bioactivity is that the manner in which 
it is ligated at its two binding domains has a profound effect on 
cellular responsiveness. This concept was first posited where 
Vetvicka et  al. reported that murine and human natural killer 
cells could acquire cytotoxic capability for resistant tumor cells if 
targets were opsonized with iC3b, a well-described CR3 I-domain 
ligand, and effector cells were exposed to β-glucan, but not by 
either ligand alone (40–42). This increased cytotoxic activity 
could be inhibited with CR3-specific antibodies. Administration 
of β-glucan enhanced the activity of complement-fixing, 
anti-tumor antibodies in  vivo, causing tumor regression and 
increased survival as compared to mice receiving either antibody 
or β-glucan alone (43–45). Surprisingly, this adjuvant activity of 
β-glucan in reducing tumor burden was shown to be mediated 
by neutrophils and did not occur in mice lacking either CR3 or 
complement or in mice depleted of neutrophils.

ROLe OF eXTRACeLLULAR MATRiX in 
AnTi-FUnGAL iMMUniTY

In a seminal paper by Carl Nathan in 1989, the respiratory burst 
of human neutrophils to soluble proinflammatory mediators 
was shown to be adhesion dependent and require attachment to 
either ECM components or human umbilical vein endothelial 
cells (46, 47). This adhesion dependence of neutrophil effector 
function provided an early the basis for suggesting the coordina-
tion of integrin and non-integrin stimuli to drive host defense 
in tissues. As CR3 mediates cellular interactions with ECM, and 
since all neutrophilic responses to tissue infections necessitate 
ECM contact, we focused our attention on investigating the role 
of CR3 as a fungal PRR via the lectin-like domain in the presence 
of fibronectin, a ubiquitous ECM molecule and I-domain ligand. 
We showed that the effect of CR3 on the anti-fungal response of 
human neutrophils to Candida is not a straightforward conse-
quence of receptor ligation, but is directed by how it is ligated 
(11–13, 39, 48–52). We have found that upon dual ligation of 
CR3 by fibronectin and β-glucan, neutrophils demonstrated 
enhanced chemotaxis, swarming and aggregation, NETosis, and 
an actively suppressed respiratory burst (Figure  1). Antibody-
blocking studies were used to show coincident ligation of CR3 at 
both the I-domain with the ECM component fibronectin and the 
lectin-like domain control neutrophil effector functions differ-
ently than ligation of either site alone (11–13, 39, 49–52). These 
studies additionally identified a CR3-mediated regulation of β1 
integrins, driving a shift in fibronectin binding from α5β1 to α3β1 
(12, 50, 52).
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FiGURe 1 | Schematized neutrophil response to C. albicans hyphae in the absence and presence of extracellular matrix. In the absence of ECM 
(poly-l-lysine, left panel), neutrophils respond to hyphae by chemotaxis, by degranulation and respiratory burst, and by wrapping around fungal filaments in a form of 
frustrated phagocytosis. In the presence of ECM (Extracellular Matrix, right panel), neutrophils chemotaxis to fungal filaments is faster and more directed, with 
degranulation and respiratory burst being actively suppressed until the multifocal contact of frustrated phagocytosis. Additionally, in a subset of cells contacting the 
fungal hyphae, a rapid, respiratory burst independent NETotic response is induced and followed by neutrophil swarming.
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In order to be virulent, C. albicans must be capable of transi-
tioning between yeast and hyphal forms (53). The yeast form is 
readily cleared by neutrophil phagocytosis, the mechanisms of 
which have been studied extensively. Less work has focused on 
the neutrophilic response to this filamentous form of the microbe. 
As Candida destruction necessitates a full-blown response to 
both forms of the organism, work in our lab has focused on this 
gap in our understanding of anti-fungal host defense. We found 
that C. albicans hyphae growing in the kidney of an infected rat 
induced massive clustering of inflammatory neutrophils that 
entirely surrounded the hyphae (11). This clustering of human 
neutrophils could be replicated in vitro with C. albicans hyphae 
plated on fibronectin but not on hyphae plated in the absence 
of fibronectin (13). Pretreating hyphae with an anti-β-glucan 
antibody prevented clustering of neutrophils suggesting that the 
β-glucan component of the fungal cell wall is important for neu-
trophil responsiveness (13). Immobilization of purified β-glucan 
in the presence of fibronectin was a biomimic for Candida hyphae 
within tissue ECM suggesting that fungal β-glucan is necessary 
and sufficient for homotypic aggregation (13). Furthermore, this 
swarming and aggregation took place rapidly, being evident in 
less than 30 min in vitro (13).

ADDinG neTosis TO THe RePeRTOiRe 
OF neUTROPHiL-MeDiATeD iMMUniTY

NETosis was initially described as a pathway of chromatin decon-
densation and release with requisite NADPH oxidase, elastase, 
and myeloperoxidase activity in response to activating stimuli 
(54–56). The initial reports showed relatively slow kinetics, occur-
ring hours following exposure to stimuli, including bacteria, 
fungi, or PMA (14, 17, 54, 55, 57, 58), though evidence suggests 
that no de novo gene synthesis is required (59). As additional 
investigators explored conditions necessary and sufficient to 

NET release within their experimental systems, some variance in 
the original paradigm emerged. The “classical” pathway involves 
entry of the neutrophil into a cell death program that requires 
ROS and manifests in plasma membrane disruption and NET 
release 1–4  h after stimulation. This pathway utilized peptidyl 
arginine deiminase type IV (PAD4) for histone citrullination 
that leads to chromatin decondensation due to neutralization of 
histone electrostatic charge normally imparted by arginine but 
lost upon conversion to citrulline (60). Elastase and myeloper-
oxidase serve to digest nuclear histones after translocation such 
that absence of these enzymes impairs NET release (61). A more 
recently identified early/rapid, or “vital,” NET release was identi-
fied that can result in extrusion in minutes, independently of 
ROS and without compromising cell viability, in response to 
Staphylococcus aureus, C. albicans, and Leishmania promastigotes 
(13, 62, 63). The “classical” and “vital” NETosis pathways need 
not be mutually exclusive, as the context of NETotic stimuli 
presentation, such as timing, viability, size, or morphotype, can 
drive differential response patterns and kinetics (13, 14, 54, 57, 
62–64). ECM ligands in the context of tissue infection can also 
drive differential neutrophil responses.

ROLe OF inTeGRinS AnD 
eXTRACeLLULAR MATRiX in THe 
ReGULATiOn OF neTosis

Our laboratory has demonstrated an integrin-dependent ECM 
response that both actively suppresses the respiratory burst to 
Candida hyphae, or immobilized fungal β-glucan, while driving 
a robust, rapid NETotic response (12, 13). Additionally, work with 
neonatal neutrophils show that this NETotic anti-fungal pathway 
is active even though neonatal neutrophils have been shown 
to be deficient in NETotic responses to other initiating agents, 
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underscoring the importance of stimuli context in evaluating 
effector function (65, 66).

In addition to our work, evidence to date describes the role 
of β2 integrins in NET release as it occurs along liver sinusoids 
or vascular endothelium. Platelet–neutrophil interactions have 
been shown to occur under conditions of severe sepsis (67) or 
endotoxemia in which activation of platelet TLR4 promotes 
platelet binding to neutrophils with ensuing NET release (68). 
Two recent studies differ with regard to which β2 integrin medi-
ates platelet–neutrophil binding. McDonald et  al. (69) show a 
role for LFA1, although the ligand on the platelet remains to be 
defined. Rossaint et al. (70) showed that incubation of stimulated 
platelets with neutrophils ex vivo induced NETosis that could be 
blocked with anti-CR3 antibodies but not with antibodies against 
LFA1. Mohanty et  al. (71) recently identified that neutrophils 
form NETs from saliva exposure in a β2 integrin-independent 
fashion, as LAD1 patients form NETs to saliva and PMA but not 
to unopsonized S. aureus.

 Complement receptor-3 has been shown to regulate apoptosis 
of neutrophils such that the genetic absence of CR3 delayed the 
onset of apoptosis of neutrophils after thioglycollate injection 
(72). Given that CR3 determines a NETotic pathway for Candida, 
it is of interest to consider whether or not NETotic and apop-
totic pathways have common points of regulation. Evidence to 
date suggests that NETosis and apoptosis both require calcium 
for initiation but then show divergence in the sense that PAD4 
activation does not depend on downstream components of the 
apoptotic pathway, such as activated caspase, and apoptosis 
does not depend on PAD4 (73). Indeed, histone citrullination 
in neutrophils is induced by inflammatory stimuli and not by 
treatments that induce apoptosis (73). Moreover, treatment of 
neutrophil-differentiated HL60 cells with calcium ionophore 
showed that histone citrullination preceded PARP cleavage, such 
that the decision-making events may be temporal.

The occupancy of one integrin by ligand has been shown to be 
capable of suppressing the function of other integrins in a phe-
nomenon referred to as trans-dominant inhibition, or integrin 
crosstalk. For example, activating antibodies specific for the αvβ3 
integrin suppress α5β1-dependent phagocytosis and ligation of 
α4β1 inhibits α5β1-dependent expression of metalloproteinases 
(74, 75). Ligation of αIIbβ3 induces trans-dominant suppression 

of target integrins α5β1 and α2β1 (76). Additionally, antibody 
activation of β1 integrins was shown to increase CR3 adhesion 
to fibronectin (77) and outside-in activation of β2 integrins via 
crosslinking was demonstrated to upregulate the expression of 
β1 integrins (78). These studies suggest that certain integrin-
specific ligands provoke integrin crosstalk that could result in 
alterations in cell migration and invasion. With regard to the 
anti-Candida response of human neutrophils, we discovered a 
temporal, interregulatory relationship between the β2 integrin 
CR3 and regulation of β1 family members and this modulates the 
response to β-glucan or C. albicans hyphae in the context of ECM 
(12, 13, 49–52). The extent to which integrin crosstalk operates 
as a regulatory pathway for other innate immune functions is not 
well understood.

neUTROPHiLS, inTeGRinS, 
eXTRACeLLULAR MATRiX, neTosis,  
AnD BeYOnD

The host response of neutrophils to C. albicans-infected tissues 
necessitates ECM contact. Our work and others have clearly dem-
onstrated a regulatory role of ECM in determining neutrophil 
function, including NETosis. The focus of this review, the role 
of ECM ligation by neutrophil integrins as it pertains to both 
host defense functions and the kinetics of these functions, has 
implications that reach far beyond the anti-fungal response. The 
totality of ECM involvement in neutrophil host defense in tissues 
makes accounting for both its presence and the role of integrin 
engagement an important and under-examined mechanistic 
aspect of inflammation.
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